1
|
Fujimoto KJ, Tsuzuki YA, Inoue K, Yanai T. Molecular Mechanisms behind Circular Dichroism Spectral Variations between Channelrhodopsin and Heliorhodopsin Dimers. J Phys Chem Lett 2024; 15:5788-5794. [PMID: 38780133 PMCID: PMC11145647 DOI: 10.1021/acs.jpclett.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Channelrhodopsin (ChR) and heliorhodopsin (HeR) are microbial rhodopsins with similar structures but different circular dichroism (CD) spectra: ChR shows biphasic negative and positive bands, whereas HeR shows a single positive band. We explored the physicochemical factors underlying these differences through computational methods. Using the exciton model based on first-principles computations, we obtained the CD spectra of ChR and HeR. The obtained spectra indicate that the protein dimer structures and the quantum mechanical treatment of the retinal chromophore and its interacting amino acids are crucial for accurately reproducing the experimental spectra. Further calculations revealed that the sign of the excitonic coupling was opposite between the ChR and HeR dimers, which was attributed to the contrasting second term of the orientation factor between the two retinal chromophores. These findings demonstrate that slight variations in the intermolecular orientation of the two chromophores can result in significant differences in the CD spectral shape.
Collapse
Affiliation(s)
- Kazuhiro J. Fujimoto
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Yuta A. Tsuzuki
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| | - Keiichi Inoue
- The
Institute for Solid State Physics, The University
of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
| | - Takeshi Yanai
- Institute
of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
- Department
of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
2
|
Lu H, Yang X, Wang H. Tuning Phase Transition of Molecular Self-Assembly by Artificial Chaperones through Aromatic-Aromatic Interactions. Biomacromolecules 2024; 25:466-473. [PMID: 38147794 DOI: 10.1021/acs.biomac.3c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The molecular chaperones are essential and play significant roles in controlling the protein phase transition and maintaining physiological homeostasis. However, manipulating phase transformation in biomimetic peptide self-assembly is still challenging. This work shows that an artificial chaperone modulates the energy landscape of supramolecular polymerization, thus controlling the phase transition of amyloid-like assemblies from crystals to hydrogels to solution. The absence of a chaperone allows the NapP to form crystals, while the presence of the chaperone biases the pathway to form nanofibrous hydrogels to soluble oligomers by adjusting the chaperone ratios. Mechanistic studies reveal that the aromatic-aromatic interaction is the key to trapping the molecules in a higher energy fold. Adding the chaperone relieves this restriction, lowers the energy barrier, and transforms the crystal into a hydrogel. This phase transformation can also be achieved in the macromolecular crowding environment, thus providing new insights into understanding molecular self-assembly in multiple component systems.
Collapse
Affiliation(s)
- Honglei Lu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310027, China
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
| | - Xuejiao Yang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Huaimin Wang
- Department of Chemistry, School of Science, Institute of Natural Sciences, Westlake Institute for Advanced Study, Westlake University, No. 600 Dunyu Road, Hangzhou, Zhejiang Province 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| |
Collapse
|
3
|
Ghosh M, Misra R, Bhattacharya S, Majhi K, Jung KH, Sheves M. Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability. J Phys Chem B 2023; 127:2128-2137. [PMID: 36857147 PMCID: PMC10026069 DOI: 10.1021/acs.jpcb.2c07502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Microbial rhodopsin (also called retinal protein)-carotenoid conjugates represent a unique class of light-harvesting (LH) complexes, but their specific interactions and LH properties are not completely elucidated as only few rhodopsins are known to bind carotenoids. Here, we report a natural sodium-ion (Na+)-pumping Nonlabens (Donghaeana) dokdonensis rhodopsin (DDR2) binding with a carotenoid salinixanthin (Sal) to form a thermally stable rhodopsin-carotenoid complex. Different spectroscopic studies were employed to monitor the retinal-carotenoid interaction as well as the thermal stability of the protein, while size-exclusion chromatography (SEC) and homology modeling are performed to understand the protein oligomerization process. In analogy with that of another Na+-pumping protein Krokinobacter eikastus rhodopsin 2 (KR2), we propose that DDR2 (studied concentration range: 2 × 10-6 to 4 × 10-5 M) remains mainly as a pentamer at room temperature and neutral pH, while heating above 55 °C partially converted it into a thermally less stable oligomeric form of the protein. This process is affected by both the pH and concentration. At high concentrations (4 × 10-5 to 2 × 10-4 M), the protein adopts a pentamer form reflected in the excitonic circular dichroism (CD) spectrum. In the presence of Sal, the thermal stability of DDR2 is increased significantly, and the pigment is stable even at 85 °C. The results presented could have implications in designing stable rhodopsin-carotenoid antenna complexes.
