1
|
Chen Y, Liang Z, Li G, An T. Indoor/Outdoor airborne microbiome characteristics in residential areas across four seasons and its indoor purification. ENVIRONMENT INTERNATIONAL 2024; 190:108857. [PMID: 38954924 DOI: 10.1016/j.envint.2024.108857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Bioaerosols are more likely to accumulate in the residential environment, and long-term inhalation may lead to a variety of diseases and allergies. Here, we studied the distribution, influencing factors and diffusion characteristics of indoor and outdoor microbiota pollution in six residential buildings in Guangzhou, southern China over a period of one year. The results showed that the particle sizes of bioaerosol were mainly in the range of inhalable particle size (<4.7 μm) with a small difference among four seasons (74.61 % ± 2.17 %). The microbial communities showed obvious seasonal differences with high abundance in summer, but no obvious geographical differences. Among them, the bacteria were more abundant than the fungi. The dominant microbes in indoor and outdoor environments were similar, with Anoxybacillu, Brevibacillus and Acinetobacter as the dominant bacteria, and Cladosporium, Penicillium and Alternaria as the dominant fungi. The airborne microbiomes were more sensitive to temperature and particulate matter (PM2.5, PM10) concentrations. Based on the Sloan neutral model, bacteria were more prone to random diffusion than fungi, and the airborne microbiome can be randomly distributed in indoor and outdoor environments and between the two environments in each season. Bioaerosol in indoor was mainly from outdoor. The health risk evaluation showed that the indoor inhalation risks were higher than those outdoor. The air purifier had a better removal efficiency on 1.1-4.7 μm microorganisms, and the removal efficiency on Gram-negative bacteria was better than that on Gram-positive bacteria. This study is of great significance for the risk assessment and control of residential indoor bioaerosol exposure.
Collapse
Affiliation(s)
- Yuying Chen
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Qiu Y, Lu C, Bao F, Hu G. Design of a multilayer lung chip with multigenerational alveolar ducts to investigate the inhaled particle deposition. LAB ON A CHIP 2023; 23:4302-4312. [PMID: 37691540 DOI: 10.1039/d3lc00253e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present the development and application of a multilayer microfluidic lung chip designed to accurately replicate the human respiratory bronchi, providing an innovative platform for controlled particle deposition in the lung. By employing a quantitative control method of fluid velocity through the deformation of an elastic PDMS membrane, this platform mimics the passive breathing process in humans and allows for precise simulation of the respiration cycle. We utilized time-lapse photography of fluorescent particles in a water/glycerol solution to qualitatively observe fluid morphology in the channel, while a chip-aerosol exposure device combined with microscopy imaging was employed to visualise aerosol deposition. Both experimental and numerical simulation results showed that particle concentration decreased towards the distal generations of the lung, and that changes in breathing pattern significantly affected particle deposition trends. Furthermore, we found that increasing the residence time of particles in the channel facilitated deeper particle deposition, achievable by adjusting parameters such as breath-hold time, exhalation time, respiration cycle length, and tidal volume. The proposed microfluidic lung chip device has significant potential for future research in respiratory health and inhaled drug delivery, providing an efficient, cost-effective, and ethical alternative to traditional in vivo studies.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Chao Lu
- College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China
| | - Fubing Bao
- Zhejiang Provincial Key Laboratory of Flow Measurement Technology, China Jiliang University, Hangzhou 310018, China
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
3
|
Chakravarty A, Panchagnula MV, Mohan A, Patankar NA. Pulmonary drug delivery and retention: A computational study to identify plausible parameters based on a coupled airway-mucus flow model. PLoS Comput Biol 2022; 18:e1010143. [PMID: 35653381 PMCID: PMC9197018 DOI: 10.1371/journal.pcbi.1010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 06/14/2022] [Accepted: 04/26/2022] [Indexed: 01/19/2023] Open
Abstract
