1
|
Mesh membranes coated with zirconium metal-organic framework nanosheets of optimized morphology for oil-water separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2022.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Mallah SR, Behera S, Sharma A, Agrawal A, Bhardwaj R. Improving Indoor Air Ventilation by a Ceiling Fan to Mitigate Aerosols Transmission. TRANSACTIONS OF THE INDIAN NATIONAL ACADEMY OF ENGINEERING : AN INTERNATIONAL JOURNAL OF ENGINEERING AND TECHNOLOGY 2023; 8:171-182. [PMID: 36742163 PMCID: PMC9887580 DOI: 10.1007/s41403-023-00387-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
Improving air flow and ventilation in an indoor environment is central to mitigating the airborne transmission of aerosols. Examples include, COVID-19 or similar diseases that transmit by airborne aerosols or respiratory droplets. While there are standard guidelines for enhancing the ventilation of space, the effect of a ceiling fan on the ventilation has not been explored. Such an intervention could be critical, especially in a resource-limited setting. In the present work, we numerically study the effect of a rotating ceiling fan on indoor air ventilation using computational fluid dynamics (CFD) simulations. In particular, we employ RANS turbulence model and compare the computed flow fields for a stationary and rotating fan in an office room with a door and window. While a re-circulation zone spans the whole space for the stationary fan, stronger re-circulation zones and small stagnation zones appear in the flow-field inside the room for the case of a rotating fan. The re-circulation zones help bring in fresh air through the window and remove stale air through the door, thereby improving the ventilation rate by one order of magnitude. We briefly discuss the chances of infection by aerosols via flow-fields corresponding to stationary and rotating fans. Graphical Abstract
Collapse
Affiliation(s)
- Santosh Ramagya Mallah
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Sachidananda Behera
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Atul Sharma
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, 400076 India
| |
Collapse
|
3
|
Chen W, Liu L, Hang J, Li Y. Predominance of inhalation route in short-range transmission of respiratory viruses: Investigation based on computational fluid dynamics. BUILDING SIMULATION 2022; 16:765-780. [PMID: 36575690 PMCID: PMC9782262 DOI: 10.1007/s12273-022-0968-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 05/28/2023]
Abstract
During the Coronavirus disease 2019 pandemic, short-range virus transmission has been observed to have a higher risk of causing infection than long-range virus transmission. However, the roles played by the inhalation and large droplet routes cannot be distinguished in practice. A recent analytical study revealed the predominance of short-range inhalation over the large droplet spray route as causes of respiratory infections. In the current study, short-range exposure was analyzed via computational fluid dynamics (CFD) simulations using a discrete phase model. Detailed facial membranes, including eyes, nostrils, and a mouth, were considered. In CFD simulations, there is no need for a spherical approximation of the human head for estimating deposition nor the "anisokinetic aerosol sampling" approximation for estimating inhalation in the analytical model. We considered two scenarios (with two spheres [Scenario 1] and two human manikins [Scenario 2]), source-target distances of 0.2 to 2 m, and droplet diameters of 3 to 1,500 µm. The overall CFD exposure results agree well with data previously obtained from a simple analytical model. The CFD results confirm the predominance of the short-range inhalation route beyond 0.2 m for expiratory droplets smaller than 50 µm during talking and coughing. A critical droplet size of 87.5 µm was found to differentiate droplet behaviors. The number of droplets deposited on the target head exceeded those exposed to facial membranes, which implies a risk of exposure through the immediate surface route over a short range. Electronic Supplementary Material ESM the Supplementary Materials are available in the online version of this article at 10.1007/s12273-022-0968-y.
