1
|
Chamkin AA, Chamkina ES. Assessment of the applicability of DFT methods to [Cp*Rh]-catalyzed hydrogen evolution processes. J Comput Chem 2024; 45:2624-2639. [PMID: 39052232 DOI: 10.1002/jcc.27468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
The present computational study provides a benchmark of density functional theory (DFT) methods in describing hydrogen evolution processes catalyzed by [Cp*Rh]-containing organometallic complexes. A test set was composed of 26 elementary reactions featuring chemical transformations and bonding situations essential for the field, including the emerging concept of non-innocent Cp* behavior. Reference values were obtained from a highly accurate 3/4 complete basis set and 6/7 complete PNO space extrapolated DLPNO-CCSD(T) energies. The performance of lower-level extrapolation procedures was also assessed. We considered 84 density functionals (DF) (including 13 generalized gradient approximations (GGA), nine meta-GGAs, 33 hybrids, and 29 double-hybrids) and three composite methods (HF-3c, PBEh-3c, and r2SCAN-3c), combined with different types of dispersion corrections (D3(0), D3BJ, D4, and VV10). The most accurate approach is the PBE0-DH-D3BJ (MAD of 1.36 kcal mol-1) followed by TPSS0-D3BJ (MAD of 1.60 kcal mol-1). Low-cost r2SCAN-3c composite provides a less accurate but much faster alternative (MAD of 2.39 kcal mol-1). The widely used Minnesota-family M06-L, M06, and M06-2X DFs should be avoided (MADs of 3.70, 3.94, and 4.01 kcal mol-1, respectively).
Collapse
Affiliation(s)
- Aleksandr A Chamkin
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| | - Elena S Chamkina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Mester D, Nagy PR, Kállay M. Basis-Set Limit CCSD(T) Energies for Large Molecules with Local Natural Orbitals and Reduced-Scaling Basis-Set Corrections. J Chem Theory Comput 2024; 20:7453-7468. [PMID: 39207805 PMCID: PMC11391584 DOI: 10.1021/acs.jctc.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The calculation of density-based basis-set correction (DBBSC), which remedies the basis-set incompleteness (BSI) error of the correlation energy, is combined with local approximations. Aiming at large-scale applications, the procedure is implemented in our efficient local natural orbital-based coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme. To this end, the range-separation function, which characterizes the one-electron BSI in space, is decomposed into the sum of contributions from individual localized molecular orbitals (LMOs). A compact domain is constructed around each LMO, and the corresponding contributions are evaluated only within these restricted domains. Furthermore, for the calculation of the complementary auxiliary basis set (CABS) correction, which significantly improves the Hartree-Fock (HF) energy, the local density fitting approximation is utilized. The errors arising from the local approximations are examined in detail, efficient prescreening techniques are introduced to compress the numerical quadrature used for DBBSC, and conservative default thresholds are selected for the truncation parameters. The efficiency of the DBBSC-LNO-CCSD(T) method is demonstrated through representative examples of up to 1000 atoms. Based on the numerical results, we conclude that the corrections drastically reduce the BSI error using double-ζ basis sets, often to below 1 kcal/mol compared to the reliable LNO-CCSD(T) complete basis set references, while significant improvements are also achieved with triple-ζ basis sets. Considering that the calculation of the DBBSC and CABS corrections only moderately increases the wall-clock time required for the post-HF steps in practical applications, the proposed DBBSC-LNO-CCSD(T) method offers a highly efficient and robust tool for large-scale calculations.
