1
|
Lanzi C, Aieta C, Ceotto M, Conte R. A time averaged semiclassical approach to IR spectroscopy. J Chem Phys 2024; 160:214107. [PMID: 38828809 DOI: 10.1063/5.0214037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
We propose a new semiclassical approach to the calculation of molecular IR spectra. The method employs the time averaging technique of Kaledin and Miller upon symmetrization of the quantum dipole-dipole autocorrelation function. Spectra at high and low temperatures are investigated. In the first case, we are able to point out the possible presence of hot bands in the molecular absorption line shape. In the second case, we are able to reproduce accurate IR spectra as demonstrated by a calculation of the IR spectrum of the water molecule, which is within 4% of the exact intensity. Our time averaged IR spectra can be directly compared to time averaged semiclassical power spectra as shown in an application to the CO2 molecule, which points out the differences between IR and power spectra and demonstrates that our new approach can identify active IR transitions correctly. Overall, the method features excellent accuracy in calculating absorption intensities and provides estimates for the frequencies of vibrations in agreement with the corresponding power spectra. In perspective, this work opens up the possibility to interface the new method with the semiclassical techniques developed for power spectra, such as the divide-and-conquer one, to get accurate IR spectra of complex and high-dimensional molecular systems.
Collapse
Affiliation(s)
- Cecilia Lanzi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
2
|
Althorpe SC. Path Integral Simulations of Condensed-Phase Vibrational Spectroscopy. Annu Rev Phys Chem 2024; 75:397-420. [PMID: 38941531 DOI: 10.1146/annurev-physchem-090722-124705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Recent theoretical and algorithmic developments have improved the accuracy with which path integral dynamics methods can include nuclear quantum effects in simulations of condensed-phase vibrational spectra. Such methods are now understood to be approximations to the delocalized classical Matsubara dynamics of smooth Feynman paths, which dominate the dynamics of systems such as liquid water at room temperature. Focusing mainly on simulations of liquid water and hexagonal ice, we explain how the recently developed quasicentroid molecular dynamics (QCMD), fast-QCMD, and temperature-elevated path integral coarse-graining simulations (Te PIGS) methods generate classical dynamics on potentials of mean force obtained by averaging over quantum thermal fluctuations. These new methods give very close agreement with one another, and the Te PIGS method has recently yielded excellent agreement with experimentally measured vibrational spectra for liquid water, ice, and the liquid-air interface. We also discuss the limitations of such methods.
Collapse
Affiliation(s)
- Stuart C Althorpe
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
3
|
Moscato D, Mandelli G, Bondanza M, Lipparini F, Conte R, Mennucci B, Ceotto M. Unraveling Water Solvation Effects with Quantum Mechanics/Molecular Mechanics Semiclassical Vibrational Spectroscopy: The Case of Thymidine. J Am Chem Soc 2024; 146:8179-8188. [PMID: 38470354 DOI: 10.1021/jacs.3c12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
We introduce a quantum mechanics/molecular mechanics semiclassical method for studying the solvation process of molecules in water at the nuclear quantum mechanical level with atomistic detail. We employ it in vibrational spectroscopy calculations because this is a tool that is very sensitive to the molecular environment. Specifically, we look at the vibrational spectroscopy of thymidine in liquid water. We find that the C═O frequency red shift and the C═C frequency blue shift, experienced by thymidyne upon solvation, are mainly due to reciprocal polarization effects, that the molecule and the water solvent exert on each other, and nuclear zero-point energy effects. In general, this work provides an accurate and practical tool to study quantum vibrational spectroscopy in solution and condensed phase, incorporating high-level and computationally affordable descriptions of both electronic and nuclear problems.