Collapse
Affiliation(s)
- Wenzhao Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Li Liu
- Department of Building Science, Tsinghua University, Beijing, 100084 China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082 China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Faculty of Architecture, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
4
|
Bolat E, Eker F, Kaplan M, Duman H, Arslan A, Saritaş S, Şahutoğlu AS, Karav S. Lactoferrin for COVID-19 prevention, treatment, and recovery. Front Nutr 2022; 9:992733. [PMID: 36419551 PMCID: PMC9676636 DOI: 10.3389/fnut.2022.992733] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/07/2022] [Indexed: 09/22/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), a unique beta-coronavirus, has caused the most serious outbreak of the last century at the global level. SARS-CoV-2 infections were firstly reported in the city of Wuhan in China in 2019 and this new disease was named COVID-19 by World Health Organization (WHO). As this novel disease can easily be transmitted from one individual to another via respiratory droplets, many nations around the world have taken several precautions regarding the reduction in social activities and quarantine for the limitation of the COVID-19 transmission. SARS-CoV-2 is known to cause complications that may include pneumonia, acute respiratory distress syndrome (ARDS), multi-organ failure, septic shock, and death. To prevent and treat COVID-19, some significant studies have been conducted since the outbreak. One of the most noticeable therapeutic approaches is related to a multifunctional protein, lactoferrin. Lactoferrin (Lf) is an 80 kDa cationic glycoprotein that has a great range of benefits from improving the immunity to antiviral effects due to its unique characteristics such as the iron-binding ability. This review summarizes the characteristics of SARS-CoV-2 and the potential applications of Lf for the prevention, treatment, and recovery of COVID-19.
Collapse
Affiliation(s)
- Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Merve Kaplan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ayşenur Arslan
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Sümeyye Saritaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | | | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
5
|
Jia W, Wei J, Cheng P, Wang Q, Li Y. Exposure and respiratory infection risk via the short-range airborne route. BUILDING AND ENVIRONMENT 2022; 219:109166. [PMID: 35574565 PMCID: PMC9085449 DOI: 10.1016/j.buildenv.2022.109166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 05/09/2023]
Abstract
Leading health authorities have suggested short-range airborne transmission as a major route of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, there is no simple method to assess the short-range airborne infection risk or identify its governing parameters. We proposed a short-range airborne infection risk assessment model based on the continuum model and two-stage jet model. The effects of ventilation, physical distance and activity intensity on the short-range airborne exposure were studied systematically. The results suggested that increasing physical distance and ventilation reduced short-range airborne exposure and infection risk. However, a diminishing return phenomenon was observed when the ventilation rate or physical distance was beyond a certain threshold. When the infectious quantum concentration was less than 1 quantum/L at the mouth, our newly defined threshold distance and threshold ventilation rate were independent of quantum concentration. We estimated threshold distances of 0.59, 1.1, 1.7 and 2.6 m for sedentary/passive, light, moderate and intense activities, respectively. At these distances, the threshold ventilation was estimated to be 8, 20, 43, and 83 L/s per person, respectively. The findings show that both physical distancing and adequate ventilation are essential for minimising infection risk, especially in high-intensity activity or densely populated spaces.
Collapse
Affiliation(s)
- Wei Jia
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jianjian Wei
- Institute of Refrigeration and Cryogenics/Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Pan Cheng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Qun Wang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yuguo Li
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
6
|
Peña-Monferrer C, Antao S, Manson-Sawko R. Numerical investigation of droplets in a cross-ventilated space with sitting passengers under asymptomatic virus transmission conditions. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:123314. [PMID: 35002204 PMCID: PMC8728630 DOI: 10.1063/5.0070625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/05/2021] [Indexed: 06/14/2023]
Abstract
Asymptomatic virus transmission in public transportation is a complex process that is difficult to analyze computationally and experimentally. We present a high-resolution computational study for investigating droplet dynamics under a speech-like exhalation mode. A large eddy simulation coupled with Lagrangian tracking of drops was used to model a rectangular space with sitting thermal bodies and cross-ventilated with a multislot diffuser. Release of drops from different seat positions was evaluated to analyze the decontamination performance of the ventilation system. The results showed an overall good performance, with an average of 24.1% of droplets removed through the exhaust in the first 40 s. The droplets' distribution revealed that higher concentrations were less prevalent along the center of the domain where the passengers sit. Longitudinal contamination between rows was noted, which is a negative aspect for containing the risk of infection in a given row but has the benefit of diluting the concentration of infectious droplets. Droplets from the window seat raised more vertically and invaded the space of other passengers to a lesser extent. In contrast, droplets released from the middle seat contaminated more the aisle passenger's space, indicating that downward flow from personal ventilation could move down droplets to its breathing region. Droplets released from the aisle were dragged down by the ventilation system immediately. The distance of drops to the mouth of the passengers showed that the majority passed at a relatively safe distance. However, a few of them passed at a close distance of the order of magnitude of 1 cm.