Collapse
Affiliation(s)
- Dávid Mester
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Muegyetem rkp. 3, H-1111 Budapest, Hungary
| |
Collapse
|
3
|
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024] Open
Abstract
In this feature, we review the current capabilities of local electron correlation methods up to the coupled cluster model with single, double, and perturbative triple excitations [CCSD(T)], which is a gold standard in quantum chemistry. The main computational aspects of the local method types are assessed from the perspective of applications, but the focus is kept on how to achieve chemical accuracy (i.e., <1 kcal mol-1 uncertainty), as well as on the broad scope of chemical problems made accessible. The performance of state-of-the-art methods is also compared, including the most employed DLPNO and, in particular, our local natural orbital (LNO) CCSD(T) approach. The high accuracy and efficiency of the LNO method makes chemically accurate CCSD(T) computations accessible for molecules of hundreds of atoms with resources affordable to a broad computational community (days on a single CPU and 10-100 GB of memory). Recent developments in LNO-CCSD(T) enable systematic convergence and robust error estimates even for systems of complicated electronic structure or larger size (up to 1000 atoms). The predictive power of current local CCSD(T) methods, usually at about 1-2 order of magnitude higher cost than hybrid density functional theory (DFT), has become outstanding on the palette of computational chemistry applicable for molecules of practical interest. We also review more than 50 LNO-based and other advanced local-CCSD(T) applications for realistic, large systems across molecular interactions as well as main group, transition metal, bio-, and surface chemistry. The examples show that properly executed local-CCSD(T) can contribute to binding, reaction equilibrium, rate constants, etc. which are able to match measurements within the error estimates. These applications demonstrate that modern, open-access, and broadly affordable local methods, such as LNO-CCSD(T), already enable predictive computations and atomistic insight for complicated, real-life molecular processes in realistic environments.
Collapse
Affiliation(s)
- Péter R Nagy
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics Műegyetem rkp. 3. H-1111 Budapest Hungary
- HUN-REN-BME Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
- MTA-BME Lendület Quantum Chemistry Research Group Műegyetem rkp. 3. H-1111 Budapest Hungary
| |
Collapse
|
4
|
Gray M, Herbert JM. Assessing the domain-based local pair natural orbital (DLPNO) approximation for non-covalent interactions in sizable supramolecular complexes. J Chem Phys 2024; 161:054114. [PMID: 39105555 PMCID: PMC11305816 DOI: 10.1063/5.0206533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
The titular domain-based local pair natural orbital (DLPNO) approximation is the most widely used method for extending correlated wave function models to large molecular systems, yet its fidelity for intermolecular interaction energies in large supramolecular complexes has not been thoroughly vetted. Non-covalent interactions are sensitive to tails of the electron density and involve nonlocal dispersion that is discarded or approximated if the screening of pair natural orbitals (PNOs) is too aggressive. Meanwhile, the accuracy of the DLPNO approximation is known to deteriorate as molecular size increases. Here, we test the DLPNO approximation at the level of second-order Møller-Plesset perturbation theory (MP2) and coupled-cluster theory with singles, doubles, and perturbative triples [CCSD(T)] for a variety of large supramolecular complexes. DLPNO-MP2 interaction energies are within 3% of canonical values for small dimers with ≲10 heavy atoms, but for larger systems, the DLPNO approximation is often quite poor unless the results are extrapolated to the canonical limit where the threshold for discarding PNOs is taken to zero. Counterpoise correction proves to be essential in reducing errors with respect to canonical results. For a sequence of nanoscale graphene dimers up to (C96H24)2, extrapolated DLPNO-MP2 interaction energies agree with canonical values to within 1%, independent of system size, provided that the basis set does not contain diffuse functions; these cause the DLPNO approximation to behave erratically, such that results cannot be extrapolated in a meaningful way. DLPNO-CCSD(T) calculations are typically performed using looser PNO thresholds as compared to DLPNO-MP2, but this significantly impacts accuracy for large supramolecular complexes. Standard DLPNO-CCSD(T) settings afford errors of 2-6 kcal/mol for dimers involving coronene (C24H12) and circumcoronene (C54H18), even at the DLPNO-CCSD(T1) level.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M. Herbert
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
5
|
Sorathia K, Frantzov D, Tew DP. Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. J Chem Theory Comput 2024; 20:2740-2750. [PMID: 38513261 PMCID: PMC11008106 DOI: 10.1021/acs.jctc.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Computation of heats of reaction of large molecules is now feasible using the domain-based pair natural orbital (PNO)-coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] theory. However, to obtain agreement within 1 kcal/mol of experiment, it is necessary to eliminate basis set incompleteness error, which comprises both the AO basis set error and the PNO truncation error. Our investigation into the convergence to the canonical limit of PNO-CCSD(T) energies with the PNO truncation threshold T shows that errors follow the model E ( T ) = E + A T 1 / 2 . Therefore, PNO truncation errors can be eliminated using a simple two-point CPS extrapolation to the canonical limit so that subsequent CBS extrapolation is not limited by the residual PNO truncation error. Using the ISOL24 and MOBH35 data sets, we find that PNO truncation errors are larger for molecules with significant static correlation and that it is necessary to use very tight thresholds of T = 10 - 8 to ensure that errors do not exceed 1 kcal/mol. We present a lower-cost extrapolation scheme that uses information from small basis sets to estimate the PNO truncation errors for larger basis sets. In this way, the canonical limit of CCSD(T) calculations on sizable molecules with large basis sets can be reliably estimated in a practical way. Using this approach, we report near complete basis set (CBS)-CCSD(T) reaction energies for the full ISOL24 and MOBH35 data sets.