Pulmonary drug delivery systems rely on inhalation of drug-laden aerosols produced from aerosol generators such as inhalers, nebulizers etc. On deposition, the drug molecules diffuse in the mucus layer and are also subjected to mucociliary advection which transports the drugs away from the initial deposition site. The availability of the drug at a particular region of the lung is, thus, determined by a balance between these two phenomena. A mathematical analysis of drug deposition and retention in the lungs is developed through a coupled mathematical model of aerosol transport in air as well as drug molecule transport in the mucus layer. The mathematical model is solved computationally to identify suitable conditions for the transport of drug-laden aerosols to the deep lungs. This study identifies the conditions conducive for delivering drugs to the deep lungs which is crucial for achieving systemic drug delivery. The effect of different parameters on drug retention is also characterized for various regions of the lungs, which is important in determining the availability of the inhaled drugs at a target location. Our analysis confirms that drug delivery efficacy remains highest for aerosols in the size range of 1-5 μm. Moreover, it is observed that amount of drugs deposited in the deep lung increases by a factor of 2 when the breathing time period is doubled, with respect to normal breathing, suggesting breath control as a means to increase the efficacy of drug delivery to the deep lung. A higher efficacy also reduces the drug load required to be inhaled to produce the same health effects and hence, can help in minimizing the side effects of a drug. Pulmonary drug delivery systems utilize the respiratory mechanism to directly deliver drugs to a target region of the lungs. The drug molecules deposit in the mucus lining, on reaching the target region, and are simultaneously transported away from the target region due to mucociliary transport and molecular diffusion. The availability of drugs at a target lung region and hence, efficacy of the drugs, therefore, determined by the delivery and retention of the drugs at the target region. The present study computationally solves the coupled transport equations to identify the conditions conducive for drug delivery and retention in the deep lungs. Drug delivery efficacy to the deep lung is observed to be highest for 1–5 μm aerosols. Breathing time period is also observed to influence efficacy. The amount of drugs deposited in the deep lung is observed to increase by a factor of 2 when the breathing time period is doubled with respect to normal breathing period. Such insights gained from this analysis will potentially help in devising mechanisms for increasing drug availability in the deep lung which is essential in achieving systemic drug delivery.
Collapse
Affiliation(s)
- Aranyak Chakravarty
- School of Nuclear Studies and Application, Jadavpur University, Kolkata, India
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Mahesh V. Panchagnula
- Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai, India
| | - Alladi Mohan
- Department of Medicine, Sri Venkateswara Institute of Medical Sciences, Tirupati, India
| | - Neelesh A. Patankar
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
4
|
Amalaruban A, Kelkar N, Krishan J, Anand S, Mayya YS, Seth JR. Relationship Between the Mobility of Aggregates and Fluid Penetration Depth Across a Range of Fractal Dimensions Using Stokesian Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3422-3433. [PMID: 35254072 DOI: 10.1021/acs.langmuir.1c03180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The hydrodynamic behavior of fractal aggregates plays an important role in various applications in industry and the environment, and has been a topic of interest over the past several decades. Despite this, crucial aspects such as the relationship of the mobility radius, Rm, with respect to the fractal dimension, df, and the fluid penetration depth, δ, have largely remained unexplored. Herein, we examine these aspects across a wide range of df's through a Stokesian dynamics approach. It takes into account all orders of monomer-monomer interactions to construct the resistance matrix for the entire cluster, which is assumed to be rigid. Statistical fractals created using algorithms such as diffusion limited aggregation (DLA), cluster-cluster aggregation (CCA), tunable Monte Carlo algorithm, and a deterministic Vicsek fractal, with df varying from 1.76 to 3, and the number of monomers ranging from 20 to 10 240 are considered. While confirming the expected asymptotic cluster-size independence of the hydrodynamic ratio, β = Rm/Rg (where Rg is the radius of gyration of the cluster), this study reveals a monotonically increasing trend for β with increasing df. The decay of the fluid velocity within the aggregate is quantified via the concept of penetration depth (δ). Analysis shows that the dimensionless penetration depth (δ* = δ/Rg) approaches asymptotic constancy with respect to cluster size in contrast to a weak dependency of the form δ* ∼ (Rg/a)-(df - 1)/2, predicted by the mean-field theory (a being the monomer radius). Furthermore, the penetration depth is found to decrease rapidly, in an exponential manner, with increasing β. This establishes a quantitative relationship between the resistance experienced by the cluster and the degree of penetration of fluid into it. The implications of these results are further discussed.
