• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4657932)   Today's Articles (3963)   Subscriber (51245)
For: Nandi A, Qu C, Houston PL, Conte R, Bowman JM. Δ-machine learning for potential energy surfaces: A PIP approach to bring a DFT-based PES to CCSD(T) level of theory. J Chem Phys 2021;154:051102. [DOI: 10.1063/5.0038301] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]  Open
Number Cited by Other Article(s)
1
Li J, Vindel-Zandbergen P, Li J, Felker PM, Bačić Z. HF Trimer: A New Full-Dimensional Potential Energy Surface and Rigorous 12D Quantum Calculations of Vibrational States. J Phys Chem A 2024;128:9707-9720. [PMID: 39484697 DOI: 10.1021/acs.jpca.4c03771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
2
Jäger S, Khatri J, Meyer P, Henkel S, Schwaab G, Nandi A, Pandey P, Barlow KR, Perkins MA, Tschumper GS, Bowman JM, van der Avoird A, Havenith M. On the nature of hydrogen bonding in the H2S dimer. Nat Commun 2024;15:9540. [PMID: 39500885 PMCID: PMC11538508 DOI: 10.1038/s41467-024-53444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]  Open
3
Nandi A, Pandey P, Houston PL, Qu C, Yu Q, Conte R, Tkatchenko A, Bowman JM. Δ-Machine Learning to Elevate DFT-Based Potentials and a Force Field to the CCSD(T) Level Illustrated for Ethanol. J Chem Theory Comput 2024;20:8807-8819. [PMID: 39361051 PMCID: PMC11500277 DOI: 10.1021/acs.jctc.4c00977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024]
4
Gutierrez-Cardenas J, Gibbas BD, Whitaker K, Kaledin M, Kaledin AL. A Low-Order Permutationally Invariant Polynomial Approach to Learning Potential Energy Surfaces Using the Bond-Order Charge-Density Matrix: Application to Cn Clusters for n = 3-10, 20. J Phys Chem A 2024;128:7703-7713. [PMID: 39205486 PMCID: PMC11407436 DOI: 10.1021/acs.jpca.4c04281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
5
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024;251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
6
Aldossary A, Campos-Gonzalez-Angulo JA, Pablo-García S, Leong SX, Rajaonson EM, Thiede L, Tom G, Wang A, Avagliano D, Aspuru-Guzik A. In Silico Chemical Experiments in the Age of AI: From Quantum Chemistry to Machine Learning and Back. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024;36:e2402369. [PMID: 38794859 DOI: 10.1002/adma.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/28/2024] [Indexed: 05/26/2024]
7
Murakami T, Takahashi S, Kikuma Y, Takayanagi T. Theoretical Study of the Thermal Rate Coefficients of the H3+ + C2H4 Reaction: Dynamics Study on a Full-Dimensional Potential Energy Surface. Molecules 2024;29:2789. [PMID: 38930853 PMCID: PMC11206701 DOI: 10.3390/molecules29122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]  Open
8
Selloni A. Aqueous Titania Interfaces. Annu Rev Phys Chem 2024;75:47-65. [PMID: 38271659 DOI: 10.1146/annurev-physchem-090722-015957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
9
Houston PL, Qu C, Yu Q, Pandey P, Conte R, Nandi A, Bowman JM, Kukolich SG. Formic Acid-Ammonia Heterodimer: A New Δ-Machine Learning CCSD(T)-Level Potential Energy Surface Allows Investigation of the Double Proton Transfer. J Chem Theory Comput 2024;20:1821-1828. [PMID: 38382541 DOI: 10.1021/acs.jctc.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
10
Iyengar SS, Ricard TC, Zhu X. Reformulation of All ONIOM-Type Molecular Fragmentation Approaches and Many-Body Theories Using Graph-Theory-Based Projection Operators: Applications to Dynamics, Molecular Potential Surfaces, Machine Learning, and Quantum Computing. J Phys Chem A 2024;128:466-478. [PMID: 38180503 DOI: 10.1021/acs.jpca.3c05630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
11
