1
|
Weerakoon D, Marzinek JK, Pedebos C, Bond PJ, Khalid S. Polymyxin B1 in the Escherichia coli inner membrane: A complex story of protein and lipopolysaccharide-mediated insertion. J Biol Chem 2024; 300:107754. [PMID: 39260694 PMCID: PMC11497408 DOI: 10.1016/j.jbc.2024.107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
The rise in multi-drug resistant Gram-negative bacterial infections has led to an increased need for "last-resort" antibiotics such as polymyxins. However, the emergence of polymyxin-resistant strains threatens to bring about a post-antibiotic era. Thus, there is a need to develop new polymyxin-based antibiotics, but a lack of knowledge of the mechanism of action of polymyxins hinders such efforts. It has recently been suggested that polymyxins induce cell lysis of the Gram-negative bacterial inner membrane (IM) by targeting trace amounts of lipopolysaccharide (LPS) localized there. We use multiscale molecular dynamics (MD), including long-timescale coarse-grained (CG) and all-atom (AA) simulations, to investigate the interactions of polymyxin B1 (PMB1) with bacterial IM models containing phospholipids (PLs), small quantities of LPS, and IM proteins. LPS was observed to (transiently) phase separate from PLs at multiple LPS concentrations, and associate with proteins in the IM. PMB1 spontaneously inserted into the IM and localized at the LPS-PL interface, where it cross-linked lipid headgroups via hydrogen bonds, sampling a wide range of interfacial environments. In the presence of membrane proteins, a small number of PMB1 molecules formed interactions with them, in a manner that was modulated by local LPS molecules. Electroporation-driven translocation of PMB1 via water-filled pores was favored at the protein-PL interface, supporting the 'destabilizing' role proteins may have within the IM. Overall, this in-depth characterization of PMB1 modes of interaction reveals how small amounts of mislocalized LPS may play a role in pre-lytic targeting and provides insights that may facilitate rational improvement of polymyxin-based antibiotics.
Collapse
Affiliation(s)
- Dhanushka Weerakoon
- School of Chemistry, University of Southampton, Southampton, UK; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore
| | - Conrado Pedebos
- Department of Biochemistry, University of Oxford, Porto Alegre, UK; Programa de Pós-Graduação em Biociências (PPGBio), Universidade Federal de Ciências da Saudé de Porto Alegre - UFCSPA, Brazil
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Porto Alegre, UK.
| |
Collapse
|
2
|
Brandner AF, Prakaash D, Blanco González A, Waterhouse F, Khalid S. Faster but Not Sweeter: A Model of Escherichia coli Re-level Lipopolysaccharide for Martini 3 and a Martini 2 Version with Accelerated Kinetics. J Chem Theory Comput 2024; 20:6890-6903. [PMID: 39008538 PMCID: PMC11325540 DOI: 10.1021/acs.jctc.4c00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipopolysaccharide (LPS) is a complex glycolipid molecule that is the main lipidic component of the outer leaflet of the outer membrane of Gram-negative bacteria. It has very limited lateral motion compared to phospholipids, which are more ubiquitous in biological membranes, including in the inner leaflet of the outer membrane of Gram-negative bacteria. The slow-moving nature of LPS can present a hurdle for molecular dynamics simulations, given that the (pragmatically) accessible timescales to simulations are currently limited to microseconds, during which LPS displays some conformational dynamics but hardly any lateral diffusion. Thus, it is not feasible to observe phenomena such as insertion of molecules, including antibiotics/antimicrobials, directly into the outer membrane from the extracellular side nor to observe LPS dissociating from proteins via molecular dynamics using currently available models at the atomistic and more coarse-grained levels of granularity. Here, we present a model of deep rough LPS compatible with the Martini 2 coarse-grained force field with scaled down nonbonded interactions to enable faster diffusion. We show that the faster-diffusing LPS model is able to reproduce the salient biophysical properties of the standard models, but due to its faster lateral motion, molecules are able to penetrate deeper into membranes containing the faster model. We show that the fast ReLPS model is able to reproduce experimentally determined patterns of interaction with outer membrane proteins while also allowing for LPS to associate and dissociate with proteins within microsecond timescales. We also complete the Martini 3 LPS toolkit for Escherichia coli by presenting a (standard) model of deep rough LPS for this force field.
