1
|
Sirote-Katz C, Shohat D, Merrigan C, Lahini Y, Nisoli C, Shokef Y. Emergent disorder and mechanical memory in periodic metamaterials. Nat Commun 2024; 15:4008. [PMID: 38773062 PMCID: PMC11109184 DOI: 10.1038/s41467-024-47780-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/12/2024] [Indexed: 05/23/2024] Open
Abstract
Ordered mechanical systems typically have one or only a few stable rest configurations, and hence are not considered useful for encoding memory. Multistable and history-dependent responses usually emerge from quenched disorder, for example in amorphous solids or crumpled sheets. In contrast, due to geometric frustration, periodic magnetic systems can create their own disorder and espouse an extensive manifold of quasi-degenerate configurations. Inspired by the topological structure of frustrated artificial spin ices, we introduce an approach to design ordered, periodic mechanical metamaterials that exhibit an extensive set of spatially disordered states. While our design exploits the correspondence between frustration in magnetism and incompatibility in meta-mechanics, our mechanical systems encompass continuous degrees of freedom, and thus generalize their magnetic counterparts. We show how such systems exhibit non-Abelian and history-dependent responses, as their state can depend on the order in which external manipulations were applied. We demonstrate how this richness of the dynamics enables to recognize, from a static measurement of the final state, the sequence of operations that an extended system underwent. Thus, multistability and potential to perform computation emerge from geometric frustration in ordered mechanical lattices that create their own disorder.
Collapse
Affiliation(s)
- Chaviva Sirote-Katz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dor Shohat
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Carl Merrigan
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yoav Lahini
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Yair Shokef
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 69978, Israel.
- Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, 69978, Israel.
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
2
|
Lindeman CW, Hagh VF, Ip CI, Nagel SR. Competition between Energy and Dynamics in Memory Formation. PHYSICAL REVIEW LETTERS 2023; 130:197201. [PMID: 37243648 DOI: 10.1103/physrevlett.130.197201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 03/10/2023] [Accepted: 04/19/2023] [Indexed: 05/29/2023]
Abstract
Bistable objects that are pushed between states by an external field are often used as a simple model to study memory formation in disordered materials. Such systems, called hysterons, are typically treated quasistatically. Here, we generalize hysterons to explore the effect of dynamics in a simple spring system with tunable bistability and study how the system chooses a minimum. Changing the timescale of the forcing allows the system to transition between a situation where its fate is determined by following the local energy minimum to one where it is trapped in a shallow well determined by the path taken through configuration space. Oscillatory forcing can lead to transients lasting many cycles, a behavior not possible for a single quasistatic hysteron.
Collapse
Affiliation(s)
- Chloe W Lindeman
- Department of Physics and The James Franck and Enrico Fermi Institutes The University of Chicago, Chicago, Illinois 60637, USA
| | - Varda F Hagh
- Department of Physics and The James Franck and Enrico Fermi Institutes The University of Chicago, Chicago, Illinois 60637, USA
| | - Chi Ian Ip
- Department of Physics and The James Franck and Enrico Fermi Institutes The University of Chicago, Chicago, Illinois 60637, USA
| | - Sidney R Nagel
- Department of Physics and The James Franck and Enrico Fermi Institutes The University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
3
|
Keim NC, Medina D. Mechanical annealing and memories in a disordered solid. SCIENCE ADVANCES 2022; 8:eabo1614. [PMID: 36197976 PMCID: PMC9534499 DOI: 10.1126/sciadv.abo1614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Shearing a disordered or amorphous solid for many cycles with a constant strain amplitude can anneal it, relaxing a sample to a steady state that encodes a memory of that amplitude. This steady state also features a remarkable stability to amplitude variations that allows one to read the memory. Here, we shed light on both annealing and memory by considering how to mechanically anneal a sample to have as little memory content as possible. In experiments, we show that a "ring-down" protocol reaches a comparable steady state but with no discernible memories and minimal structural anisotropy. We introduce a method to characterize the population of rearrangements within a sample and show how it connects with the response to amplitude variation and the size of annealing steps. These techniques can be generalized to other forms of glassy matter and a wide array of disordered solids, especially those that yield by flowing homogeneously.
Collapse
Affiliation(s)
- Nathan C. Keim
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Dani Medina
- Department of Physics, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| |
Collapse
|