Lin HH, Wang CI, Yang CH, Secario MK, Hsu CP. Two-Step Machine Learning Approach for Charge-Transfer Coupling with Structurally Diverse Data. J Phys Chem A 2024;128:271-280. [PMID: 38157315 DOI: 10.1021/acs.jpca.3c04524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
12
Kumar S, Jing X, Pask JE, Medford AJ, Suryanarayana P. Kohn-Sham accuracy from orbital-free density functional theory via Δ-machine learning. J Chem Phys 2023;159:244106. [PMID: 38147461 DOI: 10.1063/5.0180541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/30/2023] [Indexed: 12/28/2023]  Open
13
Ricard TC, Zhu X, Iyengar SS. Capturing Weak Interactions in Surface Adsorbate Systems at Coupled Cluster Accuracy: A Graph-Theoretic Molecular Fragmentation Approach Improved through Machine Learning. J Chem Theory Comput 2023. [PMID: 38019639 DOI: 10.1021/acs.jctc.3c00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
14
Vinod V, Maity S, Zaspel P, Kleinekathöfer U. Multifidelity Machine Learning for Molecular Excitation Energies. J Chem Theory Comput 2023;19:7658-7670. [PMID: 37862054 DOI: 10.1021/acs.jctc.3c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
15
Broderick DR, Herbert JM. Scalable generalized screening for high-order terms in the many-body expansion: Algorithm, open-source implementation, and demonstration. J Chem Phys 2023;159:174801. [PMID: 37921253 DOI: 10.1063/5.0174293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]  Open
16
Liu Y, Guo H. A Gaussian Process Based Δ-Machine Learning Approach to Reactive Potential Energy Surfaces. J Phys Chem A 2023;127:8765-8772. [PMID: 37815868 DOI: 10.1021/acs.jpca.3c05318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
17
Yu Q, Qu C, Houston PL, Nandi A, Pandey P, Conte R, Bowman JM. A Status Report on "Gold Standard" Machine-Learned Potentials for Water. J Phys Chem Lett 2023;14:8077-8087. [PMID: 37656898 PMCID: PMC10510435 DOI: 10.1021/acs.jpclett.3c01791] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
18
Hashem Y, Foust K, Kaledin M, Kaledin AL. Fitting Potential Energy Surfaces by Learning the Charge Density Matrix with Permutationally Invariant Polynomials. J Chem Theory Comput 2023;19:5690-5700. [PMID: 37561135 PMCID: PMC10501011 DOI: 10.1021/acs.jctc.3c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 08/11/2023]
19
Riera M, Knight C, Bull-Vulpe EF, Zhu X, Agnew H, Smith DGA, Simmonett AC, Paesani F. MBX: A many-body energy and force calculator for data-driven many-body simulations. J Chem Phys 2023;159:054802. [PMID: 37526156 PMCID: PMC10550339 DOI: 10.1063/5.0156036] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/11/2023] [Indexed: 08/02/2023]  Open
20
Liu B, Liu L, Qin X, Liu Y, Yang R, Mo X, Qin C, Liang C, Yao S. Effect of Substituents on Molecular Reactivity during Lignin Oxidation by Chlorine Dioxide: A Density Functional Theory Study. Int J Mol Sci 2023;24:11809. [PMID: 37511570 PMCID: PMC10380563 DOI: 10.3390/ijms241411809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]  Open
21
Dandu NK, Ward L, Assary RS, Redfern PC, Curtiss LA. Accurate Prediction of Adiabatic Ionization Potentials of Organic Molecules using Quantum Chemistry Assisted Machine Learning. J Phys Chem A 2023. [PMID: 37406209 DOI: 10.1021/acs.jpca.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
22
Staub R, Gantzer P, Harabuchi Y, Maeda S, Varnek A. Challenges for Kinetics Predictions via Neural Network Potentials: A Wilkinson's Catalyst Case. Molecules 2023;28:molecules28114477. [PMID: 37298952 DOI: 10.3390/molecules28114477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]  Open
23
Murakami T, Ibuki S, Hashimoto Y, Kikuma Y, Takayanagi T. Dynamics study of the post-transition-state-bifurcation process of the (HCOOH)H+ → CO + H3O+/HCO+ + H2O dissociation: application of machine-learning techniques. Phys Chem Chem Phys 2023;25:14016-14027. [PMID: 37161528 DOI: 10.1039/d3cp00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