Collapse
Affiliation(s)
- Davide Moscato
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Giacomo Mandelli
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| |
Collapse
|
4
|
Botti G, Ceotto M, Conte R. Investigating the Spectroscopy of the Gas Phase Guanine-Cytosine Pair: Keto versus Enol Configurations. J Phys Chem Lett 2023; 14:8940-8947. [PMID: 37768143 PMCID: PMC10577776 DOI: 10.1021/acs.jpclett.3c02073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
We report on a vibrational study of the guanine-cytosine dimer tautomers using state-of-the-art quasiclassical trajectory and semiclassical vibrational spectroscopy. The latter includes possible quantum mechanical effects. Through an accurate comparison to the experimental spectra, we are able to shine a light on the hydrogen bond network of one of the main subunits of DNA and put the experimental assignment on a solid footing. Our calculations corroborate the experimental conclusion that the global minimum Watson-and-Crick structure is not detected in the spectra, and there is no evidence of tunnel-effect-based double proton hopping. Our accurate assignment of the spectral features may also serve as a basis for the development of precise force fields to study the guanine-cytosine dimer.
Collapse
Affiliation(s)
- Giacomo Botti
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
5
|
Zaccone A. General theory of the viscosity of liquids and solids from nonaffine particle motions. Phys Rev E 2023; 108:044101. [PMID: 37978701 DOI: 10.1103/physreve.108.044101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/08/2023] [Indexed: 11/19/2023]
Abstract
A microscopic formula for the viscosity of liquids and solids is derived rigorously from a first-principles (microscopically reversible) Hamiltonian for particle-bath atomistic motion. The derivation is done within the framework of nonaffine linear response theory. This formula may lead to a valid alternative to the Green-Kubo approach to describe the viscosity of condensed matter systems from molecular simulations without having to fit long-time tails. Furthermore, it provides a direct link between the viscosity, the vibrational density of states of the system, and the zero-frequency limit of the memory kernel. Finally, it provides a microscopic solution to Maxwell's interpolation problem of viscoelasticity by naturally recovering Newton's law of viscous flow and Hooke's law of elastic solids in two opposite limits.
Collapse
Affiliation(s)
- Alessio Zaccone
- Department of Physics "A. Pontremoli," University of Milan, via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
6
|
Gandolfi M, Ceotto M. Molecular Dynamics of Artificially Pair-Decoupled Systems: An Accurate Tool for Investigating the Importance of Intramolecular Couplings. J Chem Theory Comput 2023; 19:6093-6108. [PMID: 37698951 PMCID: PMC10536992 DOI: 10.1021/acs.jctc.3c00553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 09/14/2023]
Abstract
We propose a numerical technique to accurately simulate the vibrations of organic molecules in the gas phase, when pairs of atoms (or, in general, groups of degrees of freedom) are artificially decoupled, so that their motion is instantaneously decorrelated. The numerical technique we have developed is a symplectic integration algorithm that never requires computation of the force but requires estimates of the Hessian matrix. The theory we present to support our technique postulates a pair-decoupling Hamiltonian function, which parametrically depends on a decoupling coefficient α ∈ [0, 1]. The closer α is to 0, the more decoupled the selected atoms. We test the correctness of our numerical method on small molecular systems, and we apply it to study the vibrational spectroscopic features of salicylic acid at the Density Functional Theory ab initio level on a fitted potential. Our pair-decoupled simulations of salicylic acid show that decoupling hydrogen-bonded atoms do not significantly influence the frequencies of stretching modes, but enhance enormously the out-of-plane wagging and twisting motions of the hydroxyl and carboxyl groups to the point that the carboxyl and hydroxyl groups may overcome high potential energy barriers and change the salicylic acid conformation after a short simulation time. In addition, we found that the acidity of salicylic acid is more influenced by the dynamical couplings of the proton of the carboxylic group with the carbon ring than with the hydroxyl group.
Collapse
Affiliation(s)
- Michele Gandolfi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
7
|
Barbiero D, Bertaina G, Ceotto M, Conte R. Anharmonic Assignment of the Water Octamer Spectrum in the OH Stretch Region. J Phys Chem A 2023; 127:6213-6221. [PMID: 37477983 PMCID: PMC10405218 DOI: 10.1021/acs.jpca.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/03/2023] [Indexed: 07/23/2023]
Abstract
We interface the quasi-classical trajectory approach with an ab initio potential energy surface for water to assign the vibrational spectroscopical features of the OH stretch region of the water octamer cluster, which is considered to be a precursor of ice. An attempt by Li et al. to assign their recent reference experiment involved lower-level calculations based on an ad hoc scaled harmonic approach. Differently from the conclusions of this previous assignment, which invoked the contribution of 5 conformers and a solvated form of the water heptamer in the spectrum, we find out that the spectroscopic features can be related to the 4 conformers of the octamer lying lower in energy.
