1
|
Sahtoe DD, Andrzejewska EA, Han HL, Rennella E, Schneider MM, Meisl G, Ahlrichs M, Decarreau J, Nguyen H, Kang A, Levine P, Lamb M, Li X, Bera AK, Kay LE, Knowles TPJ, Baker D. Design of amyloidogenic peptide traps. Nat Chem Biol 2024; 20:981-990. [PMID: 38503834 PMCID: PMC11288891 DOI: 10.1038/s41589-024-01578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/09/2024] [Indexed: 03/21/2024]
Abstract
Segments of proteins with high β-strand propensity can self-associate to form amyloid fibrils implicated in many diseases. We describe a general approach to bind such segments in β-strand and β-hairpin conformations using de novo designed scaffolds that contain deep peptide-binding clefts. The designs bind their cognate peptides in vitro with nanomolar affinities. The crystal structure of a designed protein-peptide complex is close to the design model, and NMR characterization reveals how the peptide-binding cleft is protected in the apo state. We use the approach to design binders to the amyloid-forming proteins transthyretin, tau, serum amyloid A1 and amyloid β1-42 (Aβ42). The Aβ binders block the assembly of Aβ fibrils as effectively as the most potent of the clinically tested antibodies to date and protect cells from toxic Aβ42 species.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
- Hubrecht Institute, Utrecht, the Netherlands.
| | - Ewa A Andrzejewska
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Hannah L Han
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Enrico Rennella
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | - Georg Meisl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Maggie Ahlrichs
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Justin Decarreau
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Hannah Nguyen
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Paul Levine
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Mila Lamb
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- HHMI, University of Washington, Seattle, WA, USA.
| |
Collapse
|
2
|
González Díaz A, Cataldi R, Mannini B, Vendruscolo M. Preparation and Characterization of Zn(II)-Stabilized Aβ 42 Oligomers. ACS Chem Neurosci 2024; 15:2586-2599. [PMID: 38979921 PMCID: PMC11258685 DOI: 10.1021/acschemneuro.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Aβ oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aβ oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aβ, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aβ (Aβ42), which is dysregulated in AD. These Aβ42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aβ oligomers in cellular and animal AD models.
Collapse
Affiliation(s)
- Alicia González Díaz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rodrigo Cataldi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Experimental and Clinical Biomedical Sciences Mario Serio, University
of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Dear A, Thacker D, Wennmalm S, Ortigosa-Pascual L, Andrzejewska EA, Meisl G, Linse S, Knowles TPJ. Aβ Oligomer Dissociation Is Catalyzed by Fibril Surfaces. ACS Chem Neurosci 2024; 15:2296-2307. [PMID: 38785363 PMCID: PMC11157482 DOI: 10.1021/acschemneuro.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Oligomeric assemblies consisting of only a few protein subunits are key species in the cytotoxicity of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Their lifetime in solution and abundance, governed by the balance of their sources and sinks, are thus important determinants of disease. While significant advances have been made in elucidating the processes that govern oligomer production, the mechanisms behind their dissociation are still poorly understood. Here, we use chemical kinetic modeling to determine the fate of oligomers formed in vitro and discuss the implications for their abundance in vivo. We discover that oligomeric species formed predominantly on fibril surfaces, a broad class which includes the bulk of oligomers formed by the key Alzheimer's disease-associated Aβ peptides, also dissociate overwhelmingly on fibril surfaces, not in solution as had previously been assumed. We monitor this "secondary nucleation in reverse" by measuring the dissociation of Aβ42 oligomers in the presence and absence of fibrils via two distinct experimental methods. Our findings imply that drugs that bind fibril surfaces to inhibit oligomer formation may also inhibit their dissociation, with important implications for rational design of therapeutic strategies for Alzheimer's and other amyloid diseases.