24
Heindel JP, Herman KM, Xantheas SS. Many-Body Effects in Aqueous Systems: Synergies Between Interaction Analysis Techniques and Force Field Development. Annu Rev Phys Chem 2023;74:337-360. [PMID: 37093659 DOI: 10.1146/annurev-physchem-062422-023532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
25
Schneider M, Born D, Kästner J, Rauhut G. Positioning of grid points for spanning potential energy surfaces-How much effort is really needed? J Chem Phys 2023;158:144118. [PMID: 37061506 DOI: 10.1063/5.0146020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]  Open
26
Low K, Coote ML, Izgorodina EI. Accurate Prediction of Three-Body Intermolecular Interactions via Electron Deformation Density-Based Machine Learning. J Chem Theory Comput 2023;19:1466-1475. [PMID: 36787280 DOI: 10.1021/acs.jctc.2c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
27
Huang B, von Lilienfeld OA, Krogel JT, Benali A. Toward DMC Accuracy Across Chemical Space with Scalable Δ-QML. J Chem Theory Comput 2023;19:1711-1721. [PMID: 36857531 DOI: 10.1021/acs.jctc.2c01058] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
28
Li H, Jiao Y, Davey K, Qiao SZ. Data-Driven Machine Learning for Understanding Surface Structures of Heterogeneous Catalysts. Angew Chem Int Ed Engl 2023;62:e202216383. [PMID: 36509704 DOI: 10.1002/anie.202216383] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
29
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023;2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
30
Houston PL, Qu C, Yu Q, Conte R, Nandi A, Li JK, Bowman JM. PESPIP: Software to fit complex molecular and many-body potential energy surfaces with permutationally invariant polynomials. J Chem Phys 2023;158:044109. [PMID: 36725524 DOI: 10.1063/5.0134442] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
31
Bowman JM, Qu C, Conte R, Nandi A, Houston PL, Yu Q. Δ-Machine Learned Potential Energy Surfaces and Force Fields. J Chem Theory Comput 2023;19:1-17. [PMID: 36527383 DOI: 10.1021/acs.jctc.2c01034] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
32
Murakami T, Iida R, Hashimoto Y, Takahashi Y, Takahashi S, Takayanagi T. Ring-Polymer Molecular Dynamics and Kinetics for the H + C2H2 → H2 + C2H Reaction Using the Full-Dimensional Potential Energy Surface. J Phys Chem A 2022;126:9244-9258. [DOI: 10.1021/acs.jpca.2c05851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
33
Naturally-meaningful and efficient descriptors: machine learning of material properties based on robust one-shot ab initio descriptors. J Cheminform 2022;14:78. [PMID: 36348412 PMCID: PMC9644534 DOI: 10.1186/s13321-022-00658-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/01/2022] [Indexed: 11/09/2022]  Open
34
Käser S, Richardson JO, Meuwly M. Transfer Learning for Affordable and High-Quality Tunneling Splittings from Instanton Calculations. J Chem Theory Comput 2022;18:6840-6850. [DOI: 10.1021/acs.jctc.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Conte R, Nandi A, Qu C, Yu Q, Houston PL, Bowman JM. Semiclassical and VSCF/VCI Calculations of the Vibrational Energies of trans- and gauche-Ethanol Using a CCSD(T) Potential Energy Surface. J Phys Chem A 2022;126:7709-7718. [PMID: 36240438 DOI: 10.1021/acs.jpca.2c06322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
36
Lunghi A, Sanvito S. Computational design of magnetic molecules and their environment using quantum chemistry, machine learning and multiscale simulations. Nat Rev Chem 2022;6:761-781. [PMID: 37118096 DOI: 10.1038/s41570-022-00424-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
37
