1
|
Buyel JF. Product safety aspects of plant molecular farming. Front Bioeng Biotechnol 2023; 11:1238917. [PMID: 37614627 PMCID: PMC10442644 DOI: 10.3389/fbioe.2023.1238917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Plant molecular farming (PMF) has been promoted since the 1990s as a rapid, cost-effective and (most of all) safe alternative to the cultivation of bacteria or animal cells for the production of biopharmaceutical proteins. Numerous plant species have been investigated for the production of a broad range of protein-based drug candidates. The inherent safety of these products is frequently highlighted as an advantage of PMF because plant viruses do not replicate in humans and vice versa. However, a more nuanced analysis of this principle is required when considering other pathogens because toxic compounds pose a risk even in the absence of replication. Similarly, it is necessary to assess the risks associated with the host system (e.g., the presence of toxic secondary metabolites) and the production approach (e.g., transient expression based on bacterial infiltration substantially increases the endotoxin load). This review considers the most relevant host systems in terms of their toxicity profile, including the presence of secondary metabolites, and the risks arising from the persistence of these substances after downstream processing and product purification. Similarly, we discuss a range of plant pathogens and disease vectors that can influence product safety, for example, due to the release of toxins. The ability of downstream unit operations to remove contaminants and process-related toxic impurities such as endotoxins is also addressed. This overview of plant-based production, focusing on product safety aspects, provides recommendations that will allow stakeholders to choose the most appropriate strategies for process development.
Collapse
Affiliation(s)
- J. F. Buyel
- Department of Biotechnology (DBT), Institute of Bioprocess Science and Engineering (IBSE), University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
2
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
3
|
Mameri H, Gaudin JC, Lollier V, Tranquet O, Brossard C, Pietri M, Marion D, Codreanu-Morel F, Beaudouin E, Wien F, Gohon Y, Briozzo P, Denery-Papini S. Critical structural elements for the antigenicity of wheat allergen LTP1 (Tri a 14) revealed by site-directed mutagenesis. Sci Rep 2022; 12:12253. [PMID: 35851276 PMCID: PMC9293932 DOI: 10.1038/s41598-022-15811-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Lipid transfer proteins (LTPs) were identified as allergens in a large variety of pollens and foods, including cereals. LTPs belong to the prolamin superfamily and display an α-helical fold, with a bundle of four α-helices held together by four disulfide bonds. Wheat LTP1 is involved in allergic reactions to food. To identify critical structural elements of antibody binding to wheat LTP1, we used site-directed mutagenesis on wheat recombinant LTP1 to target: (i) sequence conservation and/or structure flexibility or (ii) each disulfide bond. We evaluated the modifications induced by these mutations on LTP1 secondary structure by synchrotron radiation circular dichroism and on its antigenicity with patient's sera and with mouse monoclonal antibodies. Disruption of the C28-C73 disulfide bond significantly affected IgE-binding and caused protein denaturation, while removing C13-C27 bond decreased LTP1 antigenicity and slightly modified LTP1 overall folding. In addition, we showed Lys72 to be a key residue; the K72A mutation did not affect global folding but modified the local 3D structure of LTP1 and strongly reduced IgE-binding. This work revealed a cluster of residues (C13, C27, C28, C73 and K72), four of which embedded in disulfide bonds, which play a critical role in LTP1 antigenicity.
Collapse
Affiliation(s)
- Hamza Mameri
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France. .,UMR 1208 IATE, Univ Montpellier, INRAE, L'Institut-Agro Montpellier, 34060, Montpellier, France.
| | - Jean-Charles Gaudin
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE, UMR 0588 Biologie intégrée pour la valorisation de la diversité des arbres et de la forêt (BIOFORA), 45075, Orléans, France
| | - Virginie Lollier
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE, UR BIA, 44316, Nantes, France.,INRAE, PROBE Research Infrastructure, BIBS Facility, 44316, Nantes, France
| | - Olivier Tranquet
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,INRAE UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), 13288, Marseille, France
| | - Chantal Brossard
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France
| | - Manon Pietri
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.,Institut de Cancérologie de l'Ouest, Centre René Gauducheau, 44805, Saint Herblain Cedex, France
| | - Didier Marion
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France
| | - Fanny Codreanu-Morel
- CHU Luxembourg, Centre Hospitalier de Luxembourg, Kanner Klinik, 1210, Luxembourg, Luxembourg
| | - Etienne Beaudouin
- Service d'Allergologie, Hôpital de Mercy, CHR Metz, 57000, Metz, France
| | - Frank Wien
- Synchrotron Soleil, Saint-Aubin, 91192, Gif-sur-Yvette, France
| | - Yann Gohon
- INRAE, UMR 1318 Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | - Pierre Briozzo
- INRAE, UMR 1318 Institut Jean-Pierre Bourgin, 78026, Versailles, France
| | - Sandra Denery-Papini
- INRAE, UR 1268 Biopolymères Interactions Assemblages (BIA), 44316, Nantes, France.