Collapse
Affiliation(s)
- Alexander
J. Dear
- Biochemistry
and Structural Biology, Lund University, Lund 221 00, Sweden
- Centre
for Misfolding Diseases Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Dev Thacker
- Biochemistry
and Structural Biology, Lund University, Lund 221 00, Sweden
| | - Stefan Wennmalm
- Department
of Applied Physics, Biophysics Group, SciLifeLab, Royal Institute of Technology-KTH, Solna 171 65, Sweden
| | | | - Ewa A. Andrzejewska
- Centre
for Misfolding Diseases Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Georg Meisl
- Centre
for Misfolding Diseases Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Sara Linse
- Biochemistry
and Structural Biology, Lund University, Lund 221 00, Sweden
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
4
|
Yuzu K, Imamura H, Nozaki T, Fujii Y, Badawy SMM, Morishima K, Okuda A, Inoue R, Sugiyama M, Chatani E. Mechanistic Modeling of Amyloid Oligomer and Protofibril Formation in Bovine Insulin. J Mol Biol 2024; 436:168461. [PMID: 38301805 DOI: 10.1016/j.jmb.2024.168461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Early phase of amyloid formation, where prefibrillar aggregates such as oligomers and protofibrils are often observed, is crucial for understanding pathogenesis. However, the detailed mechanisms of their formation have been difficult to elucidate because they tend to form transiently and heterogeneously. Here, we found that bovine insulin protofibril formation proceeds in a monodisperse manner, which allowed us to characterize the detailed early aggregation process by light scattering in combination with thioflavin T fluorescence and Fourier transform infrared spectroscopy. The protofibril formation was specific to bovine insulin, whereas no significant aggregation was observed in human insulin. The kinetic analysis combining static and dynamic light scattering data revealed that the protofibril formation process in bovine insulin can be divided into two steps based on fractal dimension. When modeling the experimental data based on Smoluchowski aggregation kinetics, an aggregation scheme consisting of initial fractal aggregation forming spherical oligomers and their subsequent end-to-end association forming protofibrils was clarified. Furthermore, the analysis of temperature and salt concentration dependencies showed that the end-to-end association is the rate-limiting step, involving dehydration. The established model for protofibril formation, wherein oligomers are incorporated as a precursor, provides insight into the molecular mechanism by which protein molecules assemble during the early stage of amyloid formation.
Collapse
Affiliation(s)
- Keisuke Yuzu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Hiroshi Imamura
- Department of Bio-Science, Nagahama Institute of Bio-Science and Technology, 1266 Tamura, Nagahama, Shiga 526-0829, Japan
| | - Takuro Nozaki
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Yuki Fujii
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Shaymaa Mohamed Mohamed Badawy
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan; Department of Agricultural Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Aya Okuda
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Rintaro Inoue
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Eri Chatani
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
5
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
6
|
Sandler S, Horne RI, Rocchetti S, Novak R, Hsu NS, Castellana Cruz M, Faidon Brotzakis Z, Gregory RC, Chia S, Bernardes GJL, Keyser UF, Vendruscolo M. Multiplexed Digital Characterization of Misfolded Protein Oligomers via Solid-State Nanopores. J Am Chem Soc 2023; 145:25776-25788. [PMID: 37972287 PMCID: PMC10690769 DOI: 10.1021/jacs.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.
Collapse
Affiliation(s)
- Sarah
E. Sandler
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sara Rocchetti
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert Novak
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nai-Shu Hsu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana Cruz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca C. Gregory
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research
(A*STAR), Singapore 138668
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
7
|
Horne R, Metrick MA, Man W, Rinauro DJ, Brotzakis ZF, Chia S, Meisl G, Vendruscolo M. Secondary Processes Dominate the Quiescent, Spontaneous Aggregation of α-Synuclein at Physiological pH with Sodium Salts. ACS Chem Neurosci 2023; 14:3125-3131. [PMID: 37578897 PMCID: PMC10485892 DOI: 10.1021/acschemneuro.3c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023] Open
Abstract
The accurate recapitulation in an in vitro assay of the aggregation process of α-synuclein in Parkinson's disease has been a significant challenge. As α-synuclein does not aggregate spontaneously in most currently used in vitro assays, primary nucleation is triggered by the presence of surfaces such as lipid membranes or interfaces created by shaking, to achieve aggregation on accessible time scales. In addition, secondary nucleation is typically only observed by lowering the pH below 5.8. Here we investigated assay conditions that enables spontaneous primary nucleation and secondary nucleation at pH 7.4. Using 400 mM sodium phosphate, we observed quiescent spontaneous aggregation of α-synuclein and established that this aggregation is dominated by secondary processes. Furthermore, the presence of potassium ions enhanced the reproducibility of quiescent α-synuclein aggregation. This work provides a framework for the study of spontaneous α-synuclein aggregation at physiological pH.
