1
|
Thirunavukarasu AS, Szleper K, Tanriver G, Marchlewski I, Mitusinska K, Gora A, Brezovsky J. Water Migration through Enzyme Tunnels Is Sensitive to the Choice of Explicit Water Model. J Chem Inf Model 2024. [PMID: 39680044 DOI: 10.1021/acs.jcim.4c01177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The utilization of tunnels and water transport within enzymes is crucial for their catalytic function as water molecules can stabilize bound substrates and help with unbinding processes of products and inhibitors. Since the choice of water models for molecular dynamics simulations was shown to determine the accuracy of various calculated properties of the bulk solvent and solvated proteins, we have investigated if and to what extent water transport through the enzyme tunnels depends on the selection of the water model. Here, we focused on simulating enzymes with various well-defined tunnel geometries. In a systematic investigation using haloalkane dehalogenase as a model system, we focused on the well-established TIP3P, OPC, and TIP4P-Ew water models to explore their impact on the use of tunnels for water molecule transport. The TIP3P water model showed significantly faster migration, resulting in the transport of approximately 2.5 times more water molecules compared to that of the OPC and 1.7 times greater than that of the TIP4P-Ew. Finally, the transport was 1.4-fold more pronounced in TIP4P-Ew than in OPC. The increase in migration of TIP3P water molecules was mainly due to faster transit times through dehalogenase tunnels. We observed similar behavior in two different enzymes with buried active sites and different tunnel network topologies, i.e., alditol oxidase and cytochrome P450, indicating that our findings are likely not restricted to a particular enzyme family. Overall, this study showcases the critical importance of water models in comprehending the use of enzyme tunnels for small molecule transport. Given the significant role of water availability in various stages of the catalytic cycle and the solvation of substrates, products, and drugs, choosing an appropriate water model may be crucial for accurate simulations of complex enzymatic reactions, rational enzyme design, and predicting drug residence times.
Collapse
Affiliation(s)
- Aravind Selvaram Thirunavukarasu
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Katarzyna Szleper
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Gamze Tanriver
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Igor Marchlewski
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Karolina Mitusinska
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Artur Gora
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Jan Brezovsky
- Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznań, Poland
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| |
Collapse
|
2
|
Leitner DM. Temperature Dependence of Thermal Conductivity of Proteins: Contributions of Thermal Expansion and Grüneisen Parameter. Chemphyschem 2024:e202401017. [PMID: 39632269 DOI: 10.1002/cphc.202401017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/07/2024]
Abstract
The thermal conductivity of many materials depends on temperature due to several factors, including variation of heat capacity with temperature, changes in vibrational dynamics with temperature, and change in volume with temperature. For proteins some, but not all, of these influences on the variation of thermal conductivity with temperature have been investigated in the past. In this study, we examine the influence of change in volume, and corresponding changes in vibrational dynamics, on the temperature dependence of the thermal conductivity. Using a measured value for the coefficient of thermal expansion and recently computed values for the Grüneisen parameter of proteins we find that the thermal conductivity increases with increasing temperature due to change in volume with temperature. We compare the impact of thermal expansion on the variation of the thermal conductivity with temperature found in this study with contributions of heat capacity and anharmonic coupling examined previously. Using values of thermal transport coefficients computed for proteins we also model heating of water in a protein solution following photoexcitation.
