1
|
Shepard C, Zhou R, Bost J, Carney TE, Yao Y, Kanai Y. Efficient exact exchange using Wannier functions and other related developments in planewave-pseudopotential implementation of RT-TDDFT. J Chem Phys 2024; 161:024111. [PMID: 38984957 DOI: 10.1063/5.0211238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024] Open
Abstract
The plane-wave pseudopotential (PW-PP) formalism is widely used for the first-principles electronic structure calculation of extended periodic systems. The PW-PP approach has also been adapted for real-time time-dependent density functional theory (RT-TDDFT) to investigate time-dependent electronic dynamical phenomena. In this work, we detail recent advances in the PW-PP formalism for RT-TDDFT, particularly how maximally localized Wannier functions (MLWFs) are used to accelerate simulations using the exact exchange. We also discuss several related developments, including an anti-Hermitian correction for the time-dependent MLWFs (TD-MLWFs) when a time-dependent electric field is applied, the refinement procedure for TD-MLWFs, comparison of the velocity and length gauge approaches for applying an electric field, and elimination of long-range electrostatic interaction, as well as usage of a complex absorbing potential for modeling isolated systems when using the PW-PP formalism.
Collapse
Affiliation(s)
- Christopher Shepard
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ruiyi Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - John Bost
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Thomas E Carney
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Yi Yao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | - Yosuke Kanai
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
2
|
Mortensen JJ, Larsen AH, Kuisma M, Ivanov AV, Taghizadeh A, Peterson A, Haldar A, Dohn AO, Schäfer C, Jónsson EÖ, Hermes ED, Nilsson FA, Kastlunger G, Levi G, Jónsson H, Häkkinen H, Fojt J, Kangsabanik J, Sødequist J, Lehtomäki J, Heske J, Enkovaara J, Winther KT, Dulak M, Melander MM, Ovesen M, Louhivuori M, Walter M, Gjerding M, Lopez-Acevedo O, Erhart P, Warmbier R, Würdemann R, Kaappa S, Latini S, Boland TM, Bligaard T, Skovhus T, Susi T, Maxson T, Rossi T, Chen X, Schmerwitz YLA, Schiøtz J, Olsen T, Jacobsen KW, Thygesen KS. GPAW: An open Python package for electronic structure calculations. J Chem Phys 2024; 160:092503. [PMID: 38450733 DOI: 10.1063/5.0182685] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 03/08/2024] Open
Abstract
We review the GPAW open-source Python package for electronic structure calculations. GPAW is based on the projector-augmented wave method and can solve the self-consistent density functional theory (DFT) equations using three different wave-function representations, namely real-space grids, plane waves, and numerical atomic orbitals. The three representations are complementary and mutually independent and can be connected by transformations via the real-space grid. This multi-basis feature renders GPAW highly versatile and unique among similar codes. By virtue of its modular structure, the GPAW code constitutes an ideal platform for the implementation of new features and methodologies. Moreover, it is well integrated with the Atomic Simulation Environment (ASE), providing a flexible and dynamic user interface. In addition to ground-state DFT calculations, GPAW supports many-body GW band structures, optical excitations from the Bethe-Salpeter Equation, variational calculations of excited states in molecules and solids via direct optimization, and real-time propagation of the Kohn-Sham equations within time-dependent DFT. A range of more advanced methods to describe magnetic excitations and non-collinear magnetism in solids are also now available. In addition, GPAW can calculate non-linear optical tensors of solids, charged crystal point defects, and much more. Recently, support for graphics processing unit (GPU) acceleration has been achieved with minor modifications to the GPAW code thanks to the CuPy library. We end the review with an outlook, describing some future plans for GPAW.