Collapse
Affiliation(s)
- Robert
I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michael A. Metrick
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- College
of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Wing Man
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Dillon J. Rinauro
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Bioprocessing
Technology Institute, Agency of Science, Technology and Research (A*STAR), 138668, Singapore
| | - Georg Meisl
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
8
|
Staats R, Brotzakis ZF, Chia S, Horne RI, Vendruscolo M. Optimization of a small molecule inhibitor of secondary nucleation in α-synuclein aggregation. Front Mol Biosci 2023; 10:1155753. [PMID: 37701726 PMCID: PMC10493395 DOI: 10.3389/fmolb.2023.1155753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 09/14/2023] Open
Abstract
Parkinson's disease is characterised by the deposition in the brain of amyloid aggregates of α-synuclein. The surfaces of these amyloid aggregates can catalyse the formation of new aggregates, giving rise to a positive feedback mechanism responsible for the rapid proliferation of α-synuclein deposits. We report a procedure to enhance the potency of a small molecule to inhibit the aggregate proliferation process using a combination of in silico and in vitro methods. The optimized small molecule shows potency already at a compound:protein stoichiometry of 1:20. These results illustrate a strategy to accelerate the optimisation of small molecules against α-synuclein aggregation by targeting secondary nucleation.
Collapse
Affiliation(s)
| | | | | | | | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Vendruscolo M. Thermodynamic and kinetic approaches for drug discovery to target protein misfolding and aggregation. Expert Opin Drug Discov 2023:1-11. [PMID: 37276120 DOI: 10.1080/17460441.2023.2221024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Protein misfolding diseases, including Alzheimer's and Parkinson's diseases, are characterized by the aberrant aggregation of proteins. These conditions are still largely untreatable, despite having a major impact on our healthcare systems and societies. AREAS COVERED We describe drug discovery strategies to target protein misfolding and aggregation. We compare thermodynamic approaches, which are based on the stabilization of the native states of proteins, with kinetic approaches, which are based on the slowing down of the aggregation process. This comparison is carried out in terms of the current knowledge of the process of protein misfolding and aggregation, the mechanisms of disease and the therapeutic targets. EXPERT OPINION There is an unmet need for disease-modifying treatments that target protein misfolding and aggregation for the over 50 human disorders known to be associated with this phenomenon. With the approval of the first drugs that can prevent misfolding or inhibit aggregation, future efforts will be focused on the discovery of effective compounds with these mechanisms of action for a wide range of conditions.
Collapse
Affiliation(s)
- Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of Pairs of Toxic and Nontoxic Misfolded Protein Oligomers Elucidates the Structural Determinants of Oligomer Toxicity in Protein Misfolding Diseases. Acc Chem Res 2023. [PMID: 37071750 DOI: 10.1021/acs.accounts.3c00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ConspectusThe aberrant misfolding and aggregation of peptides and proteins into amyloid aggregates occurs in over 50 largely incurable protein misfolding diseases. These pathologies include Alzheimer's and Parkinson's diseases, which are global medical emergencies owing to their prevalence in increasingly aging populations worldwide. Although the presence of mature amyloid aggregates is a hallmark of such neurodegenerative diseases, misfolded protein oligomers are increasingly recognized as of central importance in the pathogenesis of many of these maladies. These oligomers are small, diffusible species that can form as intermediates in the amyloid fibril formation process or be released by mature fibrils after they are formed. They have been closely associated with the induction of neuronal dysfunction and cell death. It has proven rather challenging to study these oligomeric species because of their short lifetimes, low concentrations, extensive structural heterogeneity, and challenges associated with producing stable, homogeneous, and reproducible populations. Despite these difficulties, investigators have developed protocols to produce kinetically, chemically, or structurally stabilized homogeneous populations of protein misfolded oligomers from several amyloidogenic peptides and proteins at experimentally ameneable concentrations. Furthermore, procedures have been established to produce morphologically similar but structurally distinct oligomers from the same protein sequence that are either toxic or nontoxic to cells. These tools offer unique opportunities to identify and investigate the structural determinants of oligomer toxicity by a close comparative inspection of their structures and the mechanisms of action through which they cause cell dysfunction.This Account reviews multidisciplinary results, including from our own groups, obtained by combining chemistry, physics, biochemistry, cell biology, and animal models for pairs of toxic and nontoxic oligomers. We describe oligomers comprised of the amyloid-β peptide, which underlie Alzheimer's disease, and α-synuclein, which are associated with Parkinson's disease and other related neurodegenerative pathologies, collectively known as synucleinopathies. Furthermore, we also discuss oligomers formed by the 91-residue N-terminal domain of [NiFe]-hydrogenase maturation