Collapse
Affiliation(s)
- Kesha Sorathia
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Damyan Frantzov
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - David P. Tew
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
6
|
Plett C, Grimme S, Hansen A. Conformational energies of biomolecules in solution: Extending the MPCONF196 benchmark with explicit water molecules. J Comput Chem 2024; 45:419-429. [PMID: 37982322 DOI: 10.1002/jcc.27248] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 11/21/2023]
Abstract
A prerequisite for the computational prediction of molecular properties like conformational energies of biomolecules is a reliable, robust, and computationally affordable method usually selected according to its performance for relevant benchmark sets. However, most of these sets comprise molecules in the gas phase and do not cover interactions with a solvent, even though biomolecules typically occur in aqueous solution. To address this issue, we introduce a with explicit water molecules solvated version of a gas-phase benchmark set containing 196 conformers of 13 peptides and other relevant macrocycles, namely MPCONF196 [J. Řezáč et al., JCTC 2018, 14, 1254-1266], and provide very accurate PNO-LCCSD(T)-F12b/AVQZ' reference values. The novel solvMPCONF196 benchmark set features two additional challenges beyond the description of conformers in the gas phase: conformer-water and water-water interactions. The overall best performing method for this set is the double hybrid revDSDPBEP86-D4/def2-QZVPP yielding conformational energies of almost coupled cluster quality. Furthermore, some (meta-)GGAs and hybrid functionals like B97M-V and ω B97M-D with a large basis set reproduce the coupled cluster reference with an MAD below 1 kcal mol- 1 . If more efficient methods are required, the composite DFT-method r2 SCAN-3c (MAD of 1.2 kcal mol- 1 ) is a good alternative, and when conformational energies of polypeptides or macrocycles with more than 500-1000 atoms are in the focus, the semi-empirical GFN2-xTB or the MMFF94 force field (for very large systems) are recommended.
Collapse
Affiliation(s)
- Christoph Plett
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Clausius-Institut für Physikalische und Theoretische Chemie, Universität Bonn, Bonn, Germany
| |
Collapse
|
7
|
Franzke Y, Holzer C, Andersen JH, Begušić T, Bruder F, Coriani S, Della Sala F, Fabiano E, Fedotov DA, Fürst S, Gillhuber S, Grotjahn R, Kaupp M, Kehry M, Krstić M, Mack F, Majumdar S, Nguyen BD, Parker SM, Pauly F, Pausch A, Perlt E, Phun GS, Rajabi A, Rappoport D, Samal B, Schrader T, Sharma M, Tapavicza E, Treß RS, Voora V, Wodyński A, Yu JM, Zerulla B, Furche F, Hättig C, Sierka M, Tew DP, Weigend F. TURBOMOLE: Today and Tomorrow. J Chem Theory Comput 2023; 19:6859-6890. [PMID: 37382508 PMCID: PMC10601488 DOI: 10.1021/acs.jctc.3c00347] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Indexed: 06/30/2023]
Abstract
TURBOMOLE is a highly optimized software suite for large-scale quantum-chemical and materials science simulations of molecules, clusters, extended systems, and periodic solids. TURBOMOLE uses Gaussian basis sets and has been designed with robust and fast quantum-chemical applications in mind, ranging from homogeneous and heterogeneous catalysis to inorganic and organic chemistry and various types of spectroscopy, light-matter interactions, and biochemistry. This Perspective briefly surveys TURBOMOLE's functionality and highlights recent developments that have taken place between 2020 and 2023, comprising new electronic structure methods for molecules and solids, previously unavailable molecular properties, embedding, and molecular dynamics approaches. Select features under development are reviewed to illustrate the continuous growth of the program suite, including nuclear electronic orbital methods, Hartree-Fock-based adiabatic connection models, simplified time-dependent density functional theory, relativistic effects and magnetic properties, and multiscale modeling of optical properties.