Collapse
Affiliation(s)
- C Peña-Monferrer
- IBM Research Europe, The Hartree Centre, Warrington WA4 4AD, United Kingdom
| | - S Antao
- IBM Research Europe, The Hartree Centre, Warrington WA4 4AD, United Kingdom
| | - R Manson-Sawko
- IBM Research Europe, The Hartree Centre, Warrington WA4 4AD, United Kingdom
| |
Collapse
|
7
|
Calmet H, Inthavong K, Both A, Surapaneni A, Mira D, Egukitza B, Houzeaux G. Large eddy simulation of cough jet dynamics, droplet transport, and inhalability over a ten minute exposure. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:125122. [PMID: 35002205 PMCID: PMC8728631 DOI: 10.1063/5.0072148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
High fidelity simulations of expiratory events such as coughing provide the opportunity to predict the fate of the droplets from the turbulent jet cloud produced from a cough. It is well established that droplets carrying infectious pathogens with diameters of 1 - 5 μ m remain suspended in the air for several hours and transported by the air currents over considerable distances (e.g., in meters). This study used a highly resolved mesh to capture the multiphase turbulent buoyant cloud with suspended droplets produced by a cough. The cough droplets' dispersion was subjected to thermal gradients and evaporation and allowed to disperse between two humans standing 2 m apart. A nasal cavity anatomy was included inside the second human to determine the inhaled droplets. Three diameter ranges characterized the droplet cloud, < 5 μ m , which made up 93% of all droplets by number; 5 to 100 μm comprised 3%, and > 100 μ m comprising 4%. The results demonstrated the temporal evolution of the cough event, where a jet is first formed, followed by a thermally driven puff cloud with the latter primarily composed of droplets under 5 μm diameter, moving with a vortex string structure. After the initial cough, the data were interpolated onto a more coarse mesh to allow the simulation to cover ten minutes, equivalent to 150 breathing cycles. We observe that the critical diameter size susceptible to inhalation was 0.5 μ m , although most inhaled droplets after 10 min by the second human were approximately 0.8 μ m . These observations offer insight into the risk of airborne transmission and numerical metrics for modeling and risk assessment.
Collapse
Affiliation(s)
- Hadrien Calmet
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| | - Kiao Inthavong
- Mechanical & Automotive Engineering, School of Engineering, RMIT University, Melbourne, Australia
| | - Ambrus Both
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| | - Anurag Surapaneni
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| | - Daniel Mira
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| | - Beatriz Egukitza
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| | - Guillaume Houzeaux
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain
| |
Collapse
|
8
|
Pant CS, Kumar S, Gavasane A. Mixing at the interface of the sneezing/coughing phenomena and its effect on viral loading. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:115129. [PMID: 35002200 PMCID: PMC8728636 DOI: 10.1063/5.0073563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
The primary objective of this work is to investigate the mixing of droplets/aerosols, which originates from the sneezing/coughing (of possibly COVID-19 patient) with the ambient atmosphere. Effectively, we are studying the growth/decay of droplets/aerosols in the presence of inhomogeneous mixing, which focuses on the phenomena of entrainment of the (relatively) dry ambient air. We have varied the initial standard deviation, mean radius of the droplets/aerosols size distribution, and humidity of the ambient atmosphere to understand their effects on the final size spectra of droplets. Furthermore, a rigorous error analysis is carried out to understand the relative importance of these effects on the final spectra of droplets/aerosols. We find that these are vital parameters to determine the final spectra of droplets, which govern the broadening of the size spectra. Typically, broadening the size spectra of droplets/aerosols increases the probability of the virus-laden droplets/aerosols and thus could affect the transmission of infection in the ambient atmosphere.
Collapse
Affiliation(s)
- Chandra Shekhar Pant
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sumit Kumar
- Department of Mechanical Engineering, National Institute of Technology, Rourkela, India
| | - Abhimanyu Gavasane
- Department of Mechanical Engineering, B.M.S. College of Engineering, Bengaluru, India
| |
Collapse
|