Collapse
Affiliation(s)
- Ashwin Amalaruban
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Narayani Kelkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jayant Krishan
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - S Anand
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Y S Mayya
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Jyoti R Seth
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
5
|
Chatterjee S, Murallidharan JS, Agrawal A, Bhardwaj R. A review on coronavirus survival on impermeable and porous surfaces. SĀDHANĀ 2022; 47:5. [PMCID: PMC8670619 DOI: 10.1007/s12046-021-01772-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We review recent studies on fomite transmission of COVID-19, caused by the novel coronavirus. In particular, we focus on survival time of coronavirus on solid and porous surfaces. Since the aqueous phase of a respiratory droplet serves as a medium for virus survival, evaporation of the droplet on a surface plays a crucial role in determining the virus survival time. While the bulk of the droplet takes a few seconds to evaporate, previous virus titer measurements revealed that the virus can survive for several hours or days on a surface. This long survival of virus has been attributed to a residual thin-liquid film which remains after drying of the bulk droplet. The evaporation of the thin-film is governed by the disjoining pressure within it and therefore, is a much slower process which causes the virus to survive longer. However, the aforesaid disjoining pressure is significantly modulated for the case of porous surfaces due to their typical geometries. This accelerates the thin-film evaporation on porous surfaces and thereby making them lesser susceptible to virus survival. Therefore, porous materials are deemed to be relatively safer for mitigating the spread of COVID-19 via fomite transmission. Using results of the reported research, we briefly discuss the possible recommendations to mitigate the spread of the disease.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
6
|
Vadivukkarasan M. A note on the stability characteristics of the respiratory events. EUROPEAN JOURNAL OF MECHANICS. B, FLUIDS 2021; 89:15-20. [PMID: 33994752 PMCID: PMC8107050 DOI: 10.1016/j.euromechflu.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The present outbreak enables the researchers from fluid mechanics to widen the understanding of expelling respiratory liquids from a unique perspective to diminish the persistence of COVID-19. This article focuses on uncovering the instability mechanism responsible for forming droplets and aerosols during respiratory events such as breathing, talking, coughing and sneezing. We illustrate a mathematical framework by revisiting the model (Vadivukkarasan and Panchagnula, 2017) and show the associated instabilities during respiratory events. We envisage the combined Rayleigh-Taylor-Kelvin-Helmholtz (R-T-K-H) model as a robust tool for respiratory events. This study highlights the distinct possibility of respiratory droplet formation over multiple instabilities and provides a fundamental understanding. We present the different dominant modes through a ternary phase diagram for three-dimensional numbers (Bond number and Weber numbers). Furthermore, this model can be extended phenomenologically to viscous fluids to satisfy mucus and saliva in the respiratory liquids.
