1
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Role of the αC-β4 loop in protein kinase structure and dynamics. eLife 2024; 12:RP91980. [PMID: 39630082 PMCID: PMC11616992 DOI: 10.7554/elife.91980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Nisha A Jonniya
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Sophia P Hirakis
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| | - Alexandr P Kornev
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
| | - Susan S Taylor
- Department of Pharmacology, University of California, San DiegoSan DiegoUnited States
- Department of Chemistry and Biochemistry, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
2
|
Cui Q, Hamm P, Haran G, Hyeon C. Introduction to new views of allostery. J Chem Phys 2024; 161:150401. [PMID: 39431446 DOI: 10.1063/5.0239162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/22/2024] Open
Affiliation(s)
- Qiang Cui
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, South Korea
| |
Collapse
|
3
|
Burns D, Venditti V, Potoyan DA. Illuminating Protein Allostery by Chemically Accurate Contact Response Analysis (ChACRA). J Chem Theory Comput 2024; 20:8711-8723. [PMID: 39038177 DOI: 10.1021/acs.jctc.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins. The first protein, IGPS, is a model of ensemble allostery that lacks clear structural differences between the active and inactive states. We show that the application of ChACRA reveals the experimentally identified allosteric coupling between effector and active sites of IGPS. The second protein, ATCase, is a classic example of allostery with distinct active and inactive structural states. Using ChACRA, we directly identify the most significant residue level interactions underlying the enzyme's cooperative behavior. Both test cases demonstrate the utility of ChACRA's unsupervised machine learning approach for dissecting allostery at the residue level.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
4
|
Gonzales J, Kim I, Hwang W, Cho JH. Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of influenza A virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595776. [PMID: 38826371 PMCID: PMC11142230 DOI: 10.1101/2024.05.24.595776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Viral proteins frequently mutate to evade or antagonize host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85β subunit. Here, we present the deep analysis for the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveal how the mutations rewired inter-residue communications which underlies long-range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85β with approximately 10-fold greater affinity than 1918 NS1 due to allosteric mutational effects. Notably, these mutations also exhibited long-range epistatic effects. NMR chemical shift perturbation and methyl-axis order parameter analyses revealed that the mutations induced long-range structural and dynamic changes in PR8 NS1, enhancing its affinity to p85β. Complementary MD simulations and graph-based network analysis uncover how these mutations rewire dynamic residue interaction networks, which underlies the long-range epistasis and allosteric effects on p85β-binding affinity. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provides insight into their role in the molecular evolution of NS1.
Collapse
|
5
|
Kolossváry I. A Fresh Look at the Normal Mode Analysis of Proteins: Introducing Allosteric Co-Vibrational Modes. JACS AU 2024; 4:1303-1309. [PMID: 38665643 PMCID: PMC11040550 DOI: 10.1021/jacsau.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
We propose a new way of utilizing normal modes to study protein conformational transitions. Instead of considering individual modes independently, we show that a weighted mixture of low-frequency vibrational modes can reveal dynamic information about the conformational mechanism in more detail than any single mode can. The weights in the mixed mode, termed the allosteric covibrational mode, are determined using a simple model where the conformational transition is viewed as a perturbation of the coupled harmonic oscillator associated with either of the two conformations. We demonstrate our theory in a biologically relevant example of high pharmaceutical interest involving the V617F mutation of Janus 2 tyrosine kinase (JAK2).
Collapse
Affiliation(s)
- István Kolossváry
- Department of Biomedical
Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
6
|
Levillayer L, Brighelli C, Demeret C, Sakuntabhai A, Bureau JF. Role of two modules controlling the interaction between SKAP1 and SRC kinases comparison with SKAP2 architecture and consequences for evolution. PLoS One 2024; 19:e0296230. [PMID: 38483858 PMCID: PMC10939263 DOI: 10.1371/journal.pone.0296230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
SRC kinase associated phosphoprotein 1 (SKAP1), an adaptor for protein assembly, plays an important role in the immune system such as stabilizing immune synapses. Understanding how these functions are controlled at the level of the protein-protein interactions is necessary to describe these processes and to develop therapeutics. Here, we dissected the SKAP1 modular organization to recognize SRC kinases and compared it to that of its paralog SRC kinase associated phosphoprotein 2 (SKAP2). Different conserved motifs common to either both proteins or specific to SKAP2 were found using this comparison. Two modules harboring different binding properties between SKAP1 and SKAP2 were identified: one composed of two conserved motifs located in the second interdomain interacting at least with the SH2 domain of SRC kinases and a second one composed of the DIM domain modulated by the SH3 domain and the activation of SRC kinases. This work suggests a convergent evolution of the binding properties of some SRC kinases interacting specifically with either SKAP1 or SKAP2.