Collapse
Affiliation(s)
- David M Leitner
- Department of Chemistry, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
3
|
Teixeira LR, Akella R, Humphreys JM, He H, Goldsmith EJ. Water and chloride as allosteric inhibitors in WNK kinase osmosensing. eLife 2024; 12:RP88224. [PMID: 39584807 PMCID: PMC11588334 DOI: 10.7554/elife.88224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Osmotic stress and chloride regulate the autophosphorylation and activity of the WNK1 and WNK3 kinase domains. The kinase domain of unphosphorylated WNK1 (uWNK1) is an asymmetric dimer possessing water molecules conserved in multiple uWNK1 crystal structures. Conserved waters are present in two networks, referred to here as conserved water networks 1 and 2 (CWN1 and CWN2). Here, we show that PEG400 applied to crystals of dimeric uWNK1 induces de-dimerization. Both the WNK1 the water networks and the chloride-binding site are disrupted by PEG400. CWN1 is surrounded by a cluster of pan-WNK-conserved charged residues. Here, we mutagenized these charges in WNK3, a highly active WNK isoform kinase domain, and WNK1, the isoform best studied crystallographically. Mutation of E314 in the Activation Loop of WNK3 (WNK3/E314Q and WNK3/E314A, and the homologous WNK1/E388A) enhanced the rate of autophosphorylation, and reduced chloride sensitivity. Other WNK3 mutants reduced the rate of autophosphorylation activity coupled with greater chloride sensitivity than wild-type. The water and chloride regulation thus appear linked. The lower activity of some mutants may reflect effects on catalysis. Crystallography showed that activating mutants introduced conformational changes in similar parts of the structure to those induced by PEG400. WNK activating mutations and crystallography support a role for CWN1 in WNK inhibition consistent with water functioning as an allosteric ligand.
Collapse
Affiliation(s)
- Liliana R Teixeira
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Radha Akella
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - John M Humphreys
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Haixia He
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| | - Elizabeth J Goldsmith
- Department of Biophysics, The University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
4
|
Wang T, Yamato T, Sugiura W. Thermal Energy Transport through Nonbonded Native Contacts in Protein. J Phys Chem B 2024; 128:8641-8650. [PMID: 39197018 DOI: 10.1021/acs.jpcb.4c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Within the protein interior, where we observe various types of interactions, nonuniform flow of thermal energy occurs along the polypeptide chain and through nonbonded native contacts, leading to inhomogeneous transport efficiencies from one site to another. The folded native protein serves not merely as thermal transfer medium but, more importantly, as sophisticated molecular nanomachines in cells. Therefore, we are particularly interested in what sort of "communication" is mediated through native contacts in the folded proteins and how such features are quantitatively depicted in terms of local transport coefficients of heat currents. To address the issue, we introduced a concept of inter-residue thermal conductivity and characterized the nonuniform thermal transport properties of a small globular protein, HP36, using equilibrium molecular dynamics simulation and the Green-Kubo formula. We observed that the thermal transport of the protein was dominated by that along the polypeptide chain, while the local thermal conductivity of nonbonded native contacts decreased in the order of H-bonding > π-stacking > electrostatic > hydrophobic contacts. Furthermore, we applied machine learning techniques to analyze the molecular mechanism of protein thermal transport. As a result, the contact distance, variance in contact distance, and H-bonding occurrence probability during MD simulations are found to be the top three important determinants for predicting local thermal transport coefficients.
Collapse
Affiliation(s)
- Tingting Wang
- RIKEN Center for Computational Science, 7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Wataru Sugiura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
5
|
Poudel H, Wales DJ, Leitner DM. Vibrational Energy Landscapes and Energy Flow in GPCRs. J Phys Chem B 2024; 128:7568-7576. [PMID: 39058920 DOI: 10.1021/acs.jpcb.4c04513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
We construct and analyze disconnectivity graphs to provide the first graphical representation of the vibrational energy landscape of a protein, in this study β2AR, a G-protein coupled receptor (GPCR), in active and inactive states. The graphs, which indicate the relative free energy of each residue and the minimum free energy barriers for energy transfer between them, reveal important composition, structural and dynamic properties that mediate the flow of energy. Prolines and glycines, which contribute to GPCR plasticity and function, are identified as bottlenecks to energy transport along the backbone from which alternative pathways for energy transport via nearby noncovalent contacts emerge, seen also in the analysis of first passage time (FPT) distributions presented here. Striking differences between the disconnectivity graphs and FPT distributions for the inactive and active states of β2AR are found where structural and dynamic changes occur upon activation, contributing to allosteric regulation.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David J Wales
- Yusuf Hamied Department of Chemistry, Cambridge University, Cambridge CB2 1EW, U.K
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
6
|
McCullagh M, Zeczycki TN, Kariyawasam CS, Durie CL, Halkidis K, Fitzkee NC, Holt JM, Fenton AW. What is allosteric regulation? Exploring the exceptions that prove the rule! J Biol Chem 2024; 300:105672. [PMID: 38272229 PMCID: PMC10897898 DOI: 10.1016/j.jbc.2024.105672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.