Collapse
Affiliation(s)
- Jens Jørgen Mortensen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Ask Hjorth Larsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mikael Kuisma
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Aleksei V Ivanov
- Riverlane Ltd., St Andrews House, 59 St Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alireza Taghizadeh
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Andrew Peterson
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Anubhab Haldar
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
| | - Asmus Ougaard Dohn
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark and Science Institute and Faculty of Physical Sciences, VR-III, University of Iceland, Reykjavík 107, Iceland
| | - Christian Schäfer
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Elvar Örn Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Eric D Hermes
- Quantum-Si, 29 Business Park Drive, Branford, Connecticut 06405, USA
| | | | - Georg Kastlunger
- CatTheory, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Gianluca Levi
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannes Jónsson
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, 107 Reykjavík, Iceland
| | - Hannu Häkkinen
- Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jakub Fojt
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jiban Kangsabanik
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Joachim Sødequist
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jouko Lehtomäki
- Department of Applied Physics, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Julian Heske
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Jussi Enkovaara
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Kirsten Trøstrup Winther
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Marcin Dulak
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Marko M Melander
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Martin Ovesen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Martti Louhivuori
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Michael Walter
- FIT Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Morten Gjerding
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Olga Lopez-Acevedo
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia UdeA, 050010 Medellin, Colombia
| | - Paul Erhart
- Department of Physics, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Robert Warmbier
- School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, 2001 Johannesburg, South Africa
| | - Rolf Würdemann
- Freiburger Materialforschungszentrum, Universität Freiburg, Stefan-Meier-Straße 21, D-79104 Freiburg, Germany
| | - Sami Kaappa
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Simone Latini
- Nanomade, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tara Maria Boland
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Bligaard
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Thorbjørn Skovhus
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Toma Susi
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Tristan Maxson
- Department of Chemical and Biological Engineering, The University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - Tuomas Rossi
- CSC-IT Center for Science Ltd., P.O. Box 405, FI-02101 Espoo, Finland
| | - Xi Chen
- School of Physical Science and Technology, Lanzhou University, Lanzhou, Gansu 730000, China
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Thomas Olsen
- CAMD, Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | | | | |
Collapse
|
3
|
Domenis N, Grobas Illobre P, Marsili M, Stener M, Toffoli D, Coccia E. Time Evolution of Plasmonic Features in Pentagonal Ag Clusters. Molecules 2023; 28:5671. [PMID: 37570641 PMCID: PMC10420145 DOI: 10.3390/molecules28155671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
In the present work, we apply recently developed real-time descriptors to study the time evolution of plasmonic features of pentagonal Ag clusters. The method is based on the propagation of the time-dependent Schrödinger equation within a singly excited TDDFT ansatz. We use transition contribution maps (TCMs) and induced density to characterize the optical longitudinal and transverse response of such clusters, when interacting with pulses resonant with the low-energy (around 2-3 eV, A1) size-dependent or the high-energy (around 4 eV, E1) size-independent peak. TCMs plots on the analyzed clusters, Ag25+ and Ag43+ show off-diagonal peaks consistent with a plasmonic response when a longitudinal pulse resonant at A1 frequency is applied, and dominant diagonal spots, typical of a molecular transition, when a transverse E1 pulse is employed. Induced densities confirm this behavior, with a dipole-like charge distribution in the first case. The optical features show a time delay with respect to the evolution of the external pulse, consistent with those found in the literature for real-time TDDFT calculations on metal clusters.
Collapse
Affiliation(s)
- Nicola Domenis
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | | | - Margherita Marsili
- Dipartimento di Fisica e Astronomia “Augusto Righi”, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Mauro Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Daniele Toffoli
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| | - Emanuele Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università degli Studi di Trieste, Via L Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
4
|
Monti M, Stener M, Coccia E. Electronic circular dichroism from real-time propagation in state space. J Chem Phys 2023; 158:084102. [PMID: 36859092 DOI: 10.1063/5.0136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this paper, we propose to compute the electronic circular dichroism (ECD) spectra of chiral molecules using a real-time propagation of the time-dependent Schrödinger equation (TDSE) in the space of electronic field-free eigenstates, by coupling TDSE with a given treatment of the electronic structure of the target. The time-dependent induced magnetic moment is used to compute the ECD spectrum from an explicit electric perturbation. The full matrix representing the transition magnetic moment in the space of electronic states is generated from that among pairs of molecular orbitals. In the present work, we show the ECD spectra of methyloxirane, of several conformers of L-alanine, and of the Λ-Co(acac)3 complex, computed from a singly excited ansatz of time-dependent density functional theory eigenstates. The time-domain ECD spectra properly reproduce the frequency-domain ones obtained in the linear-response regime and quantitatively agree with the available experimental data. Moreover, the time-domain approach to ECD allows us to naturally go beyond the ground-state rotationally averaged ECD spectrum, which is the standard outcome of the linear-response theory, e.g., by computing the ECD spectra from electronic excited states.
Collapse
Affiliation(s)
- M Monti
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - M Stener
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - E Coccia
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|