Collapse
Affiliation(s)
- Yannick
J. Franzke
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Christof Holzer
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Josefine H. Andersen
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Tomislav Begušić
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Florian Bruder
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Sonia Coriani
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Fabio Della Sala
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Eduardo Fabiano
- Institute
for Microelectronics and Microsystems (CNR-IMM), Via Monteroni, Campus Unisalento, 73100 Lecce, Italy
- Center for
Biomolecular Nanotechnologies @UNILE, Istituto
Italiano di Tecnologia, Via Barsanti, 73010 Arnesano, Italy
| | - Daniil A. Fedotov
- DTU
Chemistry, Department of Chemistry, Technical
University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Susanne Fürst
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Sebastian Gillhuber
- Institute
of Inorganic Chemistry, Karlsruhe Institute
of Technology (KIT), Engesserstr. 15, 76131 Karlsruhe, Germany
| | - Robin Grotjahn
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Martin Kaupp
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Max Kehry
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Marjan Krstić
- Institute
of Theoretical Solid State Physics, Karlsruhe
Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany
| | - Fabian Mack
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sourav Majumdar
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Brian D. Nguyen
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Shane M. Parker
- Department
of Chemistry, Case Western Reserve University, 10900 Euclid Ave, Cleveland, Ohio 44106 United States
| | - Fabian Pauly
- Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| | - Ansgar Pausch
- Institute
of Physical Chemistry, Karlsruhe Institute
of Technology (KIT), Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Eva Perlt
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Gabriel S. Phun
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Ahmadreza Rajabi
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Dmitrij Rappoport
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Bibek Samal
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Tim Schrader
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Manas Sharma
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - Enrico Tapavicza
- Department
of Chemistry and Biochemistry, California
State University, Long Beach, 1250 Bellflower Boulevard, Long
Beach, California 90840-9507, United States
| | - Robert S. Treß
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Vamsee Voora
- Department
of Chemical Sciences, Tata Institute of
Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Artur Wodyński
- Institut
für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Technische Universität Berlin, Straße des 17 Juni 135, 10623, Berlin, Germany
| | - Jason M. Yu
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Benedikt Zerulla
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz-Platz
1, 76344 Eggenstein-Leopoldshafen Germany
| | - Filipp Furche
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Christof Hättig
- Lehrstuhl
für Theoretische Chemie, Ruhr-Universität
Bochum, 44801 Bochum, Germany
| | - Marek Sierka
- Otto-Schott-Institut
für Materialforschung, Friedrich-Schiller-Universität
Jena, Löbdergraben
32, 07743 Jena, Germany
| | - David P. Tew
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks
Road, Oxford OX1 3QZ, United Kingdom
| | - Florian Weigend
- Fachbereich
Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| |
Collapse
|
8
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Demel O, Lecours MJ, Nooijen M. Further investigations into a Laplace MP2 method using range separated Coulomb potential and orbital selective virtuals: Multipole correction, OSV extrapolation, and critical assessment. J Chem Phys 2023; 158:114120. [PMID: 36948803 DOI: 10.1063/5.0135113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
We report further investigations to aid the development of a Laplace MP2 (second-order Møller Plesset) method with a range separated Coulomb potential partitioned into short- and long-range parts. The implementation of the method extensively uses sparse matrix algebra, density fitting techniques for the short-range part, and a Fourier transformation in spherical coordinates for the long-range part of the potential. Localized molecular orbitals are employed for the occupied space, whereas virtual space is described by orbital specific virtual orbitals (OSVs) associated with localized molecular orbitals. The Fourier transform is deficient for very large distances between localized occupied orbitals, and a multipole expansion for widely separated pairs is introduced for the direct MP2 contribution, which is applicable also to non-Coulombic potentials that do not satisfy the Laplace equation. For the exchange contribution, an efficient screening of contributing localized occupied pairs is employed, which is discussed more completely here. To mitigate errors due to the truncation of OSVs, a simple and efficient extrapolation procedure is used to obtain results close to MP2 for the full basis set of atomic orbitals Using a suitable set of default parameters, the accuracy of the approach is demonstrated. The current implementation of the approach is not very efficient, and the aim of this paper is to introduce and critically discuss ideas that can have more general applicability beyond MP2 calculations for large molecules.