Collapse
Affiliation(s)
- Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Tonya N Zeczycki
- Department of Biochemistry and Molecular Biology, Brody School of Medicine at East Carolina University, Greenville, North Carolina, USA
| | - Chathuri S Kariyawasam
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Clarissa L Durie
- Department of Biochemistry, University of Missouri, Columbia, Missouri, USA
| | - Konstantine Halkidis
- Department of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA; Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jo M Holt
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Aron W Fenton
- Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
7
|
Grieco A, Ruiz-Fresneda MA, Gómez-Mulas A, Pacheco-García JL, Quereda-Moraleda I, Pey AL, Martin-Garcia JM. Structural dynamics at the active site of the cancer-associated flavoenzyme NQO1 probed by chemical modification with PMSF. FEBS Lett 2023; 597:2687-2698. [PMID: 37726177 DOI: 10.1002/1873-3468.14738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023]
Abstract
A large conformational heterogeneity of human NAD(P)H:quinone oxidoreductase 1 (NQO1), a flavoprotein associated with various human diseases, has been observed to occur in the catalytic site of the enzyme. Here, we report the X-ray structure of NQO1 with phenylmethylsulfonyl fluoride (PMSF) at 1.6 Å resolution. Activity assays confirmed that, despite being covalently bound to the Tyr128 residue at the catalytic site, PMSF did not abolish NQO1 activity. This may indicate that the PMSF molecule does not reduce the high flexibility of Tyr128, thus allowing NADH and DCPIP substrates to bind to the enzyme. Our results show that targeting Tyr128, a key residue in NQO1 function, with small covalently bound molecules could possibly not be a good drug discovery strategy to inhibit this enzyme.
Collapse
Affiliation(s)
- Alice Grieco
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | | | | | | | - Isabel Quereda-Moraleda
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| | - Angel L Pey
- Department of Physical Chemistry, University of Granada, Granada, Spain
- Department of Physical Chemistry, Unit of Excellence in Applied Chemistry to Biomedicine and Environment, and Institute of Biotechnology, University of Granada, Granada, Spain
| | - Jose M Martin-Garcia
- Department of Crystallography & Structural Biology, Institute of Physical Chemistry Blas Cabrera, Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
8
|
Reid KM, Poudel H, Leitner DM. Dynamics of Hydrogen Bonds between Water and Intrinsically Disordered and Structured Regions of Proteins. J Phys Chem B 2023; 127:7839-7847. [PMID: 37672685 DOI: 10.1021/acs.jpcb.3c03102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Recent studies indicate more restricted dynamics of water around intrinsically disordered proteins (IDPs) than structured proteins. We examine here the dynamics of hydrogen bonds between water molecules and two proteins, small ubiquitin-related modifier-1 (SUMO-1) and ubiquitin-conjugating enzyme E2I (UBC9), which we compare around intrinsically disordered regions (IDRs) and structured regions of these proteins. It has been recognized since some time that excluded volume effects, which influence access of water molecules to hydrogen-bonding sites, and the strength of hydrogen bonds between water and protein affect hydrogen bond lifetimes. While we find those two properties to mediate lifetimes of hydrogen bonds between water and protein residues in this study, we also find that the lifetimes are affected by the concentration of charged groups on other nearby residues. These factors are more important in determining the hydrogen bond lifetimes than whether a residue hydrogen bonding with water belongs to an IDR or to a structured region.