Collapse
Affiliation(s)
- M Vadivukkarasan
- Department of Mechanical Engineering, National Institute of Technology Puducherry, Karaikal, 609609, India
| |
Collapse
|
7
|
Chatterjee S, Murallidharan JS, Agrawal A, Bhardwaj R. How coronavirus survives for hours in aerosols. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081708. [PMID: 34471334 PMCID: PMC8404379 DOI: 10.1063/5.0059908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/01/2021] [Indexed: 05/10/2023]
Abstract
COVID (CoronaVirus Disease)-19, caused by severe acute respiratory syndrome-CoronaVirus-2 (SARS-CoV-2) virus, predominantly transmits via airborne route, as highlighted by recent studies. Furthermore, recently published titer measurements of SARS-CoV-2 in aerosols have disclosed that the coronavirus can survive for hours. A consolidated knowledge on the physical mechanism and governing rules behind the significantly long survival of coronavirus in aerosols is lacking, which is the subject of the present investigation. We model the evaporation of aerosolized droplets of diameter ≤ 5 μ m. The conventional diffusion-limited evaporation is not valid to model the evaporation of small size (μm-nm) droplets since it predicts drying time on the order of milliseconds. Also, the sedimentation timescale of desiccated droplets is on the order of days and overpredicts the virus survival time; hence, it does not corroborate with the above-mentioned titer-decay timescale. We attribute the virus survival timescale to the fact that the drying of small ( ∼ μ m-nm) droplets is governed, in principle, by the excess internal pressure within the droplet, which stems from the disjoining pressure due to the cohesive intermolecular interaction between the liquid molecules and the Laplace-pressure. The model predictions for the temporal reduction in the aerosolized droplet number density agree well with the temporal decay of virus titer. The findings, therefore, provide insight on the survival of coronavirus in aerosols, which is particularly important to mitigate the spread of COVID-19 from indoors.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
8
|
Islam MS, Larpruenrudee P, Saha SC, Pourmehran O, Paul AR, Gemci T, Collins R, Paul G, Gu Y. How severe acute respiratory syndrome coronavirus-2 aerosol propagates through the age-specific upper airways. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:081911. [PMID: 34552312 PMCID: PMC8450910 DOI: 10.1063/5.0061627] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/24/2021] [Indexed: 05/22/2023]
Abstract
The recent outbreak of the COVID-19 causes significant respirational health problems, including high mortality rates worldwide. The deadly corona virus-containing aerosol enters the atmospheric air through sneezing, exhalation, or talking, assembling with the particulate matter, and subsequently transferring to the respiratory system. This recent outbreak illustrates that the severe acute respiratory syndrome (SARS) coronavirus-2 is deadlier for aged people than for other age groups. It is evident that the airway diameter reduces with age, and an accurate understanding of SARS aerosol transport through different elderly people's airways could potentially help the overall respiratory health assessment, which is currently lacking in the literature. This first-ever study investigates SARS COVID-2 aerosol transport in age-specific airway systems. A highly asymmetric age-specific airway model and fluent solver (ANSYS 19.2) are used for the investigation. The computational fluid dynamics measurement predicts higher SARS COVID-2 aerosol concentration in the airway wall for older adults than for younger people. The numerical study reports that the smaller SARS coronavirus-2 aerosol deposition rate in the right lung is higher than that in the left lung, and the opposite scenario occurs for the larger SARS coronavirus-2 aerosol rate. The numerical results show a fluctuating trend of pressure at different generations of the age-specific model. The findings of this study would improve the knowledge of SARS coronavirus-2 aerosol transportation to the upper airways which would thus ameliorate the targeted aerosol drug delivery system.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, New South Wales 2007, Australia
- Authors to whom correspondence should be addressed: and
| | - Oveis Pourmehran
- School of Mechanical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Surgery—Otolaryngology Head and Neck Surgery, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Akshoy Ranjan Paul
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | | | - Richard Collins
- Biomechanics International, Cranberry Township, Pennsylvania 16066, USA
| | - Gunther Paul
- James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, Queensland 4810, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
| |
Collapse
|
9
|
Islam MS, Larpruenrudee P, Paul AR, Paul G, Gemci T, Gu Y, Saha SC. SARS CoV-2 aerosol: How far it can travel to the lower airways? PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:061903. [PMID: 34149275 PMCID: PMC8210163 DOI: 10.1063/5.0053351] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/13/2021] [Indexed: 05/04/2023]
Abstract
The recent outbreak of the SARS CoV-2 virus has had a significant effect on human respiratory health around the world. The contagious disease infected a large proportion of the world population, resulting in long-term health issues and an excessive mortality rate. The SARS CoV-2 virus can spread as small aerosols and enters the respiratory systems through the oral (nose or mouth) airway. The SARS CoV-2 particle transport to the mouth-throat and upper airways is analyzed by the available literature. Due to the tiny size, the virus can travel to the terminal airways of the respiratory system and form a severe health hazard. There is a gap in the understanding of the SARS CoV-2 particle transport to the terminal airways. The present study investigated the SARS CoV-2 virus particle transport and deposition to the terminal airways in a complex 17-generation lung model. This first-ever study demonstrates how far SARS CoV-2 particles can travel in the respiratory system. ANSYS Fluent solver was used to simulate the virus particle transport during sleep and light and heavy activity conditions. Numerical results demonstrate that a higher percentage of the virus particles are trapped at the upper airways when sleeping and in a light activity condition. More virus particles have lung contact in the right lung than the left lung. A comprehensive lobe specific deposition and deposition concentration study was performed. The results of this study provide a precise knowledge of the SARs CoV-2 particle transport to the lower branches and could help the lung health risk assessment system.