Collapse
Affiliation(s)
- Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Michael J Lecours
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Marcel Nooijen
- University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Altun A, Riplinger C, Neese F, Bistoni G. Exploring the Accuracy Limits of PNO-Based Local Coupled-Cluster Calculations for Transition-Metal Complexes. J Chem Theory Comput 2023; 19:2039-2047. [PMID: 36917767 PMCID: PMC10100528 DOI: 10.1021/acs.jctc.3c00087] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
While the domain-based local pair natural orbital coupled-cluster method with singles, doubles, and perturbative triples (DLPNO-CCSD(T)) has proven instrumental for computing energies and properties of large and complex systems accurately, calculations on first-row transition metals with a complex electronic structure remain challenging. In this work, we identify and address the two main error sources that influence the DLPNO-CCSD(T) accuracy in this context, namely, (i) correlation effects from the 3s and 3p semicore orbitals and (ii) dynamic correlation-induced orbital relaxation (DCIOR) effects that are not described by the local MP2 guess. We present a computational strategy that allows us to completely eliminate the DLPNO error associated with semicore correlation effects, while increasing, at the same time, the efficiency of the method. As regards the DCIOR effects, we introduce a diagnostic for estimating the deviation between DLPNO-CCSD(T) and canonical CCSD(T) for systems with significant orbital relaxation.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
11
|
Kállay M, Horváth RA, Gyevi-Nagy L, Nagy PR. Basis Set Limit CCSD(T) Energies for Extended Molecules via a Reduced-Cost Explicitly Correlated Approach. J Chem Theory Comput 2022; 19:174-189. [PMID: 36576419 PMCID: PMC9835832 DOI: 10.1021/acs.jctc.2c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Several approximations are introduced and tested to reduce the computational expenses of the explicitly correlated coupled-cluster singles and doubles with perturbative triples [CCSD(T)] method for both closed and open-shell species. First, the well-established frozen natural orbital (FNO) technique is adapted to explicitly correlated CC approaches. Second, our natural auxiliary function (NAF) scheme is employed to reduce the size of the auxiliary basis required for the density fitting approximation regularly used in explicitly correlated calculations. Third, a new approach, termed the natural auxiliary basis (NAB) approximation, is proposed to decrease the size of the auxiliary basis needed for the expansion of the explicitly correlated geminals. The performance of the above approximations and that of the combined FNO-NAF-NAB approach are tested for atomization and reaction energies. Our results show that overall speedups of 7-, 5-, and 3-times can be achieved with double-, triple-, and quadruple-ζ basis sets, respectively, without any loss in accuracy. The new method can provide, e.g., reaction energies and barrier heights well within chemical accuracy for molecules with more than 40 atoms within a few days using a few dozen processor cores, and calculations with 50+ atoms are still feasible. These routinely affordable computations considerably extend the reach of explicitly correlated CCSD(T).
