1
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. V. Extension of coarse-grained dynamics theory to non-hard sphere systems. J Chem Phys 2025; 162:124114. [PMID: 40145471 DOI: 10.1063/5.0254388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Coarse-grained (CG) modeling has gained significant attention in recent years due to its wide applicability in enhancing the spatiotemporal scales of molecular simulations. While CG simulations, often performed with Hamiltonian mechanics, faithfully recapitulate structural correlations at equilibrium, they lead to ambiguously accelerated dynamics. In Paper I [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034103 (2023)], we proposed the excess entropy scaling relationship to understand the CG dynamics. Then, in Paper II [J. Jin, K. S. Schweizer, and G. A. Voth, J. Chem. Phys. 158(3), 034104 (2023)], we developed a theory to map the CG system into a dynamically consistent hard sphere system to analytically derive an expression for fast CG dynamics. However, many chemical and physical systems do not exhibit hard sphere-like behavior, limiting the extensibility of the developed theory. In this paper, we aim to generalize the theory to the non-hard sphere system based on the Weeks-Chandler-Andersen perturbation theory. Since non-hard sphere-like CG interactions affect the excess entropy term as it deviates from the hard sphere description, we explicitly account for the extra entropy to correct the non-hard sphere nature of the system. This approach is demonstrated for two different types of interactions seen in liquids, and we further provide a generalized description for any CG models using the generalized Gaussian CG models using Gaussian basis sets. Altogether, this work allows for extending the range and applicability of the hard sphere CG dynamics theory to a myriad of CG liquids.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
2
|
Zaccone A, Samwer K. Fragility and thermal expansion control crystal melting and the glass transition. J Chem Phys 2025; 162:114502. [PMID: 40094241 DOI: 10.1063/5.0253991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Analytical relations for the glass transition temperature, Tg, and the crystal melting temperature, Tm, are developed on the basis of nonaffine lattice dynamics. The proposed relations explain the following: (i) the seemingly universal factor of ≈2/3 difference between the glass transition temperature and the melting temperature of the corresponding crystal, and (ii) the recent empirical discovery that both Tg and Tm are proportional to the liquid fragility m divided by the thermal expansion coefficient α of the solid.
Collapse
Affiliation(s)
- Alessio Zaccone
- Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy
| | - Konrad Samwer
- I. Physikalisches Institut, University of Goettingen, Goettingen, Germany
| |
Collapse
|
3
|
Loidl A, Lunkenheimer P, Samwer K. Prigogine-Defay ratio of glassy freezing scales with liquid fragility. Phys Rev E 2025; 111:035407. [PMID: 40247531 DOI: 10.1103/physreve.111.035407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
A detailed study of published experimental data for a variety of materials on the incremental variation of heat capacity, thermal expansion, and compressibility at glassy freezing reveals a striking dependence of the Prigogine-Defay ratio R on the fragility index m. At high m, R approaches values of ∼1, the Ehrenfest expectation for second-order continuous phase transitions, while R reaches values >20 for low fragilities. We explain this correlation by the degree of separation of the glassy freezing temperature from a hidden phase transition into an ideal low-temperature glass.
Collapse
Affiliation(s)
- A Loidl
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - P Lunkenheimer
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - K Samwer
- University of Göttingen, I. Physikalisches Institut, Göttingen, Germany
| |
Collapse
|
4
|
Syutkin VM, Vyazovkin VL, Grebenkin S. Study of oxygen transport in glassy polymers on a nanometer length scale utilizing the kinetic Monte Carlo simulations. J Chem Phys 2024; 161:084901. [PMID: 39171716 DOI: 10.1063/5.0220742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Diffusion-controlled deactivation of excited phenanthrene and oxidation of triplet aryl-nitrene by molecular oxygen were used to determine the energetics of oxygen jump rates in the set of glassy polymers: poly(methyl methacrylate), poly(n-butyl methacrylate), polycarbonate, polystyrene, and polysulfone. To interpret experimental results, a simple model based on the transition state theory of diffusion jump has been used. The kinetic Monte Carlo simulations of phenanthrene deactivation and nitrene oxidation were carried out in a cubic lattice that modeled a polymer matrix. The bonds of the lattice were assigned to be activation barriers for the diffusion jumps of oxygen molecules from one site of the lattice to another. The standard deviation, σ‡, and spatial correlation length, rc, of the free energy of diffusion jump have been determined. It is shown that the spatial correlation of oxygen jump rates on a nanometer scale and the entropic nature of the dynamic heterogeneity are common features of all the studied polymers.