Collapse
Affiliation(s)
- Laurine Levillayer
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Camille Brighelli
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Caroline Demeret
- Institut Pasteur, Université de Paris-Cité, Laboratoire Interactomique, ARN et Immunité ‐ Interactomics, RNA and Immunity, Paris, France
| | - Anavaj Sakuntabhai
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| | - Jean-François Bureau
- Institut Pasteur, Institut National de Recherche pour l’Agriculture, Université de Paris-Cité, CNRS UMR 2000, l’Alimentation et l’Environnement (INRAE) USC 1510, Unité Écologie et Émergence des Pathogènes Transmis par les Arthropodes (EEPTA), Paris, France
| |
Collapse
|
7
|
Welsh CL, Madan LK. Allostery in Protein Tyrosine Phosphatases is Enabled by Divergent Dynamics. J Chem Inf Model 2024; 64:1331-1346. [PMID: 38346324 PMCID: PMC11144062 DOI: 10.1021/acs.jcim.3c01615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Dynamics-driven allostery provides important insights into the working mechanics of proteins, especially enzymes. In this study, we employ this paradigm to answer a basic question: in enzyme superfamilies, where the catalytic mechanism, active sites, and protein fold are conserved, what accounts for the difference in the catalytic prowess of the individual members? We show that when subtle changes in sequence do not translate to changes in structure, they do translate to changes in dynamics. We use sequentially diverse PTP1B, TbPTP1, and YopH as representatives of the conserved protein tyrosine phosphatase (PTP) superfamily. Using amino acid network analysis of group behavior (community analysis) and influential node dominance on networks (eigenvector centrality), we explain the dynamic basis of the catalytic variations seen between the three proteins. Importantly, we explain how a dynamics-based blueprint makes PTP1B amenable to allosteric control and how the same is abstracted in TbPTP1 and YopH.
Collapse
Affiliation(s)
- Colin L. Welsh
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
| | - Lalima K. Madan
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, College of Medicine, Medical University of South Carolina, Charleston, SC-29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC-29425, USA
| |
Collapse
|
8
|
Astore MA, Pradhan AS, Thiede EH, Hanson SM. Protein dynamics underlying allosteric regulation. Curr Opin Struct Biol 2024; 84:102768. [PMID: 38215528 DOI: 10.1016/j.sbi.2023.102768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics. In this review, we survey the literature for an up-to-date biological and theoretical understanding of protein allostery. By delineating five ways in which the energy landscape or the kinetics of a system may change to give rise to allostery, we aim to help the reader grasp its physical origins. To illustrate this framework, we examine three systems that display these forms of allostery: allosteric inhibitors of beta-lactamases, thermosensation of TRP channels, and the role of kinetic allostery in the function of kinases. Finally, we summarize the growing power of computational tools available to investigate the different forms of allostery presented in this review.
Collapse
Affiliation(s)
- Miro A Astore
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA. https://twitter.com/@miroastore
| | - Akshada S Pradhan
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Erik H Thiede
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Sonya M Hanson
- Center for Computational Biology, Flatiron Institute, New York, NY, USA; Center for Computational Mathematics, Flatiron Institute, New York, NY, USA.
| |
Collapse
|
9
|
Kedia H, Pan D, Slotine JJ, England JL. Drive-specific selection in multistable mechanical networks. J Chem Phys 2023; 159:214106. [PMID: 38047510 DOI: 10.1063/5.0171993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/05/2023] [Indexed: 12/05/2023] Open
Abstract
Systems with many stable configurations abound in nature, both in living and inanimate matter, encoding a rich variety of behaviors. In equilibrium, a multistable system is more likely to be found in configurations with lower energy, but the presence of an external drive can alter the relative stability of different configurations in unexpected ways. Living systems are examples par excellence of metastable nonequilibrium attractors whose structure and stability are highly dependent on the specific form and pattern of the energy flow sustaining them. Taking this distinctively lifelike behavior as inspiration, we sought to investigate the more general physical phenomenon of drive-specific selection in nonequilibrium dynamics. To do so, we numerically studied driven disordered mechanical networks of bistable springs possessing a vast number of stable configurations arising from the two stable rest lengths of each spring, thereby capturing the essential physical properties of a broad class of multistable systems. We found that there exists a range of forcing amplitudes for which the attractor states of driven disordered multistable mechanical networks are fine-tuned with respect to the pattern of external forcing to have low energy absorption from it. Additionally, we found that these drive-specific attractor states are further stabilized by precise matching between the multidimensional shape of their orbit and that of the potential energy well they inhabit. Lastly, we showed evidence of drive-specific selection in an experimental system and proposed a general method to estimate the range of drive amplitudes for drive-specific selection.
Collapse
Affiliation(s)
- Hridesh Kedia
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Deng Pan
- Physics of Living Systems Group, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jean-Jacques Slotine
- Nonlinear Systems Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
10
|
Wu J, Jonniya NA, Hirakis SP, Olivieri C, Veglia G, Kornev AP, Taylor SS. Protein Kinase Structure and Dynamics: Role of the αC-β4 Loop. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555822. [PMID: 37693538 PMCID: PMC10491255 DOI: 10.1101/2023.08.31.555822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, Local Spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant. This comparison highlights the importance of the αC-β4 loop and key residues at the interface between the N- and C-lobes. In addition, we delved more deeply into the structure of the apo C-subunit, which lacks ATP. While apo C-subunit showed no significant changes in backbone dynamics of the αC-β4 loop, we found significant differences in the side chain dynamics of K105. The LSP analysis suggests disruption of communication between the N- and C-lobes in the F100A mutant, which would be consistent with the structural changes predicted by the NMR spectroscopy.
Collapse
Affiliation(s)
- Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Nisha A. Jonniya
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Sophia P. Hirakis
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, MN 55455, USA
- Department of Chemistry, University of Minnesota, MN 55455, USA
| | - Alexandr P. Kornev
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92037-0654, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92037-0654, USA
| |
Collapse
|