Collapse
Affiliation(s)
- Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
9
|
Modi T, Campitelli P, Heyden M, Ozkan SB. Correlated Evolution of Low-Frequency Vibrations and Function in Enzymes. J Phys Chem B 2023; 127:616-622. [PMID: 36633931 DOI: 10.1021/acs.jpcb.2c05983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Previous studies of the flexibility of ancestral proteins suggest that proteins evolve their function by altering their native state ensemble. Here, we propose a more direct method to analyze such changes during protein evolution by comparing thermally activated vibrations at frequencies below 6 THz, which report on the dynamics of collective protein modes. We analyzed the backbone vibrational density of states of ancestral and extant β-lactamases and thioredoxins and observed marked changes in the vibrational spectrum in response to evolution. Coupled with previously observed changes in protein flexibility, the observed shifts of vibrational mode densities suggest that protein dynamics and dynamical allostery are critical factors for the evolution of enzymes with specialized catalytic and biophysical properties.
Collapse
Affiliation(s)
- Tushar Modi
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| | - Paul Campitelli
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona85287, United States
| | - S Banu Ozkan
- Department of Physics, Arizona State University, Tempe, Arizona85287, United States
| |
Collapse
|
10
|
Poudel H, Leitner DM. Locating dynamic contributions to allostery via determining rates of vibrational energy transfer. J Chem Phys 2023; 158:015101. [PMID: 36610954 DOI: 10.1063/5.0132089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Determining rates of energy transfer across non-covalent contacts for different states of a protein can provide information about dynamic and associated entropy changes during transitions between states. We investigate the relationship between rates of energy transfer across polar and nonpolar contacts and contact dynamics for the β2-adrenergic receptor, a rhodopsin-like G-protein coupled receptor, in an antagonist-bound inactive state and agonist-bound active state. From structures sampled during molecular dynamics (MD) simulations, we find the active state to have, on average, a lower packing density, corresponding to generally more flexibility and greater entropy than the inactive state. Energy exchange networks (EENs) are computed for the inactive and active states from the results of the MD simulations. From the EENs, changes in the rates of energy transfer across polar and nonpolar contacts are found for contacts that remain largely intact during activation. Change in dynamics of the contact, and entropy associated with the dynamics, can be estimated from the change in rates of energy transfer across the contacts. Measurement of change in the rates of energy transfer before and after the transition between states thereby provides information about dynamic contributions to activation and allostery.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
11
|
Wych DC, Aoto PC, Vu L, Wolff AM, Mobley DL, Fraser JS, Taylor SS, Wall ME. Molecular-dynamics simulation methods for macromolecular crystallography. Acta Crystallogr D Struct Biol 2023; 79:50-65. [PMID: 36601807 PMCID: PMC9815100 DOI: 10.1107/s2059798322011871] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.
Collapse
Affiliation(s)
- David C. Wych
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
| | - Phillip C. Aoto
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lily Vu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexander M. Wolff
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David L. Mobley
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - James S. Fraser
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael E. Wall
- Computer, Computational and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
12
|
Mizutani Y, Mizuno M. Time-resolved spectroscopic mapping of vibrational energy flow in proteins: Understanding thermal diffusion at the nanoscale. J Chem Phys 2022; 157:240901. [PMID: 36586981 DOI: 10.1063/5.0116734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vibrational energy exchange between various degrees of freedom is critical to barrier-crossing processes in proteins. Hemeproteins are well suited for studying vibrational energy exchange in proteins because the heme group is an efficient photothermal converter. The released energy by heme following photoexcitation shows migration in a protein moiety on a picosecond timescale, which is observed using time-resolved ultraviolet resonance Raman spectroscopy. The anti-Stokes ultraviolet resonance Raman intensity of a tryptophan residue is an excellent probe for the vibrational energy in proteins, allowing the mapping of energy flow with the spatial resolution of a single amino acid residue. This Perspective provides an overview of studies on vibrational energy flow in proteins, including future perspectives for both methodologies and applications.
