1
|
Kockläuner J, Golze D. GW Plus Cumulant Approach for Predicting Core-Level Shakeup Satellites in Large Molecules. J Chem Theory Comput 2025. [PMID: 40029694 DOI: 10.1021/acs.jctc.4c01754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Recently, the GW approach has emerged as a valuable tool for computing deep core-level binding energies as measured in X-ray photoemission spectroscopy. However, GW fails to accurately predict shakeup satellite features, which arise from charge-neutral excitations accompanying the ionization. In this work, we extend the GW plus cumulant (GW + C) approach to molecular 1s excitations, deriving conditions under which GW + C can be reliably applied to shakeup processes. We present an efficient implementation with O(N4) scaling with respect to the system size N, within an all-electron framework based on numeric atom-centered orbitals. We demonstrate that decoupling the core and valence spaces is crucial when using localized basis functions. Additionally, we meticulously validate the basis set convergence of the satellite spectrum for 65 spectral functions and identify the importance of diffuse augmenting functions. To assess the accuracy, we apply our GW + C scheme to π-conjugated molecules containing up to 40 atoms, predicting dominant satellite features within 0.5 eV of experimental values. For the acene series, from benzene to pentacene, we demonstrate how GW + C provides critical insights into the interpretation of experimentally observed satellite features.
Collapse
Affiliation(s)
- Jannis Kockläuner
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Dorothea Golze
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
2
|
Förster A. Beyond Quasi-Particle Self-Consistent GW for Molecules with Vertex Corrections. J Chem Theory Comput 2025; 21:1709-1721. [PMID: 39930976 DOI: 10.1021/acs.jctc.4c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
We introduce the ΣBSE@LBSE self-energy in the quasi-particle self-consistent GW (qsGW) framework (qsΣBSE@LBSE). Here, L is the two-particle response function, which we calculate by solving the Bethe-Salpeter equation with the static, first-order GW kernel. The same kernel is added to Σ directly. For a set of medium organic molecules, we show that including the vertex both in L and Σ is crucial. This approach retains the good performance of qsGW for predicting first ionization potentials and fundamental gaps, while it greatly improves the description of electron affinities. Its good performance places qsΣBSE@LBSE among the best-performing electron propagator methods for charged excitations. Adding the vertex in L only, as commonly done in the solid-state community, leads to devastating results for electron affinities and fundamental gaps. We also test the performance of BSE@qsGW and qsΣBSE@LBSE for neutral charge-transfer excitation and find both methods to perform similar. We conclude that ΣBSE@LBSE is a promising approximation to the electronic self-energy beyond GW. We hope that future research on dynamical vertex effects, second-order vertex corrections, and full self-consistency will improve the accuracy of this method, both for charged and neutral excitation energies.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1105, Amsterdam 1081 HV, the Netherlands
| |
Collapse
|
3
|
Förster A, Bruneval F. Why Does the GW Approximation Give Accurate Quasiparticle Energies? The Cancellation of Vertex Corrections Quantified. J Phys Chem Lett 2024; 15:12526-12534. [PMID: 39670751 DOI: 10.1021/acs.jpclett.4c03126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Hedin's GW approximation to the electronic self-energy has been impressively successful in calculating quasiparticle energies, such as ionization potentials, electron affinities, or electronic band structures. The success of this fairly simple approximation has been ascribed to the cancellation of the so-called vertex corrections that go beyond the GW approximation. This claim is mostly based on past calculations using vertex corrections within the crude local-density approximation. Here, we explore a wide variety of nonlocal vertex corrections in the polarizability and the self-energy, using first-order approximations or infinite summations to all orders. In particular, we use vertices based on statically screened interactions like in the Bethe-Salpeter equation. We demonstrate on realistic molecular systems that the two vertices in Hedin's equation essentially compensate. We further show that consistency between the two vertices is crucial for obtaining realistic electronic properties. We finally consider increasingly large clusters and extrapolate that our conclusions about the compensation of the two vertices would hold for extended systems.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
| | - Fabien Bruneval
- Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP, 91191 Gif-sur-Yvette, France
| |
Collapse
|
4
|
Reeves CC, Vlček V. Real-Time Dyson-Expansion Scheme: Efficient Inclusion of Dynamical Correlations in Nonequilibrium Spectral Properties. PHYSICAL REVIEW LETTERS 2024; 133:226902. [PMID: 39672150 DOI: 10.1103/physrevlett.133.226902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/22/2024] [Accepted: 10/21/2024] [Indexed: 12/15/2024]