Collapse
Affiliation(s)
- Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,
| | - Réka A. Horváth
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - László Gyevi-Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter R. Nagy
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary,ELKH-BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary,MTA-BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
12
|
Carter-Fenk K, Herbert JM. Appraisal of dispersion damping functions for the effective fragment potential method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2055504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
13
|
Gray M, Herbert JM. Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. J Chem Theory Comput 2022; 18:2308-2330. [PMID: 35289608 DOI: 10.1021/acs.jctc.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Altun A, Ghosh S, Riplinger C, Neese F, Bistoni G. Addressing the System-Size Dependence of the Local Approximation Error in Coupled-Cluster Calculations. J Phys Chem A 2021; 125:9932-9939. [PMID: 34730360 PMCID: PMC8607505 DOI: 10.1021/acs.jpca.1c09106] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last two decades, the local approximation has been successfully used to extend the range of applicability of the "gold standard" singles and doubles coupled-cluster method with perturbative triples CCSD(T) to systems with hundreds of atoms. The local approximation error grows in absolute value with the increasing system size, i.e., by increasing the number of electron pairs in the system. In this study, we demonstrate that the recently introduced two-point extrapolation scheme for approaching the complete pair natural orbital (PNOs) space limit in domain-based pair natural orbital CCSD(T) calculations drastically reduces the dependence of the error on the system size, thus opening up unprecedented opportunities for the calculation of benchmark quality relative energies for large systems.
Collapse
Affiliation(s)
- Ahmet Altun
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Soumen Ghosh
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Nagy PR, Gyevi-Nagy L, Kállay M. Basis set truncation corrections for improved frozen natural orbital CCSD(T) energies. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1963495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Péter R. Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - László Gyevi-Nagy
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
16
|
Maurer LR, Bursch M, Grimme S, Hansen A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. J Chem Theory Comput 2021; 17:6134-6151. [PMID: 34546754 DOI: 10.1021/acs.jctc.1c00659] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the principle lack of systematic improvement possibilities of density functional theory, careful assessment of the performance of density functional approximations (DFAs) on well-designed benchmark sets, for example, for reaction energies and barrier heights, is crucial. While main-group chemistry is well covered by several available sets, benchmark data for transition metal chemistry is sparse. This is especially the case for larger, chemically relevant molecules. Addressing this issue, we recently introduced the MOR41 benchmark which covers chemically relevant reactions of closed-shell complexes. In this work, we extend these efforts to single-reference open-shell systems and introduce the "reactions of open-shell single-reference transition metal complexes" (ROST61) benchmark set. ROST61 includes accurate coupled-cluster reference values for 61 reaction energies with a mean reaction energy of -42.8 kcal mol-1. Complexes with 13-93 atoms covering 20 d-block elements are included, but due to the restriction to single-reference open-shell systems, important elements such as iron or platinum could not be taken into account, or only to a small extent. We assess the performance of 31 DFAs in combination with three London dispersion (LD) correction schemes. Further, DFT-based composite methods, MP2, and a few semiempirical quantum chemical methods are evaluated. Consistent with the results for the MOR41 closed-shell benchmark, we find that the ordering of DFAs according to Jacob's ladder is preserved and that adding an LD correction is crucial, clearly improving almost all tested methods. The recently introduced r2SCAN-3c composite method stands out with a remarkable mean absolute deviation (MAD) of only 2.9 kcal mol-1, which is surpassed only by hybrid DFAs with low amounts of Fock exchange (e.g., 2.3 kcal mol-1 for TPSS0-D4/def2-QZVPP) and double-hybrid (DH) DFAs but at a significantly higher computational cost. The lowest MAD of only 1.6 kcal mol-1 is obtained with the DH DFA PWPB95-D4 in the def2-QZVPP basis set approaching the estimated accuracy of the reference method. Overall, the ROST61 set adds important reference data to a sparsely sampled but practically relevant area of chemistry. At this point, it provides valuable orientation for the application and development of new DFAs and electronic structure methods in general.
Collapse
Affiliation(s)
- Leonard R Maurer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
| |
Collapse
|
17
|
Tew DP. Principal domains in F12 explicitly correlated theory. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|