Collapse
Affiliation(s)
- Yasuhisa Mizutani
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Misao Mizuno
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
13
|
Poudel H, Leitner DM. Energy Transport in Class B GPCRs: Role of Protein-Water Dynamics and Activation. J Phys Chem B 2022; 126:8362-8373. [PMID: 36256609 DOI: 10.1021/acs.jpcb.2c03960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We compute energy exchange networks (EENs) through glucagon-like peptide-1 receptor (GLP-1R), a class B G-protein-coupled receptor (GPCR), in inactive and two active states, one activated by a peptide ligand and the other by a small molecule agonist, from results of molecular dynamics simulations. The reorganized network upon activation contains contributions from structural as well as from dynamic changes and corresponding entropic contributions to the free energy of activation, which are estimated in terms of the change in rates of energy transfer across non-covalent contacts. The role of water in the EENs and in activation of GLP-1R is also investigated. The dynamics of water in contact with the central polar network of the transmembrane region is found to be significantly slower for both activated states compared to the inactive state. This result is consistent with the contribution of water molecules to activation of GLP-1R previously suggested and resembles water dynamics in parts of the transmembrane region found in earlier studies of rhodopsin-like GPCRs.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada89557, United States
| |
Collapse
|
14
|
Hadi-Alijanvand H, Di Paola L, Hu G, Leitner DM, Verkhivker GM, Sun P, Poudel H, Giuliani A. Biophysical Insight into the SARS-CoV2 Spike-ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach. ACS OMEGA 2022; 7:17024-17042. [PMID: 35600142 PMCID: PMC9113007 DOI: 10.1021/acsomega.2c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 04/15/2022] [Indexed: 05/08/2023]
Abstract
At the center of the SARS-CoV2 infection, the spike protein and its interaction with the human receptor ACE2 play a central role in the molecular machinery of SARS-CoV2 infection of human cells. Vaccine therapies are a valuable barrier to the worst effects of the virus and to its diffusion, but the need of purposed drugs is emerging as a core target of the fight against COVID19. In this respect, the repurposing of drugs has already led to discovery of drugs thought to reduce the effects of the cytokine storm, but still a drug targeting the spike protein, in the infection stage, is missing. In this work, we present a multifaceted computational approach strongly grounded on a biophysical modeling of biological systems, so to disclose the interaction of the SARS-CoV2 spike protein with ACE2 with a special focus to an allosteric regulation of the spike-ACE2 interaction. Our approach includes the following methodologies: Protein Contact Networks and Network Clustering, Targeted Molecular Dynamics, Elastic Network Modeling, Perturbation Response Scanning, and a computational analysis of energy flow and SEPAS as a protein-softness and monomer-based affinity predictor. We applied this approach to free (closed and open) states of spike protein and spike-ACE2 complexes. Eventually, we analyzed the interactions of free and bound forms of spike with hepcidin (HPC), the major hormone in iron regulation, recently addressed as a central player in the COVID19 pathogenesis, with a special emphasis to the most severe outcomes. Our results demonstrate that, compared with closed and open states, the spike protein in the ACE2-bound state shows higher allosteric potential. The correspondence between hinge sites and the Allosteric Modulation Region (AMR) in the S-ACE complex suggests a molecular basis for hepcidin involvement in COVID19 pathogenesis. We verify the importance of AMR in different states of spike and then study its interactions with HPC and the consequence of the HPC-AMR interaction on spike dynamics and its affinity for ACE2. We propose two complementary mechanisms for HPC effects on spike of SARS-CoV-2; (a) HPC acts as a competitive inhibitor when spike is in a preinfection state (open and with no ACE2), (b) the HPC-AMR interaction pushes the spike structure into the safer closed state. These findings need clear molecular in vivo verification beside clinical observations.