Collapse
Affiliation(s)
- Astrid F Brandner
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Dheeraj Prakaash
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Alexandre Blanco González
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
- Departamento de Física Aplicada, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- MD.USE Innovations S.L., Edificio Emprendia, Santiago de Compostela 15782, Spain
| | - Fergus Waterhouse
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| | - Syma Khalid
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, England
| |
Collapse
|
3
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
4
|
Rzycki M, Drabik D. Multifaceted Activity of Fabimycin: Insights from Molecular Dynamics Studies on Bacterial Membrane Models. J Chem Inf Model 2024; 64:4204-4217. [PMID: 38733348 PMCID: PMC11134499 DOI: 10.1021/acs.jcim.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
5
|
Sharma P, Ayappa KG. A Molecular Dynamics Study of Antimicrobial Peptide Interactions with the Lipopolysaccharides of the Outer Bacterial Membrane. J Membr Biol 2022; 255:665-675. [PMID: 35960325 DOI: 10.1007/s00232-022-00258-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022]
Abstract
With rising bacterial resistance, antimicrobial peptides (AMPs) have been widely investigated as potential antibacterial molecules to replace conventional antibiotics. Our understanding of the molecular mechanisms for membrane disruption are largely based on AMP interactions with the inner phospholipid bilayers of both Gram-negative and Gram-positive bacteria. Mechanisms for AMP translocation across the outer membrane of Gram-negative bacteria composed of lipopolysaccharides and the asymmetric lipid bilayer are complicated by the secondary structure adopted by the peptide in the different membrane environments. We have employed atomistic molecular dynamics and umbrella-sampling simulations with an aggregate duration of [Formula: see text] 6 microseconds to obtain the free energy landscape of CM15 peptide translocating through the lipopolysaccharide region of Gram-negative bacteria, E. coli. The peptide has a favorable binding-free energy (- 130 kJ mol[Formula: see text]) in the O-antigen region with a large barrier (150 kJ mol[Formula: see text]) at the interface between the anionic core saccharides and upper bilayer leaflet made up of lipid-A molecules. Restraint-free molecular dynamics simulations show that the random coil structure is favored over the helix in both the extracellular aqueous region and the cation-rich core-saccharide regions of the outer membrane. The peptide and membrane properties are analyzed at each of the 100 ns duration of the umbrella-sampling windows to illustrate changes in peptide length, orientation, and hydration. Our study provides insights into the free energy landscape for the insertion of the AMP CM15 in the outer membrane of Gram-negative bacteria, and we discuss the implications of our findings with the broader question of how AMPs overcome this barrier during antimicrobial activity.
Collapse
Affiliation(s)
- Pradyumn Sharma
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, 560012, India.,Eli Lilly Services India Private Limited, Bengaluru, 560103, India
| | - K Ganapathy Ayappa
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
6
|
Sousa CF, Kamal MAM, Richter R, Elamaldeniya K, Hartmann RW, Empting M, Lehr CM, Kalinina OV. Modeling the Effect of Hydrophobicity on the Passive Permeation of Solutes across a Bacterial Model Membrane. J Chem Inf Model 2022; 62:5023-5033. [PMID: 36214845 DOI: 10.1021/acs.jcim.2c00767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Passive diffusion across biomembranes is an important mechanism of permeation for multiple drugs, including antibiotics. However, this process is frequently neglected while studying drug uptake and, in our view, warrants further investigation. Here, we apply molecular dynamics simulations to investigate the impact of changes in molecular hydrophobicity on the permeability of a series of inhibitors of the quorum sensing of Pseudomonas aeruginosa, previously discovered by us, across a membrane model. Overall, we show that permeation across this membrane model does not correlate with the molecule's hydrophobicity. We demonstrate that using a simple model for permeation, based on the difference between the maximum and minimum of the free energy profile, outperforms the inhomogeneous solubility-diffusion model, yielding a permeability ranking that better agrees with the experimental results, especially for hydrophobic permeants. The calculated differences in permeability could not explain differences in in bacterio activity. Nevertheless, substantial differences in molecular orientation along the permeation pathway correlate with the in bacterio activity, emphasizing the importance of analyzing, at an atomistic level, the permeation pathway of these solutes.