Abstract
Time-resolved photoemission spectroscopy is the key technique to probe the real-time nonequilibrium dynamics of electronic states. Theoretical predictions of the time dependent spectral function for realistic systems is however, a challenge. Employing the Kadanoff-Baym equations to find this quantity results in a cubic scaling in the total number of time steps, quickly becoming prohibitive and often fail quantitatively and even qualitatively. In comparison, mean-field methods have more favorable numerical scaling both in the number of time steps and in the complexity associated with the cost of evolving for a single time step, however they miss key spectral properties such as emergent spectral features. Here we present a scheme that allows for the inclusion of dynamical correlations to the spectral function while maintaining the same scaling in the number of time steps as for mean-field approaches, while capturing the emergent physics. Further, the scheme can be efficiently implemented on top of equilibrium real-time many-body perturbation theory schemes and codes. We see excellent agreement with exact results for test systems. Furthermore, we exemplify the method on a periodic system and demonstrate clear evidence that our proposed scheme produces complex spectral features including excitonic band replicas, features that are not observed using static mean-field approaches.
Collapse
|
5
|
Loos PF, Marie A, Ammar A. Cumulant Green's function methods for molecules. Faraday Discuss 2024; 254:240-260. [PMID: 39073086 DOI: 10.1039/d4fd00037d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The cumulant expansion of the Green's function is a computationally efficient beyond-GW approach renowned for its significant enhancement of satellite features in materials. In contrast to the ubiquitous GW approximation of many-body perturbation theory, ab initio cumulant expansions performed on top of GW (GW + C) have demonstrated the capability to handle multi-particle processes by incorporating higher-order correlation effects or vertex corrections, yielding better agreements between experiment and theory for satellite structures. While widely employed in condensed matter physics, very few applications of GW + C have been published on molecular systems. Here, we assess the performance of this scheme on a series of 10-electron molecular systems (Ne, HF, H2O, NH3, and CH4) where full configuration interaction estimates of the outer-valence quasiparticle and satellite energies are available.
Collapse
Affiliation(s)
- Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Antoine Marie
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Abdallah Ammar
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
6
|
Mejuto-Zaera C. Quantum embedding for molecules using auxiliary particles - the ghost Gutzwiller Ansatz. Faraday Discuss 2024; 254:653-681. [PMID: 39087725 DOI: 10.1039/d4fd00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Strong/static electronic correlation mediates the emergence of remarkable phases of matter, and underlies the exceptional reactivity properties in transition metal-based catalysts. Modeling strongly correlated molecules and solids calls for multi-reference Ansätze, which explicitly capture the competition of energy scales characteristic of such systems. With the efficient computational screening of correlated solids in mind, the ghost Gutzwiller (gGut) Ansatz has been recently developed. This is a variational Ansatz which can be formulated as a self-consistent embedding approach, describing the system within a non-interacting, quasiparticle model, yet providing accurate spectra in both low and high energy regimes. Crucially, small fragments of the system are identified as responsible for the strong correlation, and are therefore enhanced by adding a set of auxiliary orbitals, the ghosts. These capture many-body correlations through one-body fluctuations and subsequent out-projection when computing physical observables. gGut has been shown to accurately describe multi-orbital lattice models at modest computational cost. In this work, we extend the gGut framework to strongly correlated molecules, for which it holds special promise. Indeed, despite the asymmetric embedding treatment, the quasiparticle Hamiltonian effectively describes all major sources of correlation in the molecule: strong correlation through the ghosts in the fragment, and dynamical correlation through the quasiparticle description of its environment. To adapt the gGut Ansatz for molecules, we address the fact that, unlike in the lattice model previously considered, electronic interactions in molecules are not local. Hence, we explore a hierarchy of approximations of increasing accuracy capturing interactions between fragments and environment, and within the environment, and discuss how these affect the embedding description of correlations in the whole molecule. We will compare the accuracy of the gGut model with established methods to capture strong correlation within active space formulations, and assess the realistic use of this novel approximation to the theoretical description of correlated molecular clusters.
