1
|
Schirru M, Charef H, Ismaili KE, Fenneteau F, Zugaj D, Tremblay PO, Nekka F. Predicting efficacy assessment of combined treatment of radiotherapy and nivolumab for NSCLC patients through virtual clinical trials using QSP modeling. J Pharmacokinet Pharmacodyn 2024; 51:319-333. [PMID: 38493439 DOI: 10.1007/s10928-024-09903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 03/19/2024]
Abstract
Non-Small Cell Lung Cancer (NSCLC) remains one of the main causes of cancer death worldwide. In the urge of finding an effective approach to treat cancer, enormous therapeutic targets and treatment combinations are explored in clinical studies, which are not only costly, suffer from a shortage of participants, but also unable to explore all prospective therapeutic solutions. Within the evolving therapeutic landscape, the combined use of radiotherapy (RT) and checkpoint inhibitors (ICIs) emerged as a promising avenue. Exploiting the power of quantitative system pharmacology (QSP), we undertook a study to anticipate the therapeutic outcomes of these interventions, aiming to address the limitations of clinical trials. After enhancing a pre-existing QSP platform and accurately replicating clinical data outcomes, we conducted an in-depth study, examining different treatment protocols with nivolumab and RT, both as monotherapy and in combination, by assessing their efficacy through clinical endpoints, namely time to progression (TTP) and duration of response (DOR). As result, the synergy of combined protocols showcased enhanced TTP and extended DOR, suggesting dual advantages of extended response and slowed disease progression with certain combined regimens. Through the lens of QSP modeling, our findings highlight the potential to fine-tune combination therapies for NSCLC, thereby providing pivotal insights for tailoring patient-centric therapeutic interventions.
Collapse
Affiliation(s)
- Miriam Schirru
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada.
| | - Hamza Charef
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Khalil-Elmehdi Ismaili
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Frédérique Fenneteau
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
| | - Didier Zugaj
- Clinical Pharmacology, Syneos Health, Quebec, Quebec G1P 0A2, Canada
| | | | - Fahima Nekka
- Laboratoire de recherche en pharmacométrie, Faculté de pharmacie, Université de Montréal, Montreal, Canada
- Centre de recherches mathématiques (CRM), Université de Montréal, Montreal, Canada
- Centre for Applied Mathematics in Bioscience and Medicine (CAMBAM), McGill University, Montreal, Canada
| |
Collapse
|
2
|
Zugaj D, Fenneteau F, Tremblay PO, Nekka F. Dynamical behavior-based approach for the evaluation of treatment efficacy: The case of immuno-oncology. CHAOS (WOODBURY, N.Y.) 2024; 34:013142. [PMID: 38277131 DOI: 10.1063/5.0170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024]
Abstract
Sophistication of mathematical models in the pharmacological context reflects the progress being made in understanding physiological, pharmacological, and disease relationships. This progress has illustrated once more the need for advanced quantitative tools able to efficiently extract information from these models. While dynamical systems theory has a long history in the analysis of systems biology models, as emphasized under the dynamical disease concept by Mackey and Glass [Science 197, 287-289 (1977)], its adoption in pharmacometrics is only at the beginning [Chae, Transl. Clin. Pharmacol. 28, 109 (2020)]. Using a quantitative systems pharmacology model of tumor immune dynamics as a case study [Kosinsky et al., J. Immunother. Cancer 6, 17 (2018)], we here adopt a dynamical systems analysis to describe, in an exhaustive way, six different statuses that refer to the response of the system to therapy, in the presence or absence of a tumor-free attractor. To evaluate the therapy success, we introduce the concept of TBA, related to the Time to enter the tumor-free Basin of Attraction, and corresponding to the earliest time at which the therapy can be stopped without jeopardizing its efficacy. TBA can determine the optimal time to stop drug administration and consequently quantify the reduction in drug exposure.
Collapse
Affiliation(s)
- Didier Zugaj
- Syneos Health, Clinical Pharmacology, Quebec, Quebec G1P 0A2, Canada
| | | | | | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
3
|
Mori L, Ben Amar M. Stochasticity and Drug Effects in Dynamical Model for Cancer Stem Cells. Cancers (Basel) 2023; 15:cancers15030677. [PMID: 36765635 PMCID: PMC9913339 DOI: 10.3390/cancers15030677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/05/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
The Cancer Stem Model allows for a dynamical description of cancer colonies which accounts for the existence of different families of cells, namely stem cells, highly proliferating and quasi-immortal, and differentiated cells, both undergoing cellular processes under numerous activated pathways. In the present work, we investigate a dynamical model numerically, as a system of coupled differential equations, and include a plasticity mechanism, of differentiated cells turning into a stem state if the stem concentration drops low. We are particularly interested in the stability of the model once we introduce stochastically evolving parameters, associated with environmental and cellular intrinsic variabilities, as well as the response of the model after introducing a drug therapy. As long as we stay within the characteristic time scale of the system, defined on the base of the needed time for the trajectories to converge on stable states, we observe that the system remains stable for the main parameters evolving stochastically according to white noise. As for the drug treatments, we discuss a model both for the kinetics and the dynamics of the substance in the organism, and then consider the impact of different types of therapies in a few particular examples, outlining some interesting mechanisms, such as the tumor growth paradox, that possibly impact the outcome of therapy significantly.