Collapse
Affiliation(s)
- Davide Barbiero
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Gianluca Bertaina
- Istituto
Nazionale di Ricerca Metrologica, Strada delle Cacce 91, I-10135 Torino, Italy
| | - Michele Ceotto
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento
di Chimica, Università degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
8
|
Pelargonio S, Zaccone A. Generalized Langevin equation with shear flow and its fluctuation-dissipation theorems derived from a Caldeira-Leggett Hamiltonian. Phys Rev E 2023; 107:064102. [PMID: 37464636 DOI: 10.1103/physreve.107.064102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/26/2023] [Indexed: 07/20/2023]
Abstract
We provide a first-principles derivation of the Langevin equation with shear flow and its corresponding fluctuation-dissipation theorems. Shear flow of simple fluids has been widely investigated by numerical simulations. Most studies postulate a Markovian Langevin equation with a simple shear drag term in the manner of Stokes. However, this choice has never been justified from first principles. We start from a particle-bath system described by a classical Caldeira-Leggett Hamiltonian modified by adding a term proportional to the strain-rate tensor according to Hoover's DOLLS method, and we derive a generalized Langevin equation for the sheared system. We then compute, analytically, the noise time-correlation functions in different regimes. Based on the intensity of the shear rate, we can distinguish between close-to-equilibrium and far-from-equilibrium states. According to the results presented here, the standard, simple, and Markovian form of the Langevin equation with shear flow postulated in the literature is valid only in the limit of extremely weak shear rates compared to the effective vibrational temperature of the bath. For even marginally higher shear rates, the (generalized) Langevin equation is strongly non-Markovian, and nontrivial fluctuation-dissipation theorems are derived.
Collapse
Affiliation(s)
- Sara Pelargonio
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
- Complex Systems and Statistical Mechanics, Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg
| | - Alessio Zaccone
- Department of Physics "A. Pontremoli", University of Milan, via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
9
|
Begušić T, Blake GA. Two-dimensional infrared-Raman spectroscopy as a probe of water's tetrahedrality. Nat Commun 2023; 14:1950. [PMID: 37029146 PMCID: PMC10082090 DOI: 10.1038/s41467-023-37667-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Two-dimensional spectroscopic techniques combining terahertz (THz), infrared (IR), and visible pulses offer a wealth of information about coupling among vibrational modes in molecular liquids, thus providing a promising probe of their local structure. However, the capabilities of these spectroscopies are still largely unexplored due to experimental limitations and inherently weak nonlinear signals. Here, through a combination of equilibrium-nonequilibrium molecular dynamics (MD) and a tailored spectrum decomposition scheme, we identify a relationship between the tetrahedral order of liquid water and its two-dimensional IR-IR-Raman (IIR) spectrum. The structure-spectrum relationship can explain the temperature dependence of the spectral features corresponding to the anharmonic coupling between low-frequency intermolecular and high-frequency intramolecular vibrational modes of water. In light of these results, we propose new experiments and discuss the implications for the study of tetrahedrality of liquid water.