Collapse
Affiliation(s)
- Carla F Sousa
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Mohamed A M Kamal
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Robert Richter
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany
| | - Kalanika Elamaldeniya
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany
| | - Rolf W Hartmann
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany.,Department of Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken66123, Germany
| | - Martin Empting
- Department of Pharmacy, Saarland University, Saarbrücken66123, Germany.,Antiviral & Antivirulence Drugs Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,German Centre for Infection Research (DZIF) Partner Site Hannover-Braunschweig, Saarbrücken66123, Germany
| | - Claus-Michael Lehr
- Department of Biological Barriers and Drug Delivery, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Department of Pharmacy, Saarland University, Saarbrücken66123, Germany
| | - Olga V Kalinina
- Drug Bioinformatics Group, Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken66123, Germany.,Center for Bioinformatics, Saarland University, Saarbrücken66123, Germany.,Medical Faculty, Saarland University, Homburg66421, Germany
| |
Collapse
|
7
|
Darmawan KK, Karagiannis TC, Hughes JG, Small DM, Hung A. Molecular modeling of lactoferrin for food and nutraceutical applications: insights from in silico techniques. Crit Rev Food Sci Nutr 2022; 63:9074-9097. [PMID: 35503258 DOI: 10.1080/10408398.2022.2067824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lactoferrin is a protein, primarily found in milk that has attracted the interest of the food industries due to its health properties. Nevertheless, the instability of lactoferrin has limited its commercial application. Recent studies have focused on encapsulation to enhance the stability of lactoferrin. However, the molecular insights underlying the changes of structural properties of lactoferrin and the interaction with protectants remain poorly understood. Computational approaches have proven useful in understanding the structural properties of molecules and the key binding with other constituents. In this review, comprehensive information on the structure and function of lactoferrin and the binding with various molecules for food purposes are reviewed, with a special emphasis on the use of molecular dynamics simulations. The results demonstrate the application of modeling and simulations to determine key residues of lactoferrin responsible for its stability and interactions with other biomolecular components under various conditions, which are also associated with its functional benefits. These have also been extended into the potential creation of enhanced lactoferrin for commercial purposes. This review provides valuable strategies in designing novel nutraceuticals for food science practitioners and those who have interests in acquiring familiarity with the application of computational modeling for food and health purposes.
Collapse
Affiliation(s)
- Kevion K Darmawan
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Tom C Karagiannis
- Epigenomic Medicine, Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Jeff G Hughes
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Darryl M Small
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Andrew Hung
- School of Science, STEM College, RMIT University, Melbourne, Australia
| |
Collapse
|
8
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
9
|
Carey AB, Ashenden A, Köper I. Model architectures for bacterial membranes. Biophys Rev 2022; 14:111-143. [PMID: 35340604 PMCID: PMC8921416 DOI: 10.1007/s12551-021-00913-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
The complex composition of bacterial membranes has a significant impact on the understanding of pathogen function and their development towards antibiotic resistance. In addition to the inherent complexity and biosafety risks of studying biological pathogen membranes, the continual rise of antibiotic resistance and its significant economical and clinical consequences has motivated the development of numerous in vitro model membrane systems with tuneable compositions, geometries, and sizes. Approaches discussed in this review include liposomes, solid-supported bilayers, and computational simulations which have been used to explore various processes including drug-membrane interactions, lipid-protein interactions, host-pathogen interactions, and structure-induced bacterial pathogenesis. The advantages, limitations, and applicable analytical tools of all architectures are summarised with a perspective for future research efforts in architectural improvement and elucidation of resistance development strategies and membrane-targeting antibiotic mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12551-021-00913-7.