Collapse
Affiliation(s)
- Mihir Ghosh
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ramprasad Misra
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sudeshna Bhattacharya
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Koushik Majhi
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Kwang-Hwan Jung
- Department of Life Science and Institute of Biological Interfaces, Sogang University, Seoul 04107, South Korea
| | - Mordechai Sheves
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
de Grip WJ, Ganapathy S. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering. Front Chem 2022; 10:879609. [PMID: 35815212 PMCID: PMC9257189 DOI: 10.3389/fchem.2022.879609] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
The first member and eponym of the rhodopsin family was identified in the 1930s as the visual pigment of the rod photoreceptor cell in the animal retina. It was found to be a membrane protein, owing its photosensitivity to the presence of a covalently bound chromophoric group. This group, derived from vitamin A, was appropriately dubbed retinal. In the 1970s a microbial counterpart of this species was discovered in an archaeon, being a membrane protein also harbouring retinal as a chromophore, and named bacteriorhodopsin. Since their discovery a photogenic panorama unfolded, where up to date new members and subspecies with a variety of light-driven functionality have been added to this family. The animal branch, meanwhile categorized as type-2 rhodopsins, turned out to form a large subclass in the superfamily of G protein-coupled receptors and are essential to multiple elements of light-dependent animal sensory physiology. The microbial branch, the type-1 rhodopsins, largely function as light-driven ion pumps or channels, but also contain sensory-active and enzyme-sustaining subspecies. In this review we will follow the development of this exciting membrane protein panorama in a representative number of highlights and will present a prospect of their extraordinary future potential.
Collapse
Affiliation(s)
- Willem J. de Grip
- Leiden Institute of Chemistry, Department of Biophysical Organic Chemistry, Leiden University, Leiden, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Srividya Ganapathy
- Department of Imaging Physics, Delft University of Technology, Netherlands
| |
Collapse
|
5
|
Fujimoto KJ. Electronic Couplings and Electrostatic Interactions Behind the Light Absorption of Retinal Proteins. Front Mol Biosci 2021; 8:752700. [PMID: 34604313 PMCID: PMC8480471 DOI: 10.3389/fmolb.2021.752700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
The photo-functional chromophore retinal exhibits a wide variety of optical absorption properties depending on its intermolecular interactions with surrounding proteins and other chromophores. By utilizing these properties, microbial and animal rhodopsins express biological functions such as ion-transport and signal transduction. In this review, we present the molecular mechanisms underlying light absorption in rhodopsins, as revealed by quantum chemical calculations. Here, symmetry-adapted cluster-configuration interaction (SAC-CI), combined quantum mechanical and molecular mechanical (QM/MM), and transition-density-fragment interaction (TDFI) methods are used to describe the electronic structure of the retinal, the surrounding protein environment, and the electronic coupling between chromophores, respectively. These computational approaches provide successful reproductions of experimentally observed absorption and circular dichroism (CD) spectra, as well as insights into the mechanisms of unique optical properties in terms of chromophore-protein electrostatic interactions and chromophore-chromophore electronic couplings. On the basis of the molecular mechanisms revealed in these studies, we also discuss strategies for artificial design of the optical absorption properties of rhodopsins.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Fujimoto KJ, Minoda T, Yanai T. Spectral Tuning Mechanism of Photosynthetic Light-Harvesting Complex II Revealed by Ab Initio Dimer Exciton Model. J Phys Chem B 2021; 125:10459-10470. [PMID: 34521196 DOI: 10.1021/acs.jpcb.1c04457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Excited states of two kinds of bacteriochlorophyll (BChl) aggregates, B850 and B800, in photosynthetic light-harvesting complex II (LH2) are theoretically investigated by developing and using an extended exciton model considering efficiently evaluated excitonic coupling. Our exciton model based on dimer fragmentation is shown to reproduce the experimental absorption spectrum of LH2 with good accuracy, entailing their different redshifts originating from aggregations of B850 and B800. The systematic analysis has been performed on the spectra by quantitatively decomposing their spectral shift energies into the contributions of various effects: structural distortion, electrostatic, excitonic coupling, and charge-transfer (CT) effects. Our results show that the spectral redshift of B800 is mainly attributed to its electrostatic interaction with the protein environment, while that of B850 arises from the marked effect of the excitonic coupling between BChl units. The interchromophore CT excitation also plays a key role in the spectral redshift of B850. This CT effect can be effectively described using our dimer model. This suited characterization reveals that the pronounced CT effect originates from the characteristics of B850 that has closely spaced BChls as dimers. We highlight the importance of the refinement of the crystal structure with the use of quantum chemical methods for prediction of the spectrum.