Collapse
Affiliation(s)
- Carlos Mejuto-Zaera
- International School for Advanced Studies (SISSA), Via Bonomea 265, 34136 Trieste, Italy.
| |
Collapse
|
7
|
Patterson CH. Molecular Ionization Energies from GW and Hartree-Fock Theory: Polarizability, Screening, and Self-Energy Vertex Corrections. J Chem Theory Comput 2024; 20:7479-7493. [PMID: 39189378 PMCID: PMC11391582 DOI: 10.1021/acs.jctc.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Accurate prediction of electron removal and addition energies is essential for reproducing neutral excitation spectra in molecules using Bethe-Salpeter equation methods. A Hartree-Fock starting point for GW/BSE calculations, combined with a random phase approximation (RPA) polarizability in the screened interaction, W, is well-known to overestimate neutral excitation energies. Using a Hartree-Fock starting point, we apply several different approximations for W to molecules in the Quest-3 database [Loos et al. J. Chem. Theory Comput. 2020, 16, 1711]. W is calculated using polarizabilities in RPA and time-dependent HF approximations. Inclusion of screened electron-hole attraction in the polarizability yields valence ionization energies in better agreement with experimental values and ADC(3) calculations than the more commonly applied RPA polarizability. Quasiparticle weights are also in better agreement with ADC(3) values when electron-hole attraction is included in W. Shake-up excitations for the 1π levels in benzene and azines are indicated only when electron-hole attraction is included. Ionization energies derived from HF eigenvalues via Koopmans theorem for molecules with nitrogen or oxygen lone pairs have the largest differences from experimental values in the molecules considered, leading to incorrect ordering of nonbonding and π bonding levels. Inclusion of electron-hole attraction in the polarizability results in correct ordering of ionization energies and marked improvement in agreement with experimental data. Vertex corrections to the self-energy further improve agreement with experimental ionization energies for these localized states.
Collapse
|
8
|
Marie A, Loos PF. Reference Energies for Valence Ionizations and Satellite Transitions. J Chem Theory Comput 2024; 20:4751-4777. [PMID: 38776293 PMCID: PMC11171335 DOI: 10.1021/acs.jctc.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024]
Abstract
Upon ionization of an atom or a molecule, another electron (or more) can be simultaneously excited. These concurrently generated states are called "satellites" (or shakeup transitions) as they appear in ionization spectra as higher-energy peaks with weaker intensity and larger width than the main peaks associated with single-particle ionizations. Satellites, which correspond to electronically excited states of the cationic species, are notoriously challenging to model using conventional single-reference methods due to their high excitation degree compared to the neutral reference state. This work reports 42 satellite transition energies and 58 valence ionization potentials (IPs) of full configuration interaction quality computed in small molecular systems. Following the protocol developed for the quest database [Véril, M.; Scemama, A.; Caffarel, M.; Lipparini, F.; Boggio-Pasqua, M.; Jacquemin, D.; and Loos, P.-F. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2021, 11, e1517], these reference energies are computed using the configuration interaction using a perturbative selection made iteratively (CIPSI) method. In addition, the accuracy of the well-known coupled-cluster (CC) hierarchy (CC2, CCSD, CC3, CCSDT, CC4, and CCSDTQ) is gauged against these new accurate references. The performances of various approximations based on many-body Green's functions (GW, GF2, and T-matrix) for IPs are also analyzed. Their limitations in correctly modeling satellite transitions are discussed.