Kuntz D, Wilson AK. Machine learning, artificial intelligence, and chemistry: how smart algorithms are reshaping simulation and the laboratory. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
38
Zhu X, Iyengar SS. Graph Theoretic Molecular Fragmentation for Multidimensional Potential Energy Surfaces Yield an Adaptive and General Transfer Machine Learning Protocol. J Chem Theory Comput 2022;18:5125-5144. [PMID: 35994592 DOI: 10.1021/acs.jctc.1c01241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
39
Nandi A, Conte R, Qu C, Houston PL, Yu Q, Bowman JM. Quantum Calculations on a New CCSD(T) Machine-Learned Potential Energy Surface Reveal the Leaky Nature of Gas-Phase Trans and Gauche Ethanol Conformers. J Chem Theory Comput 2022;18:5527-5538. [PMID: 35951990 PMCID: PMC9476654 DOI: 10.1021/acs.jctc.2c00760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
40
Ruth M, Gerbig D, Schreiner PR. Machine Learning of Coupled Cluster (T)-Energy Corrections via Delta (Δ)-Learning. J Chem Theory Comput 2022;18:4846-4855. [PMID: 35816588 DOI: 10.1021/acs.jctc.2c00501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
41
Nguyen TH, Nguyen LH, Truong TN. Application of Machine Learning in Developing Quantitative Structure-Property Relationship for Electronic Properties of Polyaromatic Compounds. ACS OMEGA 2022;7:22879-22888. [PMID: 35811887 PMCID: PMC9261278 DOI: 10.1021/acsomega.2c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
42
Lu F, Cheng L, DiRisio RJ, Finney JM, Boyer MA, Moonkaen P, Sun J, Lee SJR, Deustua JE, Miller TF, McCoy AB. Fast Near Ab Initio Potential Energy Surfaces Using Machine Learning. J Phys Chem A 2022;126:4013-4024. [PMID: 35715227 DOI: 10.1021/acs.jpca.2c02243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
43
Liu Y, Li J. Permutation-Invariant-Polynomial Neural-Network-Based Δ-Machine Learning Approach: A Case for the HO2 Self-Reaction and Its Dynamics Study. J Phys Chem Lett 2022;13:4729-4738. [PMID: 35609295 DOI: 10.1021/acs.jpclett.2c01064] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
44
Czernek J, Brus J, Czerneková V. A computational inspection of the dissociation energy of mid-sized organic dimers. J Chem Phys 2022;156:204303. [DOI: 10.1063/5.0093557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
45
Atz K, Isert C, Böcker MNA, Jiménez-Luna J, Schneider G. Δ-Quantum machine-learning for medicinal chemistry. Phys Chem Chem Phys 2022;24:10775-10783. [PMID: 35470831 PMCID: PMC9093086 DOI: 10.1039/d2cp00834c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/05/2022] [Indexed: 11/21/2022]
46
Verma S, Rivera M, Scanlon DO, Walsh A. Machine learned calibrations to high-throughput molecular excited state calculations. J Chem Phys 2022;156:134116. [PMID: 35395896 DOI: 10.1063/5.0084535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]  Open
47
Pernot P. The long road to calibrated prediction uncertainty in computational chemistry. J Chem Phys 2022;156:114109. [DOI: 10.1063/5.0084302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]  Open
48
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─Quo Vadis?. J Phys Chem B 2022;126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
49
Khire SS, Gurav ND, Nandi A, Gadre SR. Enabling Rapid and Accurate Construction of CCSD(T)-Level Potential Energy Surface of Large Molecules Using Molecular Tailoring Approach. J Phys Chem A 2022;126:1458-1464. [PMID: 35170973 DOI: 10.1021/acs.jpca.2c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
50
Gupta AK, Raghavachari K. Three-Dimensional Convolutional Neural Networks Utilizing Molecular Topological Features for Accurate Atomization Energy Predictions. J Chem Theory Comput 2022;18:2132-2143. [PMID: 35226496 DOI: 10.1021/acs.jctc.1c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA