1
|
Kuang Y, Yao ZF, Lim S, Ngo C, Rocha MA, Fishman DA, Ardoña HAM. Biomimetic Sequence-Templating Approach toward a Multiscale Modulation of Chromogenic Polymer Properties. Macromolecules 2023; 56:4526-4540. [PMID: 37397164 PMCID: PMC10311629 DOI: 10.1021/acs.macromol.3c00403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Precision control via molecular structure over adaptive conjugated polymer properties in aqueous environments is critical for realizing their biomedical applications. Here, we unravel the dependence of amphiphilic peptide-polydiacetylene (PDA) conjugate properties on the characteristic steric and hydrophobic contributions within peptide segments that serve as a biomimetic template for diacetylene polymerization in water. We investigated the functional impacts of molecular volume and polarity changes brought by dipeptide substitution domains on the following peptide-PDA material properties at multiple length scales: supramolecular assembly behavior, chain conformation-dependent photophysical properties, cell-material interfacing, and for the first time, bulk electrical properties of their films processed in water. A library of peptide-PDAs with systematically varied sequences show that the contributions of steric effects predominantly influence the electronic structure and resulting trends in photophysical properties, while the interplay between size and hydrophobicity of individual residues becomes more significant for higher-order assemblies affecting bulk properties. This work demonstrates sequence-tunable molecular volume and polarity as synthetic handles to rationally modulate PDA material properties across length scales, providing insights into the programmability of biomimetic conjugated polymers with adaptive functionalities.
Collapse
Affiliation(s)
- Yuyao Kuang
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Ze-Fan Yao
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Sujeung Lim
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Catherine Ngo
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Megan Alma Rocha
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Dmitry A. Fishman
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
| | - Herdeline Ann M. Ardoña
- Department
of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, Irvine, California 92697, United States
- Department
of Chemistry, School of Physical Sciences, University of California, Irvine, Irvine, California 92697, United States
- Sue
& Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
2
|
Engelhardt G, Cao J. Polariton Localization and Dispersion Properties of Disordered Quantum Emitters in Multimode Microcavities. PHYSICAL REVIEW LETTERS 2023; 130:213602. [PMID: 37295110 DOI: 10.1103/physrevlett.130.213602] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/07/2023] [Indexed: 06/12/2023]
Abstract
Experiments have demonstrated that the strong light-matter coupling in polaritonic microcavities significantly enhances transport. Motivated by these experiments, we have solved the disordered multimode Tavis-Cummings model in the thermodynamic limit and used this solution to analyze its dispersion and localization properties. The solution implies that wave-vector-resolved spectroscopic quantities can be described by single-mode models, but spatially resolved quantities require the multimode solution. Nondiagonal elements of the Green's function decay exponentially with distance, which defines the coherence length. The coherent length is strongly correlated with the photon weight and exhibits inverse scaling with respect to the Rabi frequency and an unusual dependence on disorder. For energies away from the average molecular energy E_{M} and above the confinement energy E_{C}, the coherence length rapidly diverges such that it exceeds the photon resonance wavelength λ_{0}. The rapid divergence allows us to differentiate the localized and delocalized regimes and identify the transition from diffusive to ballistic transport.
Collapse
Affiliation(s)
- Georg Engelhardt
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jianshu Cao
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Liu W, Andrienko D. An ab initio method on large sized molecular aggregate system: Predicting absorption spectra of crystalline organic semiconducting films. J Chem Phys 2023; 158:094108. [PMID: 36889948 DOI: 10.1063/5.0138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Theoretical description of electronically excited states of molecular aggregates at an ab initio level is computationally demanding. To reduce the computational cost, we propose a model Hamiltonian approach that approximates the electronically excited state wavefunction of the molecular aggregate. We benchmark our approach on a thiophene hexamer, as well as calculate the absorption spectra of several crystalline non-fullerene acceptors, including Y6 and ITIC, which are known for their high power conversion efficiency in organic solar cells. The method qualitatively predicts the experimentally measured spectral shape, which can be further linked to the molecular arrangement in the unit cell.
Collapse
Affiliation(s)
- Wenlan Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Denis Andrienko
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
4
|
Liu L, Wei Z, Meskers SCJ. Polaritons in a Polycrystalline Layer of Non-fullerene Acceptor. J Am Chem Soc 2023; 145:2040-2044. [PMID: 36689605 PMCID: PMC9896558 DOI: 10.1021/jacs.2c11968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Non-fullerene acceptor molecules developed for organic solar cells feature a very intense absorption band in the near-infrared. In the solid phase, the strong interaction between light and the transition dipole moment for molecular excitation should induce formation of polaritons. The reflection spectra for polycrystalline films of a non-fullerene acceptor with a thienothienopyrrolo-thienothienoindole core of the so-called Y6 type indeed show a signature of polaritons. A local minimum in the middle of the reflection band is associated with the allowed molecular transition. The minimum in reflection allows efficient entry of light into the solid, resulting in a local maximum in external quantum efficiency of a photovoltaic cell made of the pure acceptor.
Collapse
Affiliation(s)
- Lixuan Liu
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China
| | - Zhixiang Wei
- CAS
Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing100190, China,School
of Future Technology, University of Chinese
Academy of Sciences, Beijing100049, China,
| | - Stefan C. J. Meskers
- Molecular
Materials and Nanosystems, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands,
| |
Collapse
|
5
|
Ashoka A, Tamming RR, Girija AV, Bretscher H, Verma SD, Yang SD, Lu CH, Hodgkiss JM, Ritchie D, Chen C, Smith CG, Schnedermann C, Price MB, Chen K, Rao A. Extracting quantitative dielectric properties from pump-probe spectroscopy. Nat Commun 2022; 13:1437. [PMID: 35301311 PMCID: PMC8931171 DOI: 10.1038/s41467-022-29112-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/21/2022] [Indexed: 11/21/2022] Open
Abstract
Optical pump-probe spectroscopy is a powerful tool for the study of non-equilibrium electronic dynamics and finds wide applications across a range of fields, from physics and chemistry to material science and biology. However, a shortcoming of conventional pump-probe spectroscopy is that photoinduced changes in transmission, reflection and scattering can simultaneously contribute to the measured differential spectra, leading to ambiguities in assigning the origin of spectral signatures and ruling out quantitative interpretation of the spectra. Ideally, these methods would measure the underlying dielectric function (or the complex refractive index) which would then directly provide quantitative information on the transient excited state dynamics free of these ambiguities. Here we present and test a model independent route to transform differential transmission or reflection spectra, measured via conventional optical pump-probe spectroscopy, to changes in the quantitative transient dielectric function. We benchmark this method against changes in the real refractive index measured using time-resolved Frequency Domain Interferometry in prototypical inorganic and organic semiconductor films. Our methodology can be applied to existing and future pump-probe data sets, allowing for an unambiguous and quantitative characterisation of the transient photoexcited spectra of materials. This in turn will accelerate the adoption of pump-probe spectroscopy as a facile and robust materials characterisation and screening tool. Photoinduced changes in transmission, reflection and scattering prevent conventional pump-probe spectroscopy to unambiguously assign the origin of spectral signatures. Ashoka et al. have developed an optical modelling technique to extract quantitative and unambiguous changes in the dielectric function from standard pump-probe measurements.
Collapse
Affiliation(s)
- Arjun Ashoka
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Ronnie R Tamming
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand.,School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Aswathy V Girija
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hope Bretscher
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Sachin Dev Verma
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.,Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhopal, 462066, Madhya Pradesh, India
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Justin M Hodgkiss
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - David Ritchie
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Chong Chen
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Charles G Smith
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Christoph Schnedermann
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Michael B Price
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Kai Chen
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, 6012, New Zealand.,MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand.,The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin, 9016, New Zealand
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
| |
Collapse
|
6
|
Kumar P, Lynch J, Song B, Ling H, Barrera F, Kisslinger K, Zhang H, Anantharaman SB, Digani J, Zhu H, Choudhury TH, McAleese C, Wang X, Conran BR, Whear O, Motala MJ, Snure M, Muratore C, Redwing JM, Glavin NR, Stach EA, Davoyan AR, Jariwala D. Light-matter coupling in large-area van der Waals superlattices. NATURE NANOTECHNOLOGY 2022; 17:182-189. [PMID: 34857931 DOI: 10.1038/s41565-021-01023-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.
Collapse
Affiliation(s)
- Pawan Kumar
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason Lynch
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Baokun Song
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Haonan Ling
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Francisco Barrera
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kim Kisslinger
- Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, NY, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jagrit Digani
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Haoyue Zhu
- 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Tanushree H Choudhury
- 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | - Michael J Motala
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, USA
| | - Michael Snure
- Air Force Research Laboratory, Sensors Directorate, Wright-Patterson AFB, Dayton, OH, USA
| | - Christopher Muratore
- Department of Chemical and Materials Engineering, University of Dayton, Dayton, OH, USA
| | - Joan M Redwing
- 2D Crystal Consortium-Materials Innovation Platform, Materials Research Institute, Pennsylvania State University, University Park, PA, USA
| | - Nicholas R Glavin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Dayton, OH, USA
| | - Eric A Stach
- Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Artur R Davoyan
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Jang SJ, Burghardt I, Hsu CP, Bardeen CJ. Excitons: Energetics and spatiotemporal dynamics. J Chem Phys 2021; 155:200401. [PMID: 34852498 DOI: 10.1063/5.0075292] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry, Queens College, City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, USA and PhD Programs in Chemistry and Physics, and Initiative for the Theoretical Sciences, Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Chao-Ping Hsu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan and Physics Division, National Center for Theoretical Sciences, Taipei 106, Taiwan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, USA
| |
Collapse
|
8
|
Pandya R, Chen RYS, Gu Q, Sung J, Schnedermann C, Ojambati OS, Chikkaraddy R, Gorman J, Jacucci G, Onelli OD, Willhammar T, Johnstone DN, Collins SM, Midgley PA, Auras F, Baikie T, Jayaprakash R, Mathevet F, Soucek R, Du M, Alvertis AM, Ashoka A, Vignolini S, Lidzey DG, Baumberg JJ, Friend RH, Barisien T, Legrand L, Chin AW, Yuen-Zhou J, Saikin SK, Kukura P, Musser AJ, Rao A. Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors. Nat Commun 2021; 12:6519. [PMID: 34764252 PMCID: PMC8585971 DOI: 10.1038/s41467-021-26617-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2021] [Indexed: 11/12/2022] Open
Abstract
Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.
Collapse
Affiliation(s)
- Raj Pandya
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Richard Y. S. Chen
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Qifei Gu
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Jooyoung Sung
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Christoph Schnedermann
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Oluwafemi S. Ojambati
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Rohit Chikkaraddy
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Jeffrey Gorman
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Gianni Jacucci
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Olimpia D. Onelli
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - Tom Willhammar
- grid.10548.380000 0004 1936 9377Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Duncan N. Johnstone
- grid.5335.00000000121885934Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - Sean M. Collins
- grid.5335.00000000121885934Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - Paul A. Midgley
- grid.5335.00000000121885934Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS Cambridge, UK
| | - Florian Auras
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Tomi Baikie
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Rahul Jayaprakash
- grid.11835.3e0000 0004 1936 9262Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
| | - Fabrice Mathevet
- grid.462019.80000 0004 0370 0168Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| | - Richard Soucek
- grid.462844.80000 0001 2308 1657Institut des NanoSciences de Paris (INSP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Matthew Du
- grid.266100.30000 0001 2107 4242Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 USA
| | - Antonios M. Alvertis
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Arjun Ashoka
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Silvia Vignolini
- grid.5335.00000000121885934Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW UK
| | - David G. Lidzey
- grid.11835.3e0000 0004 1936 9262Department of Physics & Astronomy, University of Sheffield, S3 7RH Sheffield, UK
| | - Jeremy J. Baumberg
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Richard H. Friend
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE Cambridge, UK
| | - Thierry Barisien
- grid.462844.80000 0001 2308 1657Institut des NanoSciences de Paris (INSP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Laurent Legrand
- grid.462844.80000 0001 2308 1657Institut des NanoSciences de Paris (INSP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Alex W. Chin
- grid.462844.80000 0001 2308 1657Institut des NanoSciences de Paris (INSP), Sorbonne Université, 4 place Jussieu, 75005 Paris, France
| | - Joel Yuen-Zhou
- grid.266100.30000 0001 2107 4242Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093 USA
| | - Semion K. Saikin
- grid.38142.3c000000041936754XDepartment of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138 USA ,grid.510678.dKebotix Inc., 501 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Philipp Kukura
- grid.4991.50000 0004 1936 8948Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ UK
| | - Andrew J. Musser
- grid.5386.8000000041936877XDepartment of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, NY 14853 USA
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, UK.
| |
Collapse
|
9
|
Pandya R, Alvertis AM, Gu Q, Sung J, Legrand L, Kréher D, Barisien T, Chin AW, Schnedermann C, Rao A. Exciton Diffusion in Highly-Ordered One Dimensional Conjugated Polymers: Effects of Back-Bone Torsion, Electronic Symmetry, Phonons and Annihilation. J Phys Chem Lett 2021; 12:3669-3678. [PMID: 33829788 PMCID: PMC8154834 DOI: 10.1021/acs.jpclett.1c00193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Many optoelectronic devices based on organic materials require rapid and long-range singlet exciton transport. Key factors controlling exciton transport include material structure, exciton-phonon coupling and electronic state symmetry. Here, we employ femtosecond transient absorption microscopy to study the influence of these parameters on exciton transport in one-dimensional conjugated polymers. We find that excitons with 21Ag- symmetry and a planar backbone exhibit a significantly higher diffusion coefficient (34 ± 10 cm2 s-1) compared to excitons with 11Bu+ symmetry (7 ± 6 cm2 s-1) with a twisted backbone. We also find that exciton transport in the 21Ag- state occurs without exciton-exciton annihilation. Both 21Ag- and 11Bu+ states are found to exhibit subdiffusive behavior. Ab initio GW-BSE calculations reveal that this is due to the comparable strengths of the exciton-phonon interaction and exciton coupling. Our results demonstrate the link between electronic state symmetry, backbone torsion and phonons in exciton transport in π-conjugated polymers.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Antonios M. Alvertis
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Qifei Gu
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Jooyoung Sung
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Laurent Legrand
- Sorbonne
Université, CNRS, Institut
des NanoSciences de Paris, INSP, 4 place Jussieu, F-75005 Paris, France
| | - David Kréher
- Sorbonne
Université, CNRS, Institut
Parisien de Chimie Moléculaire (IPCM) UMR 8232, Chimie des
Polymères, 4 Place
Jussieu, 75005 Paris, France
| | - Thierry Barisien
- Sorbonne
Université, CNRS, Institut
des NanoSciences de Paris, INSP, 4 place Jussieu, F-75005 Paris, France
| | - Alex W. Chin
- Sorbonne
Université, CNRS, Institut
des NanoSciences de Paris, INSP, 4 place Jussieu, F-75005 Paris, France
| | - Christoph Schnedermann
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Akshay Rao
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| |
Collapse
|