Collapse
Affiliation(s)
- Hamid Hadi-Alijanvand
- Department
of Biological Sciences, Institute for Advanced
Studies in Basic Sciences, Zanjan 45137-66731, Iran
| | - Luisa Di Paola
- Unit
of Chemical-Physics Fundamentals in Chemical Engineering, Department
of Engineering, Università Campus
Bio-Medico di Roma, via
Álvaro del Portillo 21, Rome 00128, Italy
| | - Guang Hu
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
- . Phone: +39 (06) 225419634
| | - David M. Leitner
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Gennady M. Verkhivker
- Keck
Center for Science and Engineering, Schmid College of Science and
Technology, Chapman University, One University Drive, Orange 92866, California, United States
- Department
of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine 92618, California, United States
| | - Peixin Sun
- Center
for Systems Biology, Department of Bioinformatics, School of Biology
and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Humanath Poudel
- Department
of Chemistry, University of Nevada, Reno 89557, Nevada, United States
| | - Alessandro Giuliani
- Environmental
and Health Department, Istituto Superiore
di Sanità, Rome 00161, Italy
| |
Collapse
|
15
|
Yamato T, Wang T, Sugiura W, Laprévote O, Katagiri T. Computational Study on the Thermal Conductivity of a Protein. J Phys Chem B 2022; 126:3029-3036. [PMID: 35416670 DOI: 10.1021/acs.jpcb.2c00958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Protein molecules are thermally fluctuating and tightly packed amino acid residues strongly interact with each other. Such interactions are characterized in terms of heat current at the atomic level. We calculated the thermal conductivity of a small globular protein, villin headpiece subdomain, based on the linear response theory using equilibrium molecular dynamics simulation. The value of its thermal conductivity was 0.3 ± 0.01 [W m-1 K-1], which is in good agreement with experimental and computational studies on the other proteins in the literature. Heat current along the main chain was dominated by local vibrations in the polypeptide bonds, with amide I, II, III, and A bands on the Fourier transform of the heat current autocorrelation function.
Collapse
Affiliation(s)
- Takahisa Yamato
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Wataru Sugiura
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Olivier Laprévote
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takahiro Katagiri
- Information Technology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
16
|
Reid KM, Singh AK, Bikash CR, Wei J, Tal-Gan Y, Vinh NQ, Leitner DM. The origin and impact of bound water around intrinsically disordered proteins. Biophys J 2022; 121:540-551. [PMID: 35074392 PMCID: PMC8874019 DOI: 10.1016/j.bpj.2022.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 12/29/2022] Open
Abstract
Proteins and water couple dynamically over a wide range of time scales. Motivated by their central role in protein function, protein-water dynamics and thermodynamics have been extensively studied for structured proteins, where correspondence to structural features has been made. However, properties controlling intrinsically disordered protein (IDP)-water dynamics are not yet known. We report results of megahertz-to-terahertz dielectric spectroscopy and molecular dynamics simulations of a group of IDPs with varying charge content along with structured proteins of similar size. Hydration water around IDPs is found to exhibit more heterogeneous rotational and translational dynamics compared with water around structured proteins of similar size, yielding on average more restricted dynamics around individual residues of IDPs, charged or neutral, compared with structured proteins. The on-average slower water dynamics is found to arise from excess tightly bound water in the first hydration layer, which is related to greater exposure to charged groups. The more tightly bound water to IDPs correlates with the smaller hydration shell found experimentally, and affects entropy associated with protein-water interactions, the contribution of which we estimate based on the dielectric measurements and simulations. Water-IDP dynamic coupling at terahertz frequencies is characterized by the dielectric measurements and simulations.