Collapse
Affiliation(s)
- V M Syutkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russian Federation
| | - V L Vyazovkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russian Federation
| | - S Grebenkin
- Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, Institutskaya 3, Novosibirsk 630090, Russian Federation
| |
Collapse
|
5
|
Jin J, Voth GA. Understanding dynamics in coarse-grained models. IV. Connection of fine-grained and coarse-grained dynamics with the Stokes-Einstein and Stokes-Einstein-Debye relations. J Chem Phys 2024; 161:034114. [PMID: 39012809 DOI: 10.1063/5.0212973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Applying an excess entropy scaling formalism to the coarse-grained (CG) dynamics of liquids, we discovered that missing rotational motions during the CG process are responsible for artificially accelerated CG dynamics. In the context of the dynamic representability between the fine-grained (FG) and CG dynamics, this work introduces the well-known Stokes-Einstein and Stokes-Einstein-Debye relations to unravel the rotational dynamics underlying FG trajectories, thereby allowing for an indirect evaluation of the effective rotations based only on the translational information at the reduced CG resolution. Since the representability issue in CG modeling limits a direct evaluation of the shear stress appearing in the Stokes-Einstein and Stokes-Einstein-Debye relations, we introduce a translational relaxation time as a proxy to employ these relations, and we demonstrate that these relations hold for the ambient conditions studied in our series of work. Additional theoretical links to our previous work are also established. First, we demonstrate that the effective hard sphere radius determined by the classical perturbation theory can approximate the complex hydrodynamic radius value reasonably well. Furthermore, we present a simple derivation of an excess entropy scaling relationship for viscosity by estimating the elliptical integral of molecules. In turn, since the translational and rotational motions at the FG level are correlated to each other, we conclude that the "entropy-free" CG diffusion only depends on the shape of the reference molecule. Our results and analyses impart an alternative way of recovering the FG diffusion from the CG description by coupling the translational and rotational motions at the hydrodynamic level.
Collapse
Affiliation(s)
- Jaehyeok Jin
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Chemistry, Columbia University, New York, New York 10027, USA
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
6
|
Chen D, Molnar K, Kim H, Helfer CA, Kaszas G, Puskas JE, Kornfield JA, McKenna GB. Linear Viscoelastic Properties of Putative Cyclic Polymers Synthesized by Reversible Radical Recombination Polymerization (R3P). Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dongjie Chen
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
| | - Kristof Molnar
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Budapest1089, Hungary
| | - Hojin Kim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Carin A. Helfer
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Gabor Kaszas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Judit E. Puskas
- Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, Ohio44691, United States
| | - Julia A. Kornfield
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California91125, United States
| | - Gregory B. McKenna
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas79409, United States
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina27695, United States
| |
Collapse
|
7
|
Revealing the relationship between liquid fragility and medium-range order in silicate glasses. Nat Commun 2023; 14:13. [PMID: 36596825 PMCID: PMC9810649 DOI: 10.1038/s41467-022-35711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Despite decades of studies, the nature of the glass transition remains elusive. In particular, the sharpness of the dynamical arrest of a melt at the glass transition is captured by its fragility. Here, we reveal that fragility is governed by the medium-range order structure. Based on neutron-diffraction data for a series of aluminosilicate glasses, we propose a measurable structural parameter that features a strong inverse correlation with fragility, namely, the average medium-range distance (MRD). We use in-situ high-temperature neutron-scattering data to discuss the physical origin of this correlation. We argue that glasses exhibiting low MRD values present an excess of small network rings. Such rings are unstable and deform more readily with changes in temperature, which tends to increase fragility. These results reveal that the sharpness of the dynamical arrest experienced by a silicate glass at the glass transition is surprisingly encoded into the stability of rings in its network.
Collapse
|
8
|
Zhang DM, Sun DY, Gong XG. Angell plot from the potential energy landscape perspective. Phys Rev E 2022; 106:064129. [PMID: 36671189 DOI: 10.1103/physreve.106.064129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Within the scenario of the potential energy landscape (PEL), a thermodynamic model has been developed to uncover the physics behind the Angell plot. In our model, by separating the barrier distribution in PELs into a Gaussian-like and a power-law form, we obtain a general relationship between the relaxation time and the temperature. The wide range of the experimental data in the Angell plot, as well as the molecular-dynamics data, can be excellently fitted by two characteristic parameters, the effective barrier (ω) and the effective width (σ) of a Gaussian-like distribution. More importantly, the fitted ω and σ^{2} for all glasses are found to have a simple linear relationship within a very narrow band, and fragile and strong glasses are well separated in the ω-σ^{2} plot, which indicates that glassy states appear only in a specific region of the PEL.
Collapse
Affiliation(s)
- D M Zhang
- Key Laboratory for Computational Physical Sciences (MOE), Institute of Computational Physics, Fudan University, Shanghai 200433, China
| | - D Y Sun
- Engineering Research Center for Nanophotonics & Advanced Instrument (MOE), School of Physics and Electronic Science, East China Normal University, 200241 Shanghai, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China
| | - X G Gong
- Key Laboratory for Computational Physical Sciences (MOE), Institute of Computational Physics, Fudan University, Shanghai 200433, China.,Shanghai Qi Zhi Institution, Shanghai 200030, China
| |
Collapse
|
9
|
Demmel F. Non-Arrhenius behaviour of nickel self-diffusion in liquid Ni 77Si 23. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:395101. [PMID: 35858583 DOI: 10.1088/1361-648x/ac82d8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Nickel self-diffusion was measured for a Ni77Si23alloy in the liquid state over a temperature range of about 400 K through quasielastic neutron scattering. At the two lowest temperature points the derived diffusion coefficients deviate from a high-temperature Arrhenius-type behaviour and indicate a change in dynamics above the liquidus temperature. A fit with a power-law temperature dependence as predicted by the mode coupling theory for the liquid to glass transition can describe the diffusion coefficients quite well over the whole measured temperature range. The obtained results agree with predictions from a classical molecular dynamics (MD)-simulation, which evidenced an increasing glass forming ability with increasing silicon content. A crossover to a super-Arrhenius behaviour was reported for metallic glass formers above the liquidus temperature and the here investigated NiSi alloy demonstrates the same signature.
Collapse
Affiliation(s)
- F Demmel
- ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, United Kingdom
| |
Collapse
|
10
|
Sanz A, Linares A, García-Gutiérrez MC, Nogales A, Paszkiewicz S, Zubkiewicz A, Szymczyk A, Ezquerra TA. Relaxation Dynamics of Biomass-Derived Copolymers With Promising Gas-Barrier Properties. Front Chem 2022; 10:921787. [PMID: 35774857 PMCID: PMC9237226 DOI: 10.3389/fchem.2022.921787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
This article presents an experimental study on the relaxation dynamics of a series of random copolymers based on bio-friendly comonomers with interesting gas barrier properties. We analyze the relaxation response in the glassy and ultraviscous regime of poly (trimethylene furanoate/sebacate) random copolymers via dielectric spectroscopy. We report lower values of dynamic fragility [a dimensionless index introduced in 1985 (Angell, Relaxations in Complex Systems, 1985)] in comparison to popular polyesters widely used in industry, such as poly (ethylene terephthalate), suggesting that the amorphous phase of these furanoate-based polyesters adopt an efficient chain packing. This is consistent with their low permeability to gases. We also discuss on different equations (phenomenological and theory-based approaches) for fitting the temperature-evolution of the alpha relaxation time.