Collapse
Affiliation(s)
- Antoine Marie
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique
Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse 31062, France
| |
Collapse
|
9
|
Vacondio S, Varsano D, Ruini A, Ferretti A. Going Beyond the GW Approximation Using the Time-Dependent Hartree-Fock Vertex. J Chem Theory Comput 2024; 20:4718-4737. [PMID: 38772396 DOI: 10.1021/acs.jctc.4c00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The time-dependent Hartree-Fock (TDHF) vertex of many-body perturbation theory (MBPT) makes it possible to extend TDHF theory to charged excitations. Here we assess its performance by applying it to spherical atoms in their neutral electronic configuration. On a theoretical level, we recast the TDHF vertex as a reducible vertex, highlighting the emergence of a self-energy expansion purely in orders of the bare Coulomb interaction; then, on a numerical level, we present results for polarizabilities, ionization energies (IEs), and photoemission satellites. We confirm the superiority of THDF over simpler methods such as the random phase approximation for the prediction of atomic polarizabilities. We then find that the TDHF vertex reliably provides better IEs than GW and low-order self-energies do in the light-atom, few-electron regime; its performance degrades in heavier, many-electron atoms instead, where an expansion in orders of an unscreened Coulomb interaction becomes less justified. New relevant features are introduced in the satellite spectrum by the TDHF vertex, but the experimental spectra are not fully reproduced due to a missing account of nonlinear effects connected to hole relaxation. We also explore various truncations of the self-energy given by the TDHF vertex, but do not find them to be more convenient than low-order approximations such as GW and second Born (2B), suggesting that vertex corrections should be carried out consistently both in the self-energy and in the polarizability.
Collapse
Affiliation(s)
- Simone Vacondio
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 213/a, 41125 Modena, Italy
- Centro S3, CNR-Istituto Nanoscienze, Via G. Campi 213/a, 41125 Modena, Italy
| | - Daniele Varsano
- Centro S3, CNR-Istituto Nanoscienze, Via G. Campi 213/a, 41125 Modena, Italy
| | - Alice Ruini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università degli Studi di Modena e Reggio Emilia, Via G. Campi 213/a, 41125 Modena, Italy
- Centro S3, CNR-Istituto Nanoscienze, Via G. Campi 213/a, 41125 Modena, Italy
| | - Andrea Ferretti
- Centro S3, CNR-Istituto Nanoscienze, Via G. Campi 213/a, 41125 Modena, Italy
| |
Collapse
|
10
|
Bruneval F, Förster A. Fully Dynamic G3 W2 Self-Energy for Finite Systems: Formulas and Benchmark. J Chem Theory Comput 2024; 20:3218-3230. [PMID: 38603811 DOI: 10.1021/acs.jctc.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Over the years, Hedin's GW self-energy has been proven to be a rather accurate and simple approximation to evaluate electronic quasiparticle energies in solids and in molecules. Attempts to improve over the simple GW approximation, the so-called vertex corrections, have been constantly proposed in the literature. Here, we derive, analyze, and benchmark the complete second-order term in the screened Coulomb interaction W for finite systems. This self-energy named G3W2 contains all the possible time orderings that combine 3 Green's functions G and 2 dynamic W. We present the analytic formula and its imaginary frequency counterpart, with the latter allowing us to treat larger molecules. The accuracy of the G3W2 self-energy is evaluated on well-established benchmarks (GW100, Acceptor 24, and Core 65) for valence and core quasiparticle energies. Its link with the simpler static approximation, named SOSEX for static screened second-order exchange, is analyzed, which leads us to propose a more consistent approximation named 2SOSEX. In the end, we find that neither the G3W2 self-energy nor any of the investigated approximations to it improve over one-shot G0W0 with a good starting point. Only quasi-particle self-consistent GW HOMO energies are slightly improved by addition of the G3W2 self-energy correction. We show that this is due to the self-consistent update of the screened Coulomb interaction, leading to an overall sign change of the vertex correction to the frontier quasiparticle energies.
Collapse
Affiliation(s)
- Fabien Bruneval
- Université Paris-Saclay, CEA, Service de recherche en Corrosion et Comportement des Matériaux, SRMP, 91191 Gif-sur-Yvette, France
| | - Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
11
|
Wen M, Abraham V, Harsha G, Shee A, Whaley KB, Zgid D. Comparing Self-Consistent GW and Vertex-Corrected G0W0 ( G0W0Γ) Accuracy for Molecular Ionization Potentials. J Chem Theory Comput 2024; 20:3109-3120. [PMID: 38573104 DOI: 10.1021/acs.jctc.3c01279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
We test the performance of self-consistent GW and several representative implementations of vertex-corrected G0W0 (G0W0Γ). These approaches are tested on benchmark data sets covering full valence spectra (first ionization potentials and some inner valence shell excitations). For small molecules, when comparing against state-of-the-art wave function techniques, our results show that full self-consistency in the GW scheme either systematically outperforms vertex-corrected G0W0 or gives results of at least comparative quality. Moreover, G0W0Γ results in additional computational cost when compared to G0W0 or self-consistent GW. The dependency of G0W0Γ on the starting mean-field solution is frequently more dominant than the magnitude of the vertex correction itself. Consequently, for molecular systems, self-consistent GW performed on the imaginary axis (and then followed by modern analytical continuation techniques) offers a more reliable approach to make predictions of ionization potentials.
Collapse
Affiliation(s)
- Ming Wen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Vibin Abraham
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gaurav Harsha
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Avijit Shee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - K Birgitta Whaley
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Dominika Zgid
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Vila FD, Rehr JJ, Kowalski K, Peng B. RT-EOM-CCSD Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions. J Chem Theory Comput 2024; 20:1796-1801. [PMID: 38422509 DOI: 10.1021/acs.jctc.3c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Photoelectron spectroscopy (PES) is a standard experimental method for material characterization, but its interpretation can be hampered by its reliance on standard materials. To facilitate the study of unknown systems, theoretical methods are desirable. Here, we present a real-time equation-of-motion coupled cluster (RT-EOM-CC) approach for valence PES, extending our core-level development. We demonstrate that RT-EOM-CC yields ionization energies and spectral functions in good agreement with experimental and CI-based results, even for some more correlated cases.
Collapse
Affiliation(s)
- Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Canestraight A, Lei X, Ibrahim KZ, Vlček V. Efficient Quasiparticle Determination beyond the Diagonal Approximation via Random Compression. J Chem Theory Comput 2024; 20:551-557. [PMID: 38175913 DOI: 10.1021/acs.jctc.3c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Calculations of excited states in the Green's function formalism often invokes the diagonal approximation, in which the quasiparticle states are taken from a mean-field calculation. In this paper, we extend the stochastic approaches applied in the many-body perturbation theory and overcome this limitation for large systems in which we are interested in a small subset of states. We separate the problem into a core subspace whose coupling to the remainder of the system environment is stochastically sampled. This method is exemplified on computing hole injection energies into CO2 on an extended gold surface with nearly 3000 electrons. We find that in the extended system the size of the problem can be compressed up to 95% using stochastic sampling. This result provides a way forward for self-consistent stochastic methods and determination of Dyson orbitals in large systems.
Collapse
Affiliation(s)
- Annabelle Canestraight
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106-9510, United States
| | - Xiaohe Lei
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Khaled Z Ibrahim
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
- Department of Materials, University of California, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
14
|
Lei X, Canestraight A, Vlcek V. Exceptional Spatial Variation of Charge Injection Energies on Plasmonic Surfaces. J Phys Chem Lett 2023; 14:8470-8476. [PMID: 37721434 DOI: 10.1021/acs.jpclett.3c02223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Charge injection into a molecule on a metallic interface is a key step in many photoactivated reactions. We employ the many-body perturbation theory and compute the hole and electron injection energies for CO2 molecule on an Au nanoparticle with ∼3,000 electrons and compare it to results for idealized infinite surfaces. We demonstrate a surprisingly large variation of the injection energy barrier depending on the precise molecular position on the surface. Multiple "hot spots," characterized by low energy barriers, arise due to the competition between the plasmonic coupling and the degree of hybridization between the molecule and the substrate. The charge injection barrier to the adsorbate on the nanoparticle surface decreases from the facet edge to the facet center. This finding contrasts with the typical picture in which the electric field enhancement on the nanoparticle edges is considered the most critical factor.
Collapse
Affiliation(s)
- Xiaohe Lei
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Annabelle Canestraight
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Vojtech Vlcek
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials, University of California Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
15
|
Weng G, Mallarapu R, Vlček V. Embedding vertex corrections in GW self-energy: Theory, implementation, and outlook. J Chem Phys 2023; 158:144105. [PMID: 37061461 DOI: 10.1063/5.0139117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
The vertex function (Γ) within the Green's function formalism encapsulates information about all higher-order electron-electron interaction beyond those mediated by density fluctuations. Herein, we present an efficient approach that embeds vertex corrections in the one-shot GW correlation self-energy for isolated and periodic systems. The vertex-corrected self-energy is constructed through the proposed separation-propagation-recombination procedure: the electronic Hilbert space is separated into an active space and its orthogonal complement denoted as the "rest;" the active component is propagated by a space-specific effective Hamiltonian different from the rest. The vertex corrections are introduced by a rescaled time-dependent nonlocal exchange interaction. The direct Γ correction to the self-energy is further updated by adjusting the rescaling factor in a self-consistent post-processing cycle. Our embedding method is tested mainly on donor-acceptor charge-transfer systems. The embedded vertex effects consistently and significantly correct the quasiparticle energies of the gap-edge states. The fundamental gap is generally improved by 1-3 eV upon the one-shot GW approximation. Furthermore, we provide an outlook for applications of (embedded) vertex corrections in calculations of extended solids.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - Rushil Mallarapu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - Vojtěch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|
16
|
Vila FD, Rehr JJ, Pathak H, Peng B, Panyala A, Mutlu E, Bauman NP, Kowalski K. Real-time equation-of-motion CC cumulant and CC Green's function simulations of photoemission spectra of water and water dimer. J Chem Phys 2022; 157:044101. [DOI: 10.1063/5.0099192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Newly developed coupled-cluster (CC) methods enable simulations of ionization potentials and spectral functions of molecular systems in a wide range of energy scales ranging from core-binding to valence. This paper discusses results obtained with the real-time equation-of-motion CC cumulant approach (RT-EOM-CC), and CC Green's function (CCGF) approaches in applications to the water and water dimer molecules. We compare the ionization potentials obtained with these methods for the valence region with the results obtained with the CCSD(T) formulation as a difference of energies for N and N-1 electron systems. All methods show good agreement with each other. They also agree well with experiment, with errors usually below 0.1 eV for the ionization potentials.We also analyze unique features of the spectral functions, associated with the position of satellite peaks, obtained with the RT-EOM-CC and CCGF methods employing single and double excitations, as a function of the monomer OH bond length and the proton transfer coordinate in the dimer. Finally, we analyze the impact of the basis set effects on the quality of calculated ionization potentials and find that the basis set effects are less pronounced for the augmented-type sets.
Collapse
Affiliation(s)
| | - John J. Rehr
- Department of Physics, University of Washington College of Arts and Sciences, United States of America
| | - Himadri Pathak
- Pacific Northwest National Laboratory, Pacific Northwest National Laboratory, United States of America
| | - Bo Peng
- Pacific Northwest National Laboratory, United States of America
| | - Ajay Panyala
- Pacific Northwest National Laboratory, United States of America
| | - Erdal Mutlu
- Pacific Northwest National Laboratory, United States of America
| | | | - Karol Kowalski
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, United States of America
| |
Collapse
|
17
|
Vacondio S, Varsano D, Ruini A, Ferretti A. Numerically Precise Benchmark of Many-Body Self-Energies on Spherical Atoms. J Chem Theory Comput 2022; 18:3703-3717. [PMID: 35561415 PMCID: PMC9202310 DOI: 10.1021/acs.jctc.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
We investigate the
performance of beyond-GW approaches in many-body
perturbation theory by addressing atoms described within the spherical
approximation via a dedicated numerical treatment based on B-splines
and spherical harmonics. We consider the GW, second Born (2B), and
GW + second order screened exchange (GW+SOSEX) self-energies and use
them to obtain ionization potentials from the quasi-particle equation
(QPE) solved perturbatively on top of independent-particle calculations.