Collapse
Affiliation(s)
- Kazuhiro J Fujimoto
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Takumi Minoda
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan.,Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
7
|
The role of carotenoids in proton-pumping rhodopsin as a primitive solar energy conversion system. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112241. [PMID: 34130090 DOI: 10.1016/j.jphotobiol.2021.112241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Rhodopsin and carotenoids are two molecules that certain bacteria use to absorb and utilize light. Type I rhodopsin, the simplest active proton transporter, converts light energy into an electrochemical potential. Light produces a proton gradient, which is known as the proton motive force across the cell membrane. Some carotenoids are involved in light absorbance and transfer of absorbed energy to chlorophyll during photosynthesis. A previous study in Salinibacter ruber has shown that carotenoids act as antennae to harvest light and transfer energy to retinal in xanthorhodopsin (XR). Here, we describe the role of canthaxanthin (CAN), a carotenoid, as an antenna for Gloeobacter rhodopsin (GR). The non-covalent complex formed by the interaction between CAN and GR doubled the proton pumping speed and improved the pumping capacity by 1.5-fold. The complex also tripled the proton pumping speed and improved the pumping capacity by 5-fold in the presence of strong and weak light, respectively. Interestingly, when canthaxanthin was bound to Gloeobacter rhodopsin, it showed a 126-fold increase in heat resistance, and it survived better under drought conditions than Gloeobacter rhodopsin. The results suggest direct complementation of Gloeobacter rhodopsin with a carotenoid for primitive solar energy harvesting in cyanobacteria.
Collapse
|
8
|
Identification of intermediate conformations in the photocycle of the light-driven sodium-pumping rhodopsin KR2. J Biol Chem 2021; 296:100459. [PMID: 33639164 PMCID: PMC8039564 DOI: 10.1016/j.jbc.2021.100459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 11/21/2022] Open
Abstract
The light-driven rhodopsin KR2 transports Na+via the M- and O-states. However, the mechanisms by which the retinal regulates Na+ pumping is unknown, in part because KR2 adopts both pentamer and monomer forms in crystal structures and in part because these structures show differences in the protein conformation near the Schiff base, even when they are of the same intermediate state within the photocycle. A particular open question is the nature of the H-bond networks and protonation state in the active site, including Asp116. Here, we analyze the protonation state and the absorption wavelength for each crystal structure, using a quantum mechanical/molecular mechanical approach. In the pentamer ground state, the calculated absorption wavelength reproduces the experimentally measured absorption wavelength (530 nm). The analysis also shows that ionized Asp116 is stabilized by the H-bond donations of both Ser70 and a cluster of water molecules. The absorption wavelength of 400 nm in the M-state can be best reproduced when the two O atoms of Asp116 interact strongly with the Schiff base, as reported in one of the previous monomer ground state structures. The absorption wavelengths calculated for the two Na+-incorporated O-state structures are consistent with the measured absorption wavelength (∼600 nm), which suggests that two conformations represent the O-state. These results may provide a key to designing enhanced tools in optogenetics.
Collapse
|