Collapse
Affiliation(s)
- Tomislav Begušić
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Geoffrey A Blake
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
10
|
|
11
|
Cazzaniga M, Micciarelli M, Gabas F, Finocchi F, Ceotto M. Quantum Anharmonic Calculations of Vibrational Spectra for Water Adsorbed on Titania Anatase(101) Surface: Dissociative versus Molecular Adsorption. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:12060-12073. [PMID: 35928238 PMCID: PMC9340806 DOI: 10.1021/acs.jpcc.2c02137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/10/2022] [Indexed: 06/15/2023]
Abstract
The interaction of water molecules and hydroxyl groups with titanium dioxide (TiO2) surfaces is ubiquitous and very important in anatase nanoparticle photocatalytic processes. Infrared spectroscopy, assisted by ab initio calculations of vibrational frequencies, can be a powerful tool to elucidate the mechanisms behind water adsorption. However, a straightforward comparison between measurements and calculations remains a challenging task because of the complexity of the physical phenomena occurring on nanoparticle surfaces. Consequently, severe computational approximations, such as harmonic vibrational ones, are usually employed. In the present work we partially address this complexity issue by overcoming some of the standard approximations used in theoretical simulations and employ the Divide and Conquer Semiclassical Initial Value Representation (DC-SCIVR) molecular dynamics. This method allows to perform simulations of vibrational spectra of large dimensional systems accounting not only for anharmonicities, but also for nuclear quantum effects. We apply this computational method to water and deuterated water adsorbed on the ideal TiO2 anatase(101) surface, contemplating both the molecular and the dissociated adsorption processes. The results highlight not only the presence of an anharmonic shift of the frequencies in agreement with the experiments, but also complex quantum mechanical spectral signatures induced by the coupling of molecular vibrational modes with the surface ones, which are different in the hydrogenated case from the deuterated one. These couplings are further analyzed by exploiting the mode subdivision performed during the divide and conquer procedure.
Collapse
Affiliation(s)
- Marco Cazzaniga
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Marco Micciarelli
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Fabio Gabas
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| | - Fabio Finocchi
- Sorbonne
Université, CNRS, Institut des NanoSciences
de Paris (INSP), 4 Place
Jussieu, Paris F- 75005, France
| | - Michele Ceotto
- Dipartimento
di Chimica, Universitá degli Studi
di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
12
|
Botti G, Aieta C, Conte R. The complex vibrational spectrum of proline explained through the adiabatically switched semiclassical initial value representation. J Chem Phys 2022; 156:164303. [DOI: 10.1063/5.0089720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proline, a 17-atom amino acid with a closed-ring side chain, has a complex potential energy surface characterized by several minima. Its IR experimental spectrum, reported in the literature, is of difficult and controversial assignment. In particular, the experimental signal at 3559 cm−1 associated with the OH stretch is interesting because it is inconsistent with the global minimum, trans-proline conformer. This suggests the possibility that multiple conformers may contribute to the IR spectrum. The same conclusion is obtained by investigating the splitting of the CO stretch at 1766 and 1789 cm−1 and other, more complex spectroscopic features involving CH stretches and COH/CNH bendings. In this work, we perform full-dimensional, on-the-fly adiabatically switched semiclassical initial value representation simulations employing the ab initio dft-d3-B3LYP level of theory with aug-cc-pVDZ basis set. We reconstruct the experimental spectrum of proline in its main features by studying the vibrational features of trans-proline and cis1-proline, and provide a new assignment for the OH stretch of trans-proline.
Collapse
Affiliation(s)
| | - Chiara Aieta
- Dipartimento di Chimica, Università degli Studi di Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, Italy
| |
Collapse
|
13
|
Baggioli M, Zaccone A. Theory of sound attenuation in amorphous solids from nonaffine motions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:215401. [PMID: 35287118 DOI: 10.1088/1361-648x/ac5d8b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
We present a theoretical derivation of acoustic phonon damping in amorphous solids based on the nonaffine response formalism for the viscoelasticity of amorphous solids. The analytical theory takes into account the nonaffine displacements in transverse waves and is able to predict both the ubiquitous low-energy diffusive damping ∼k2, as well as a novel contribution to the Rayleigh damping ∼k4at higher wavevectors and the crossover between the two regimes observed experimentally. The coefficient of the diffusive term is proportional to the microscopic viscous (Langevin-type) damping in particle motion (which arises from anharmonicity), and to the nonaffine correction to the static shear modulus, whereas the Rayleigh damping emerges in the limit of low anharmonicity, consistent with previous observations and macroscopic models. Importantly, thek4Rayleigh contribution derived here does not arise from harmonic disorder or elastic heterogeneity effects and it is the dominant mechanism for sound attenuation in amorphous solids as recently suggested by molecular simulations.