We also solve the linearized Sham–Schlüter equation
(LSSE) and compare the resulting xc potentials against exact data.
We find that the LSSE provides consistent starting points for the
QPE but does not present any practical advantage in the present context.
Still, the features of the xc potentials obtained with it shed light
on possible strategies for the inclusion of beyond-GW diagrams in
the many-body self-energy. Our findings show that solving the QPE
with the GW+SOSEX self-energy on top of a PBE or PBE0 solution is
a viable scheme to go beyond GW in finite systems, even in the atomic
limit. However, GW shows a comparable performance if one agrees to
use a hybrid starting point. We also obtain promising results with
the 2B self-energy on top of Hartree–Fock, suggesting that
the full time-dependent Hartree–Fock vertex may be another
viable beyond-GW scheme for finite systems.
Collapse
Affiliation(s)
- S Vacondio
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via G. Campi 213/a, Modena 41121, Italy.,Centro S3, CNR-Istituto Nanoscienze, 41125 Modena, Italy
| | - D Varsano
- Centro S3, CNR-Istituto Nanoscienze, 41125 Modena, Italy
| | - A Ruini
- Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via G. Campi 213/a, Modena 41121, Italy.,Centro S3, CNR-Istituto Nanoscienze, 41125 Modena, Italy
| | - A Ferretti
- Centro S3, CNR-Istituto Nanoscienze, 41125 Modena, Italy
| |
Collapse
|
18
|
Vila FD, Kowalski K, Peng B, Kas JJ, Rehr JJ. Real-Time Equation-of-Motion CCSD Cumulant Green's Function. J Chem Theory Comput 2022; 18:1799-1807. [PMID: 35157796 DOI: 10.1021/acs.jctc.1c01179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Many-body excitations in X-ray photoemission spectra have been difficult to simulate from first principles. We have recently developed a cumulant-based one-electron Green's function method using the real-time coupled-cluster-singles equation-of-motion approach (RT-EOM-CCS) that provides a general framework for treating these problems. Here we extend this approach to include double excitations in the ground-state energy and in the coupled cluster amplitudes, which have been implemented using subroutines generated by the Tensor Contraction Engine (TCE). As in the case of the singles approximation, RT-EOM-CCSD yields a nonperturbative cumulant form of the Green's function in terms of the time-dependent cluster amplitudes, adding nonlinear corrections to the traditional cumulant forms. The extended approach is applied to the core-hole spectral function for small molecular systems. We find that, when core-optimized basis sets are used, the doubles contributions reduce the mean absolute errors in the core binding energies of the 10e systems from 0.8 to 0.3 eV. They also significantly improve the quasiparticle-satellite gap by reducing its overestimation from about 3-5 to about 0-1 eV in CH4, NH3, and H2O, and also improving the overall shape of the satellite features. Finally, we demonstrate the application of the new implementation to the larger, classical XPS ESCA series of molecules and show that the singles approximation can be paired with a modest basis set to study carbon speciation.
Collapse
Affiliation(s)
- F D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - K Kowalski
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - B Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - J J Kas
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - J J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
19
|
Mejuto-Zaera C, Tzeli D, Williams-Young D, Tubman NM, Matoušek M, Brabec J, Veis L, Xantheas SS, de Jong WA. The Effect of Geometry, Spin, and Orbital Optimization in Achieving Accurate, Correlated Results for Iron-Sulfur Cubanes. J Chem Theory Comput 2022; 18:687-702. [PMID: 35034448 DOI: 10.1021/acs.jctc.1c00830] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Iron-sulfur clusters comprise an important functional motif in the catalytic centers of biological systems, capable of enabling important chemical transformations at ambient conditions. This remarkable capability derives from a notoriously complex electronic structure that is characterized by a high density of states that is sensitive to geometric changes. The spectral sensitivity to subtle geometric changes has received little attention from correlated, large active space calculations, owing partly to the exceptional computational complexity for treating these large and correlated systems accurately. To provide insight into this aspect, we report the first Complete Active Space Self Consistent Field (CASSCF) calculations for different geometries of the [Fe(II/III)4S4(SMe)4]-2 clusters using two complementary, correlated solvers: spin-pure Adaptive Sampling Configuration Interaction (ASCI) and Density Matrix Renormalization Group (DMRG). We find that the previously established picture of a double-exchange driven magnetic structure, with minute energy gaps (<1 mHa) between consecutive spin states, has a weak dependence on the underlying geometry. However, the spin gap between the singlet and the spin state 2S + 1 = 19, corresponding to a maximal number of Fe-d electrons being unpaired and of parallel spin, is strongly geometry dependent, changing by a factor of 3 upon slight deformations that are still within biologically relevant parameters. The CASSCF orbital optimization procedure, using active spaces as large as 86 electrons in 52 orbitals, was found to reduce this gap compared to typical mean-field orbital approaches. Our results show the need for performing large active space calculations to unveil the challenging electronic structure of these complex catalytic centers and should serve as accurate starting points for fully correlated treatments upon inclusion of dynamical correlation outside the active space.
Collapse
Affiliation(s)
- Carlos Mejuto-Zaera
- University of California, Berkeley, California 94720, United States.,Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Demeter Tzeli
- Laboratory of Physical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15784, Greece.,Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Vas. Constantinou 48, Athens 11635, Greece
| | - David Williams-Young
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Norm M Tubman
- Quantum Artificial Intelligence Lab. (QuAIL), Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, California 94035, United States
| | - Mikuláš Matoušek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Sotiris S Xantheas
- Advanced Computing, Mathematics and Data Division, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P.O. Box 999, MS K1-83, Richland, Washington 99352, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98185, United States
| | - Wibe A de Jong
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
20
|
Ohno K, Aoki T. Extended quasiparticle approach to non-resonant and resonant X-ray emission spectroscopy. Phys Chem Chem Phys 2022; 24:16586-16595. [DOI: 10.1039/d2cp00988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The initial state of X-ray emission spectroscopy (XES) and resonant inelastic X-ray emission spectroscopy (RIXS) is a highly excited eigenstate with a deep core hole after a X-ray photoelectron spectroscopy...
Collapse
|
21
|
Weng G, Vlček V. Efficient treatment of molecular excitations in the liquid phase environment via stochastic many-body theory. J Chem Phys 2021; 155:054104. [PMID: 34364336 DOI: 10.1063/5.0058410] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate predictions of charge excitation energies of molecules in the disordered condensed phase are central to the chemical reactivity, stability, and optoelectronic properties of molecules and critically depend on the specific environment. Herein, we develop a stochastic GW method for calculating these charge excitation energies. The approach employs maximally localized electronic states to define the electronic subspace of a molecule and the rest of the system, both of which are randomly sampled. We test the method on three solute-solvent systems: phenol, thymine, and phenylalanine in water. The results are in excellent agreement with the previous high-level calculations and available experimental data. The stochastic calculations for supercells containing up to 1000 electrons representing the solvated systems are inexpensive and require ≤1000 central processing unit hrs. We find that the coupling with the environment accounts for ∼40% of the total correlation energy. The solvent-to-solute feedback mechanism incorporated in the molecular correlation term causes up to 0.6 eV destabilization of the quasiparticle energy. Simulated photo-emission spectra exhibit red shifts, state-degeneracy lifting, and lifetime shortening. Our method provides an efficient approach for an accurate study of excitations of large molecules in realistic condensed phase environments.
Collapse
Affiliation(s)
- Guorong Weng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | - VojtĚch Vlček
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| |
Collapse
|