Collapse
Affiliation(s)
- Mohammad S. Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Puchanee Larpruenrudee
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| | - Akshoy Ranjan Paul
- Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Gunther Paul
- James Cook University, Australian Institute of Tropical Health and Medicine, Townsville, QLD 4810, Australia
| | - Tevfik Gemci
- Synergy CFD Consulting, Las Vegas, Nevada 89146, USA
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Chatterjee S, Murallidharan JS, Agrawal A, Bhardwaj R. Designing antiviral surfaces to suppress the spread of COVID-19. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:052101. [PMID: 34040336 PMCID: PMC8142823 DOI: 10.1063/5.0049404] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 03/23/2021] [Indexed: 05/18/2023]
Abstract
Surface engineering is an emerging technology to design antiviral surfaces, especially in the wake of COVID-19 pandemic. However, there is yet no general understanding of the rules and optimized conditions governing the virucidal properties of engineered surfaces. The understanding is crucial for designing antiviral surfaces. Previous studies reported that the drying time of a residual thin-film after the evaporation of a bulk respiratory droplet on a smooth surface correlates with the coronavirus survival time. Recently, we [Chatterjee et al., Phys. Fluids. 33, 021701 (2021)] showed that the evaporation is much faster on porous than impermeable surfaces, making the porous surfaces lesser susceptible to virus survival. The faster evaporation on porous surfaces was attributed to an enhanced disjoining pressure within the thin-film due the presence of horizontally oriented fibers and void spaces. Motivated by this, we explore herein the disjoining pressure-driven thin-film evaporation mechanism and thereby the virucidal properties of engineered surfaces with varied wettability and texture. A generic model is developed which agrees qualitatively well with the previous virus titer measurements on nanostructured surfaces. Thereafter, we design model surfaces and report the optimized conditions for roughness and wettability to achieve the most prominent virucidal effect. We have deciphered that the optimized thin-film lifetime can be gained by tailoring wettability and roughness, irrespective of the nature of texture geometry. The present study expands the applicability of the process and demonstrates ways to design antiviral surfaces, thereby aiding to mitigate the spread of COVID-19.
Collapse
Affiliation(s)
- Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
11
|
Schreck JH, Lashaki MJ, Hashemi J, Dhanak M, Verma S. Aerosol generation in public restrooms. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:033320. [PMID: 33897239 PMCID: PMC8060976 DOI: 10.1063/5.0040310] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/11/2021] [Indexed: 05/04/2023]
Abstract
Aerosolized droplets play a central role in the transmission of various infectious diseases, including Legionnaire's disease, gastroenteritis-causing norovirus, and most recently COVID-19. Respiratory droplets are known to be the most prominent source of transmission for COVID-19; however, alternative routes may exist given the discovery of small numbers of viable viruses in urine and stool samples. Flushing biomatter can lead to the aerosolization of micro-organisms; thus, there is a likelihood that bioaerosols generated in public restrooms may pose a concern for the transmission of COVID-19, especially since these areas are relatively confined, experience heavy foot traffic, and may suffer from inadequate ventilation. To quantify the extent of aerosolization, we measure the size and number of droplets generated by flushing toilets and urinals in a public restroom. The results indicate that the particular designs tested in the study generate a large number of droplets in the size range 0.3 μ m - 3 μ m , which can reach heights of at least 1.52 m. Covering the toilet reduced aerosol levels but did not eliminate them completely, suggesting that aerosolized droplets escaped through small gaps between the cover and the seat. In addition to consistent increases in aerosol levels immediately after flushing, there was a notable rise in ambient aerosol levels due to the accumulation of droplets from multiple flushes conducted during the tests. This highlights the need for incorporating adequate ventilation in the design and operation of public spaces, which can help prevent aerosol accumulation in high occupancy areas and mitigate the risk of airborne disease transmission.