Collapse
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Abhishek K. Singh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | | | - Jessica Wei
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Yftah Tal-Gan
- Department of Chemistry, University of Nevada, Reno, Nevada
| | - Nguyen Q. Vinh
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia,Corresponding author
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada,Corresponding author
| |
Collapse
|
17
|
Louet M, Casiraghi M, Damian M, Costa MGS, Renault P, Gomes AAS, Batista PR, M'Kadmi C, Mary S, Cantel S, Denoyelle S, Ben Haj Salah K, Perahia D, Bisch PM, Fehrentz JA, Catoire LJ, Floquet N, Banères JL. Concerted conformational dynamics and water movements in the ghrelin G protein-coupled receptor. eLife 2021; 10:e63201. [PMID: 34477105 PMCID: PMC8416020 DOI: 10.7554/elife.63201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
There is increasing support for water molecules playing a role in signal propagation through G protein-coupled receptors (GPCRs). However, exploration of the hydration features of GPCRs is still in its infancy. Here, we combined site-specific labeling with unnatural amino acids to molecular dynamics to delineate how local hydration of the ghrelin receptor growth hormone secretagogue receptor (GHSR) is rearranged upon activation. We found that GHSR is characterized by a specific hydration pattern that is selectively remodeled by pharmacologically distinct ligands and by the lipid environment. This process is directly related to the concerted movements of the transmembrane domains of the receptor. These results demonstrate that the conformational dynamics of GHSR are tightly coupled to the movements of internal water molecules, further enhancing our understanding of the molecular bases of GPCR-mediated signaling.
Collapse
Affiliation(s)
- Maxime Louet
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | - Mauricio GS Costa
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | - Pedro Renault
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Antoniel AS Gomes
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Paulo R Batista
- Programa de Computação Científica, Fundação Oswaldo CruzRio de JaneiroBrazil
| | | | - Sophie Mary
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | - Sonia Cantel
- IBMM, Univ Montpellier, CNRS, ENSCMMontpellierFrance
| | | | | | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquées, UMR 8113 CNRS, Ecole Normale Supérieure Paris-SaclayGif-sur-YvetteFrance
| | - Paulo M Bisch
- Laboratório de Física Biológica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS, Université de Paris, Institut de Biologie Physico-Chimique (FRC 550)ParisFrance
| | | | | |
Collapse
|
18
|
Santra M, Seal A, Bhattacharjee K, Chakrabarty S. Structural and dynamical heterogeneity of water trapped inside Na +-pumping KR2 rhodopsin in the dark state. J Chem Phys 2021; 154:215101. [PMID: 34240976 DOI: 10.1063/5.0044904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Photoisomerization in the retinal leads to a channel opening in rhodopsins that triggers translocation or pumping of ions/protons. Crystal structures of rhodopsins contain several structurally conserved water molecules. It has been suggested that water plays an active role in facilitating the ion pumping/translocation process by acting as a lubricant in these systems. In this paper, we systematically investigate the localization, structure, dynamics, and energetics of the water molecules along the channel for the resting/dark state of KR2 rhodopsin. By employing several microseconds long atomistic molecular dynamics simulation of this trans-membrane protein system, we demonstrate the presence of five distinct water containing pockets/cavities separated by gateways controlled by protein side-chains. There exists a strong hydrogen bonded network involving these buried water molecules and functionally important key residues. We present evidence of significant structural and dynamical heterogeneity in the water molecules present in these cavities, with very rare exchange between them. The exchange time scale of such buried water with the bulk has an extremely wide range, from tens of nanoseconds to >1.5 µs. The translational and rotational dynamics of buried water are found to be strongly dependent on the protein cavity size and local interactions with a classic signature of trapped diffusion and rotational anisotropy.