Collapse
Affiliation(s)
- M Baggioli
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, People's Republic of China
| | - A Zaccone
- Department of Physics 'A Pontremoli', University of Milan, via Celoria 16, 20133 Milan, Italy
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB30HE Cambridge, United Kingdom
| |
Collapse
|
14
|
Gabas F, Conte R, Ceotto M. Quantum Vibrational Spectroscopy of Explicitly Solvated Thymidine in Semiclassical Approximation. J Phys Chem Lett 2022; 13:1350-1355. [PMID: 35109652 PMCID: PMC8842300 DOI: 10.1021/acs.jpclett.1c04087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In this paper, we demonstrate the possibility to perform spectroscopy simulations of solvated biological species taking into consideration quantum effects and explicit solvation. We achieve this goal by interfacing our recently developed divide-and-conquer approach for semiclassical initial value representation molecular dynamics with the polarizable AMOEBABIO18 force field. The method is applied to the study of solvation of the thymidine nucleoside in two different polar solvents, water and N,N-dimethylformamide. Such systems are made of up to 2476 atoms. Experimental evidence concerning the different behavior of thymidine in the two solvents is well reproduced by our study, even though quantitative estimates are hampered by the limited accuracy of the classical force field employed. Overall, this study shows that semiclassically approximate quantum dynamical studies of explicitly solvated biological systems are both computationally affordable and insightful.
Collapse
|
15
|
Botti G, Ceotto M, Conte R. On-the-fly adiabatically switched semiclassical initial value representation molecular dynamics for vibrational spectroscopy of biomolecules. J Chem Phys 2021; 155:234102. [PMID: 34937370 DOI: 10.1063/5.0075220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Semiclassical (SC) vibrational spectroscopy is a technique capable of reproducing quantum effects (such as zero-point energies, quantum resonances, and anharmonic overtones) from classical dynamics runs even in the case of very large dimensional systems. In a previous study [Conte et al. J. Chem. Phys. 151, 214107 (2019)], a preliminary sampling based on adiabatic switching has been shown to be able to improve the precision and accuracy of semiclassical results for challenging model potentials and small molecular systems. In this paper, we investigate the possibility to extend the technique to larger (bio)molecular systems whose dynamics must be integrated by means of ab initio "on-the-fly" calculations. After some preliminary tests on small molecules, we obtain the vibrational frequencies of glycine improving on pre-existing SC calculations. Finally, the new approach is applied to 17-atom proline, an amino acid characterized by a strong intramolecular hydrogen bond.
Collapse
Affiliation(s)
- Giacomo Botti
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Riccardo Conte
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
16
|
Gandolfi M, Ceotto M. Unsupervised Machine Learning Neural Gas Algorithm for Accurate Evaluations of the Hessian Matrix in Molecular Dynamics. J Chem Theory Comput 2021; 17:6733-6746. [PMID: 34705463 PMCID: PMC8582248 DOI: 10.1021/acs.jctc.1c00707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 11/29/2022]
Abstract
The Hessian matrix of the potential energy of molecular systems is employed not only in geometry optimizations or high-order molecular dynamics integrators but also in many other molecular procedures, such as instantaneous normal mode analysis, force field construction, instanton calculations, and semiclassical initial value representation molecular dynamics, to name a few. Here, we present an algorithm for the calculation of the approximated Hessian in molecular dynamics. The algorithm belongs to the family of unsupervised machine learning methods, and it is based on the neural gas idea, where neurons are molecular configurations whose Hessians are adopted for groups of molecular dynamics configurations with similar geometries. The method is tested on several molecular systems of different dimensionalities both in terms of accuracy and computational time versus calculating the Hessian matrix at each time-step, that is, without any approximation, and other Hessian approximation schemes. Finally, the method is applied to the on-the-fly, full-dimensional simulation of a small synthetic peptide (the 46 atom N-acetyl-l-phenylalaninyl-l-methionine amide) at the level of DFT-B3LYP-D/6-31G* theory, from which the semiclassical vibrational power spectrum is calculated.
Collapse
Affiliation(s)
- Michele Gandolfi
- Dipartimento di Chimica, Università
degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| | - Michele Ceotto
- Dipartimento di Chimica, Università
degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
| |
Collapse
|
17
|
Guo H, Worth G, Domcke W. Quantum dynamics with ab initio potentials. J Chem Phys 2021; 155:080401. [PMID: 34470339 DOI: 10.1063/5.0066234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Graham Worth
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| |
Collapse
|