Collapse
Affiliation(s)
- Jesse H. Schreck
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Masoud Jahandar Lashaki
- Department of Civil, Environmental and Geomatics Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Javad Hashemi
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Manhar Dhanak
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
| | - Siddhartha Verma
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida 33431, USA
- Also at: Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA. Author to whom correspondence should be addressed:. URL:http://www.computation.fau.edu
| |
Collapse
|
12
|
Zhou M, Zou J. A dynamical overview of droplets in the transmission of respiratory infectious diseases. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:031301. [PMID: 33897237 PMCID: PMC8061903 DOI: 10.1063/5.0039487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/29/2020] [Indexed: 05/04/2023]
Abstract
The outbreak of the coronavirus disease has drawn public attention to the transmission of infectious pathogens, and as major carriers of those pathogens, respiratory droplets play an important role in the process of transmission. This Review describes respiratory droplets from a physical and mechanical perspective, especially their correlation with the transmission of infectious pathogens. It covers the important aspects of (i) the generation and expulsion of droplets during respiratory activities, (ii) the transport and evolution of respiratory droplets in the ambient environment, and (iii) the inhalation and deposition of droplets in the human respiratory tract. State-of-the-art experimental, computational, and theoretical models and results are presented, and the corresponding knowledge gaps are identified. This Review stresses the multidisciplinary nature of its subject and appeals for collaboration among different fields to fight the present pandemic.
Collapse
Affiliation(s)
- Maoying Zhou
- School of Mechanical Engineering, Hangzhou Dianzi
University, Hangzhou, Zhejiang 310027, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems,
Zhejiang University, Hangzhou, Zhejiang 310027,
China
| |
Collapse
|
13
|
April Si X, Talaat M, Xi J. SARS COV-2 virus-laden droplets coughed from deep lungs: Numerical quantification in a single-path whole respiratory tract geometry. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:023306. [PMID: 33746489 PMCID: PMC7976054 DOI: 10.1063/5.0040914] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/12/2021] [Indexed: 05/07/2023]
Abstract
When an infected person coughs, many virus-laden droplets will be exhaled out of the mouth. Droplets from deep lungs are especially infectious because the alveoli are the major sites of coronavirus replication. However, their exhalation fraction, size distribution, and exiting speeds are unclear. This study investigated the behavior and fate of respiratory droplets (0.1-4 μm) during coughs in a single-path respiratory tract model extending from terminal alveoli to mouth opening. An experimentally measured cough waveform was used to control the alveolar wall motions and the flow boundary conditions at lung branches from G2 to G18. The mouth opening was modeled after the image of a coughing subject captured using a high-speed camera. A well-tested k-ω turbulence model and Lagrangian particle tracking algorithm were applied to simulate cough flow evolutions and droplet dynamics under four cough depths, i.e., tidal volume ratio (TVR) = 0.13, 0.20. 0.32, and 0.42. The results show that 2-μm droplets have the highest exhalation fraction, regardless of cough depths. A nonlinear relationship exists between the droplet exhalation fraction and cough depth due to a complex deposition mechanism confounded by multiscale airway passages, multiregime flows, and drastic transient flow effects. The highest exhalation fraction is 1.6% at the normal cough depth (TVR = 0.32), with a mean exiting speed of 20 m/s. The finding that most exhaled droplets from deep lungs are 2 μm highlights the need for more effective facemasks in blocking 2-μm droplets and smaller both in infectious source control and self-protection from airborne virus-laden droplets.
Collapse
Affiliation(s)
- Xiuhua April Si
- Department of Aerospace, Industrial, and Mechanical Engineering, California Baptist University, 8432 Magnolia Ave., Riverside, California 92504, USA
| | - Mohamed Talaat
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| | - Jinxiang Xi
- Department of Biomedical Engineering, The University of Massachusetts at Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA
| |
Collapse
|