Collapse
Affiliation(s)
- Mantu Santra
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, Ponda, Goa 403401, India
| | - Aniruddha Seal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar 752050, Odisha, India
| | - Kankana Bhattacharjee
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| | - Suman Chakrabarty
- Department of Chemical, Biological & Macro-Molecular Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, West Bengal, India
| |
Collapse
|
19
|
Poudel H, Leitner DM. Activation-Induced Reorganization of Energy Transport Networks in the β 2 Adrenergic Receptor. J Phys Chem B 2021; 125:6522-6531. [PMID: 34106712 DOI: 10.1021/acs.jpcb.1c03412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We compute energy exchange networks (EENs) through the β2 adrenergic receptor (β2AR), a G-protein coupled receptor (GPCR), in inactive and active states, based on the results of molecular dynamics simulations of this membrane bound protein. We introduce a new definition for the reorganization of EENs upon activation that depends on the relative change in rates of energy transfer across noncovalent contacts throughout the protein. On the basis of the reorganized network that we obtain for β2AR upon activation, we identify a branched pathway between the agonist binding site and the cytoplasmic region, where a G-protein binds to the receptor when activated. The pathway includes all of the motifs containing molecular switches previously identified as contributing to the allosteric transition of β2AR upon agonist binding. EENs and their reorganization upon activation are compared with structure-based contact networks computed for the inactive and active states of β2AR.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
20
|
Di Paola L, Leitner DM. Network models of biological adaptation at the molecular scale: Comment on "Dynamic and thermodynamic models of adaptation" by A.N. Gorban et al. Phys Life Rev 2021; 38:124-126. [PMID: 34090823 DOI: 10.1016/j.plrev.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Luisa Di Paola
- Unit of Chemical-physics Fundamentals in Chemical Engineering, Department of Engineering, Università Campus Bio-Medico di Roma, via Álvaro del Portillo 21, Rome, 00128, Italy.
| | - David M Leitner
- Department of Chemistry and Chemical Physics Program, University of Nevada, Reno, 89557, NV, USA
| |
Collapse
|
21
|
Reid KM, Yu X, Leitner DM. Change in vibrational entropy with change in protein volume estimated with mode Grüneisen parameters. J Chem Phys 2021; 154:055102. [DOI: 10.1063/5.0039175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Korey M. Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - Xin Yu
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| | - David M. Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, USA
| |
Collapse
|
22
|
Bertalan É, Lešnik S, Bren U, Bondar AN. Protein-water hydrogen-bond networks of G protein-coupled receptors: Graph-based analyses of static structures and molecular dynamics. J Struct Biol 2020; 212:107634. [DOI: 10.1016/j.jsb.2020.107634] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/06/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
|
23
|
Poudel H, Reid KM, Yamato T, Leitner DM. Energy Transfer across Nonpolar and Polar Contacts in Proteins: Role of Contact Fluctuations. J Phys Chem B 2020; 124:9852-9861. [PMID: 33107736 DOI: 10.1021/acs.jpcb.0c08091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular dynamics simulations of the villin headpiece subdomain HP36 have been carried out to examine relations between rates of vibrational energy transfer across non-covalently bonded contacts and equilibrium structural fluctuations, with focus on van der Waals contacts. Rates of energy transfer across van der Waals contacts vary inversely with the variance of the contact length, with the same constant of proportionality for all nonpolar contacts of HP36. A similar relation is observed for hydrogen bonds, but the proportionality depends on contact pairs, with hydrogen bonds stabilizing the α-helices all exhibiting the same constant of proportionality, one that is distinct from those computed for other polar contacts. Rates of energy transfer across van der Waals contacts are found to be up to 2 orders of magnitude smaller than rates of energy transfer across polar contacts.
Collapse
Affiliation(s)
- Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Korey M Reid
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Takahisa Yamato
- Graduate School of Science, Division of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
24
|
Li H, Ma A. Kinetic energy flows in activated dynamics of biomolecules. J Chem Phys 2020; 153:094109. [DOI: 10.1063/5.0020275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huiyu Li
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| | - Ao Ma
- Department of Bioengineering, The University of Illinois at Chicago, 851 South Morgan Street, Chicago, Illinois 60607, USA
| |
Collapse
|