Collapse
Affiliation(s)
- Ashley B. Carey
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Alex Ashenden
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| | - Ingo Köper
- Institute for Nanoscale Science and Technology, College for Science and Engineering, Flinders University, Adelaide, SA 5042 Australia
| |
Collapse
|
10
|
Weerakoon D, Petrov K, Pedebos C, Khalid S. Polymyxin B1 within the E. coli cell envelope: insights from molecular dynamics simulations. Biophys Rev 2021; 13:1061-1070. [PMID: 35047090 PMCID: PMC8724489 DOI: 10.1007/s12551-021-00869-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022] Open
Abstract
Polymyxins are used as last-resort antibiotics, where other treatments have been ineffectual due to antibiotic resistance. However, resistance to polymyxins has also been now reported, therefore it is instructive to characterise at the molecular level, the mechanisms of action of polymyxins. Here we review insights into these mechanisms from molecular dynamics simulations and discuss the utility of simulations as a complementary technique to experimental methodologies.
Collapse
Affiliation(s)
| | - Kamen Petrov
- Hertford College, University of Oxford, Oxford, OX1 3BW UK
| | - Conrado Pedebos
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ UK
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU UK
| |
Collapse
|
11
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
12
|
Brooks CL, Case DA, Plimpton S, Roux B, van der Spoel D, Tajkhorshid E. Classical molecular dynamics. J Chem Phys 2021; 154:100401. [DOI: 10.1063/5.0045455] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Charles L. Brooks
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - David A. Case
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey 08854, USA
| | - Steve Plimpton
- Computational Multiscale Department, Sandia National Laboratories, Albuquerque, New Mexico 87185-1316, USA
| | - Benoît Roux
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | - David van der Spoel
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Emad Tajkhorshid
- NIH Center for Macromolecular Modeling and Bioinformatics, Theoretical and Computational Biophysics Group, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
13
|
Gao Y, Lee J, Smith IPS, Lee H, Kim S, Qi Y, Klauda JB, Widmalm G, Khalid S, Im W. CHARMM-GUI Supports Hydrogen Mass Repartitioning and Different Protonation States of Phosphates in Lipopolysaccharides. J Chem Inf Model 2021; 61:831-839. [PMID: 33442985 PMCID: PMC7902386 DOI: 10.1021/acs.jcim.0c01360] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogen mass repartitioning (HMR) that permits time steps of all-atom molecular dynamics simulation up to 4 fs by increasing the mass of hydrogen atoms has been used in protein and phospholipid bilayers simulations to improve conformational sampling. Molecular simulation input generation via CHARMM-GUI now supports HMR for diverse simulation programs. In addition, considering ambiguous pH at the bacterial outer membrane surface, different protonation states, either -2e or -1e, of phosphate groups in lipopolysaccharides (LPS) are also supported in CHARMM-GUI LPS Modeler. To examine the robustness of HMR and the influence of protonation states of phosphate groups on LPS bilayer properties, eight different LPS-type all-atom systems with two phosphate protonation states are modeled and simulated utilizing both OpenMM 2-fs (standard) and 4-fs (HMR) schemes. Consistency in the conformational space sampled by standard and HMR simulations shows the reliability of HMR even in LPS, one of the most complex biomolecules. For systems with different protonation states, similar conformations are sampled with a PO41- or PO42- group, but different phosphate protonation states make slight impacts on lipid packing and conformational properties of LPS acyl chains. Systems with PO41- have a slightly smaller area per lipid and thus slightly more ordered lipid A acyl chains compared to those with PO42-, due to more electrostatic repulsion between PO42- even with neutralizing Ca2+ ions. HMR and different protonation states of phosphates of LPS available in CHARMM-GUI are expected to be useful for further investigations of biological systems of diverse origin.
Collapse
Affiliation(s)
- Ya Gao
- School of Mathematics, Physics and Statistics, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jumin Lee
- Department of Biological Sciences, Department of Chemistry, Department of Bioengineering, and Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Hwayoung Lee
- Department of Biological Sciences, Department of Chemistry, Department of Bioengineering, and Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Seonghoon Kim
- Department of Biological Sciences, Department of Chemistry, Department of Bioengineering, and Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Republic of Korea
| | - Yifei Qi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Jeffery B. Klauda
- Department of Chemical and Biomolecular Engineering and the Biophysics Program, University of Maryland College Park, Maryland 20742, USA
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Syma Khalid
- School of Chemistry, University of Southampton, Southampton, S017 1BJ, UK
| | - Wonpil Im
- Department of Biological Sciences, Department of Chemistry, Department of Bioengineering, and Department of Computer Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|