Collapse
Affiliation(s)
- Ludovico Mori
- Laboratoire de Physique de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université PSL, CNRS, 75005 Paris, France
| | - Martine Ben Amar
- Laboratoire de Physique de l’Ecole Normale Supérieure, Ecole Normale Supérieure, Université PSL, CNRS, 75005 Paris, France
- Institut Universitaire de Cancérologie, Faculté de Médecine, Sorbonne Université, 91 Bd de l’Hôpital, 75013 Paris, France
- Correspondence:
| |
Collapse
|
4
|
Aghamiri SS, Amin R, Helikar T. Recent applications of quantitative systems pharmacology and machine learning models across diseases. J Pharmacokinet Pharmacodyn 2021; 49:19-37. [PMID: 34671863 PMCID: PMC8528185 DOI: 10.1007/s10928-021-09790-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/07/2021] [Indexed: 12/29/2022]
Abstract
Quantitative systems pharmacology (QSP) is a quantitative and mechanistic platform describing the phenotypic interaction between drugs, biological networks, and disease conditions to predict optimal therapeutic response. In this meta-analysis study, we review the utility of the QSP platform in drug development and therapeutic strategies based on recent publications (2019-2021). We gathered recent original QSP models and described the diversity of their applications based on therapeutic areas, methodologies, software platforms, and functionalities. The collection and investigation of these publications can assist in providing a repository of recent QSP studies to facilitate the discovery and further reusability of QSP models. Our review shows that the largest number of QSP efforts in recent years is in Immuno-Oncology. We also addressed the benefits of integrative approaches in this field by presenting the applications of Machine Learning methods for drug discovery and QSP models. Based on this meta-analysis, we discuss the advantages and limitations of QSP models and propose fields where the QSP approach constitutes a valuable interface for more investigations to tackle complex diseases and improve drug development.
Collapse
Affiliation(s)
- Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rada Amin
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
5
|
Cazzagon V, Romano A, Gonella F. Using Stock-Flow Diagrams to Visualize Theranostic Approaches to Solid Tumors in Personalized Nanomedicine. Front Bioeng Biotechnol 2021; 9:709727. [PMID: 34368102 PMCID: PMC8339728 DOI: 10.3389/fbioe.2021.709727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/22/2021] [Indexed: 01/16/2023] Open
Abstract
Personalized nanomedicine has rapidly evolved over the past decade to tailor the diagnosis and treatment of several diseases to the individual characteristics of each patient. In oncology, iron oxide nano-biomaterials (NBMs) have become a promising biomedical product in targeted drug delivery as well as in magnetic resonance imaging (MRI) as a contrast agent and magnetic hyperthermia. The combination of diagnosis and therapy in a single nano-enabled product (so-called theranostic agent) in the personalized nanomedicine has been investigated so far mostly in terms of local events, causes-effects, and mutual relationships. However, this approach could fail in capturing the overall complexity of a system, whereas systemic approaches can be used to study the organization of phenomena in terms of dynamic configurations, independent of the nature, type, or spatial and temporal scale of the elements of the system. In medicine, complex descriptions of diseases and their evolution are daily assessed in clinical settings, which can be thus considered as complex systems exhibiting self-organizing and non-linear features, to be investigated through the identification of dynamic feedback-driven behaviors. In this study, a Systems Thinking (ST) approach is proposed to represent the complexity of the theranostic modalities in the context of the personalized nanomedicine through the setting up of a stock-flow diagram. Specifically, the interconnections between the administration of magnetite NBMs for diagnosis and therapy of tumors are fully identified, emphasizing the role of the feedback loops. The presented approach has revealed its suitability for further application in the medical field. In particular, the obtained stock-flow diagram can be adapted for improving the future knowledge of complex systems in personalized nanomedicine as well as in other nanosafety areas.
Collapse
Affiliation(s)
- Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Venice, Italy
| | - Alessandra Romano
- Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Venice, Italy.,Scuola Superiore di Catania, Università degli Studi di Catania, Catania, Italy
| | - Francesco Gonella
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.,Research Institute for Complexity, University Ca' Foscari of Venice, Venice, Italy
| |
Collapse
|
6
|
Bélair J, Nekka F, Milton JG. Introduction to Focus Issue: Dynamical disease: A translational approach. CHAOS (WOODBURY, N.Y.) 2021; 31:060401. [PMID: 34241319 DOI: 10.1063/5.0058345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The concept of Dynamical Diseases provides a framework to understand physiological control systems in pathological states due to their operating in an abnormal range of control parameters: this allows for the possibility of a return to normal condition by a redress of the values of the governing parameters. The analogy with bifurcations in dynamical systems opens the possibility of mathematically modeling clinical conditions and investigating possible parameter changes that lead to avoidance of their pathological states. Since its introduction, this concept has been applied to a number of physiological systems, most notably cardiac, hematological, and neurological. A quarter century after the inaugural meeting on dynamical diseases held in Mont Tremblant, Québec [Bélair et al., Dynamical Diseases: Mathematical Analysis of Human Illness (American Institute of Physics, Woodbury, NY, 1995)], this Focus Issue offers an opportunity to reflect on the evolution of the field in traditional areas as well as contemporary data-based methods.
Collapse
Affiliation(s)
- Jacques Bélair
- Département de Mathématiques et de Statistique, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Fahima Nekka
- Centre de Recherches Mathématiques (CRM), Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - John G Milton
- W. M. Keck Science Department, The Claremont Colleges, Claremont, California 91711, USA
| |
Collapse
|