Collapse
Affiliation(s)
- Alejandro Sanz
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
- *Correspondence: Alejandro Sanz, ; Tiberio A. Ezquerra,
| | - Amelia Linares
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
| | | | - Aurora Nogales
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
| | - Sandra Paszkiewicz
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Agata Zubkiewicz
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Anna Szymczyk
- Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Szczecin, Poland
| | - Tiberio A. Ezquerra
- Instituto de Estructura de La Materia, IEM-CSIC, Madrid, Spain
- *Correspondence: Alejandro Sanz, ; Tiberio A. Ezquerra,
| |
Collapse
|
11
|
Weigl P, Hecksher T, Dyre JC, Walther T, Blochowicz T. Identity of the local and macroscopic dynamic elastic responses in supercooled 1-propanol. Phys Chem Chem Phys 2021; 23:16537-16541. [PMID: 34312639 DOI: 10.1039/d1cp02671b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass-forming liquids are well known to have significant dynamic heterogeneities, leading to spatially grossly varying elastic properties throughout the system. In this paper, we compare the local elastic response of supercooled 1-propanol monitored by triplet state solvation dynamics to the macroscopic dynamic shear modulus measured by a piezo-electric gauge. The time-dependent responses are found to be identical, which means that the dynamic macroscopic shear modulus provides a good measure of the average local elastic properties. Since the macroscopic shear modulus of a dynamically inhomogeneous system in general is not just the average of the local moduli, there was no reason to expect such a result. This surprising finding not only provides constraints for models of dynamical heterogeneities in glass-forming liquids, but also allows for a fairly straightforward check on elastic models for glassy dynamics.
Collapse
Affiliation(s)
- Peter Weigl
- Institute for Condensed Matter Physics, Technical University of Darmstadt, 64289 Darmstadt, Germany.
| | | | | | | | | |
Collapse
|
12
|
Porpora G, Rusciano F, Guida V, Greco F, Pastore R. Understanding charged vesicle suspensions as Wigner glasses: dynamical aspects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:104001. [PMID: 33246318 DOI: 10.1088/1361-648x/abce6f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Suspensions of charged vesicles in water with added salt are widespread in nature and industrial production. Here we investigate, via Brownian dynamics simulations, a model that grasps the key features of these systems, with bidisperse colloidal beads interacting via a hard-core and an electrostatic double layer potential. Our goal is to focus on a set of interaction parameters that is not generic but measured in recent experiments, and relevant for a class of consumer products, such as liquid fabric softeners. On increasing the volume fraction in a range relevant to real formulation, we show that the dynamics become progressively slower and heterogeneous, displaying the typical signatures of an approaching glass transition. On lowering the salt concentration, which corresponds to increasing the strength and range of the electrostatic repulsion, the emergence of glassy dynamics becomes significantly steeper, and, remarkably, occurs at volume fractions well below the hard-sphere glass transition. The volume fraction dependence of the structural relaxation time at different salt concentration is well described through a functional law inspired by a recently proposed model (Krausser et al 2015 Proc. Natl Acad. Sci. USA 112 13762). According to our results, the investigated system may be thought of as a Wigner glass, i.e. a low-density glassy state stabilized by long-range repulsive interactions. Overall, our study suggests that glassy dynamics plays an important role in controlling the stability of these suspensions.
Collapse
Affiliation(s)
- G Porpora
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - F Rusciano
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - V Guida
- The Procter and Gamble Company, Brussels Innovation Center, 1853 Strombeek Bever Temselaan 100, 1853 Grimbergen, Belgium
| | - F Greco
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| | - R Pastore
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, P.le Tecchio 80, Naples 80125, Italy
| |
Collapse
|
13
|
Xu WS, Douglas JF, Sun ZY. Polymer Glass Formation: Role of Activation Free Energy, Configurational Entropy, and Collective Motion. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02740] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wen-Sheng Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|