factor from E. coli, which we use as a model non-disease-related protein, and by an amyloid stretch of Sup35 prion protein from yeast. These oligomeric pairs have become highly useful experimental tools for studying the molecular determinants of toxicity characteristic of protein misfolding diseases. Key properties have been identified that differentiate toxic from nontoxic oligomers in their ability to induce cellular dysfunction. These characteristics include solvent-exposed hydrophobic regions, interactions with membranes, insertion into lipid bilayers, and disruption of plasma membrane integrity. By using these properties, it has been possible to rationalize in model systems the responses to pairs of toxic and nontoxic oligomers. Collectively, these studies provide guidance for the development of efficacious therapeutic strategies to target rationally the cytotoxicity of misfolded protein oligomers in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza 50009, Spain
| | - Roberta Cascella
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Peter M Tessier
- Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
11
|
Yi Y, Lim MH. Current understanding of metal-dependent amyloid-β aggregation and toxicity. RSC Chem Biol 2023; 4:121-131. [PMID: 36794021 PMCID: PMC9906324 DOI: 10.1039/d2cb00208f] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022] Open
Abstract
The discovery of effective therapeutics targeting amyloid-β (Aβ) aggregates for Alzheimer's disease (AD) has been very challenging, which suggests its complicated etiology associated with multiple pathogenic elements. In AD-affected brains, highly concentrated metals, such as copper and zinc, are found in senile plaques mainly composed of Aβ aggregates. These metal ions are coordinated to Aβ and affect its aggregation and toxicity profiles. In this review, we illustrate the current view on molecular insights into the assembly of Aβ peptides in the absence and presence of metal ions as well as the effect of metal ions on their toxicity.
Collapse
Affiliation(s)
- Yelim Yi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| |
Collapse
|
12
|
Rother C, Uhlmann RE, Müller SA, Schelle J, Skodras A, Obermüller U, Häsler LM, Lambert M, Baumann F, Xu Y, Bergmann C, Salvadori G, Loos M, Brzak I, Shimshek D, Neumann U, Walker LC, Schultz SA, Chhatwal JP, Kaeser SA, Lichtenthaler SF, Staufenbiel M, Jucker M. Experimental evidence for temporal uncoupling of brain Aβ deposition and neurodegenerative sequelae. Nat Commun 2022; 13:7333. [PMID: 36443293 PMCID: PMC9705543 DOI: 10.1038/s41467-022-34538-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Brain Aβ deposition is a key early event in the pathogenesis of Alzheimer´s disease (AD), but the long presymptomatic phase and poor correlation between Aβ deposition and clinical symptoms remain puzzling. To elucidate the dependency of downstream pathologies on Aβ, we analyzed the trajectories of cerebral Aβ accumulation, Aβ seeding activity, and neurofilament light chain (NfL) in the CSF (a biomarker of neurodegeneration) in Aβ-precursor protein transgenic mice. We find that Aβ deposition increases linearly until it reaches an apparent plateau at a late age, while Aβ seeding activity increases more rapidly and reaches a plateau earlier, coinciding with the onset of a robust increase of CSF NfL. Short-term inhibition of Aβ generation in amyloid-laden mice reduced Aβ deposition and associated glial changes, but failed to reduce Aβ seeding activity, and CSF NfL continued to increase although at a slower pace. When short-term or long-term inhibition of Aβ generation was started at pre-amyloid stages, CSF NfL did not increase despite some Aβ deposition, microglial activation, and robust brain Aβ seeding activity. A dissociation of Aβ load and CSF NfL trajectories was also found in familial AD, consistent with the view that Aβ aggregation is not kinetically coupled to neurotoxicity. Rather, neurodegeneration starts when Aβ seeding activity is saturated and before Aβ deposition reaches critical (half-maximal) levels, a phenomenon reminiscent of the two pathogenic phases in prion disease.
Collapse
Affiliation(s)
- Christine Rother
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Ruth E Uhlmann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Juliane Schelle
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Angelos Skodras
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Ulrike Obermüller
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Lisa M Häsler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Marius Lambert
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Frank Baumann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Ying Xu
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Carina Bergmann
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, D-72074, Tübingen, Germany
| | - Giulia Salvadori
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Maarten Loos
- Sylics (Synaptologics BV), 3721 MA, Bilthoven, The Netherlands
| | - Irena Brzak
- Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Derya Shimshek
- Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Ulf Neumann
- Novartis Institutes for Biomedical Research, CH-4056, Basel, Switzerland
| | - Lary C Walker
- Department of Neurology and Emory National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | | | - Jasmeer P Chhatwal
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Stephan A Kaeser
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Staufenbiel
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany
| | - Mathias Jucker
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, D-72076, Tübingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, D-72076, Tübingen, Germany.
| |
Collapse
|