| |
Collapse
|
4
|
Skypala IJ, Bartra J, Ebo DG, Antje Faber M, Fernández‐Rivas M, Gomez F, Luengo O, Till SJ, Asero R, Barber D, Cecchi L, Diaz Perales A, Hoffmann‐Sommergruber K, Anna Pastorello E, Swoboda I, Konstantinopoulos AP, Ree R, Scala E. The diagnosis and management of allergic reactions in patients sensitized to non-specific lipid transfer proteins. Allergy 2021; 76:2433-2446. [PMID: 33655502 DOI: 10.1111/all.14797] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Sensitization to one or more non-specific lipid transfer proteins (nsLTPs), initially thought to exist mainly in southern Europe, is becoming accepted as a cause of allergic reactions to plant foods across Europe and beyond. The peach nsLTP allergen Pru p 3 is a dominant sensitizing allergen and peaches a common food trigger, although multiple foods can be involved. A frequent feature of reactions is the requirement for a cofactor (exercise, alcohol, non-steroidal anti-inflammatory drugs, Cannabis sativa) to be present for a food to elicit a reaction. The variability in the food and cofactor triggers makes it essential to include an allergy-focused diet and clinical history in the diagnostic workup. Testing on suspected food triggers should also establish whether sensitization to nsLTP is present, using purified or recombinant nsLTP allergens such as Pru p 3. The avoidance of known trigger foods and advice on cofactors is currently the main management for this condition. Studies on immunotherapy are promising, but it is unknown whether such treatments will be useful in populations where Pru p 3 is not the primary sensitizing allergen. Future research should focus on the mechanisms of cofactors, improving diagnostic accuracy and establishing the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Isabel J. Skypala
- Royal Brompton & Harefield NHS Foundation Trust London UK
- Department of Allergy and Clinical Immunology Imperial College London UK
| | - Joan Bartra
- Hospital Clinic Barcelona Spain
- IDIBAPS Universitat de Barcelona ARADyAL, Barcelona Spain
| | - Didier G. Ebo
- Department of Immunology, Allergology, Rheumatology Faculty of Medicine and Health Sciences Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
- Jan Palfijn Ziekenhuis Ghent Ghent Belgium
| | - Margaretha Antje Faber
- Faculty of Medicine and Health Sciences Department of Immunology, Allergology, Rheumatology Infla‐Med Centre of Excellence Antwerp University Hospital University of Antwerp Antwerp Belgium
| | - Montserrat Fernández‐Rivas
- Department of Allergy Hospital Clínico San Carlos Universidad Complutense de Madrid IdISSC ARADyAL Madrid Spain
| | - Francisca Gomez
- Allergy Unit IBIMA—Hospital Regional Universitario de Malaga Malaga Spain
- Spanish Network for Allergy ‐ RETICS de Asma Reaccionesadversas y Alérgicas (ARADyAL Madrid Spain
| | - Olga Luengo
- Allergy Unit Internal Medicine Department Vall d'Hebron University Hospital Universitat Autònoma de Barcelona ARADyAL Barcelona Spain
| | - Stephen J. Till
- Peter Gorer Department of Immunobiology King’s College London London UK
- Department of Allergy Guy’s & St Thomas’ NHS Foundation Trust London UK
| | - Riccardo Asero
- Ambulatorio di Allergologia Clinica San Carlo Paderno Dugnano Italy
| | - Domingo Barber
- IMMA School of Medicine Universidad San Pablo CEU, Universities Madrid Spain
- RETIC ARADYAL RD16/0006/0015 Instituto de Salud Carlos III Madrid Spain
| | - Lorenzo Cecchi
- SOS Allergy and Clinical Immunology USL Toscana Centro Prato Italy
| | - Araceli Diaz Perales
- Centro de Biotecnología y Genómica de Plantas Universidad Politecnica Madrid Spain
| | | | - Elide Anna Pastorello
- Unit of Allergology and Immunology ASST Grande Ospedale Metropolitano Niguarda University of Milan Milan Italy
| | - Ines Swoboda
- Biotechnology Section Campus Vienna Biocenter FH Campus Wien, University of Applied Sciences Vienna Austria
| | | | - Ronald Ree
- Department of Experimental Immunology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
- Department of Otorhinolaryngology Amsterdam University Medical Centers, location AMC Amsterdam The Netherlands
| | - Enrico Scala
- Experimental Allergy Unit Istituto Dermopatico dell’Immacolata – IRCCS FLMM Rome Italy
| | | |
Collapse
|
5
|
Zheng H, Yan G, Lee Y, Alcaraz C, Marquez S, de Mejia EG. Effect of the extrusion process on allergen reduction and the texture change of soybean protein isolate-corn and soybean flour-corn mixtures. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102421] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Oliva N, Florida Cueto-Reaño M, Trijatmiko KR, Samia M, Welsch R, Schaub P, Beyer P, Mackenzie D, Boncodin R, Reinke R, Slamet-Loedin I, Mallikarjuna Swamy BP. Molecular characterization and safety assessment of biofortified provitamin A rice. Sci Rep 2020; 10:1376. [PMID: 31992721 PMCID: PMC6987151 DOI: 10.1038/s41598-020-57669-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/30/2019] [Indexed: 11/09/2022] Open
Abstract
Part of the studies involved in safety assessment of genetically engineered crops includes characterizing the organization, integrity, and stability of the inserted DNA and evaluating the potential allergenicity and toxicity of newly-expressed proteins. Molecular characterization of the introduced DNA in provitamin A biofortified rice event GR2E confirmed insertion of a single copy of the transfer-DNA in the genome and its inheritance as a single locus. Nucleotide sequencing of the inserted DNA confirmed it was introduced without modifications. The phytoene synthase, and carotene desaturase proteins did not display sequence similarity with allergens or toxins. Both proteins were rapidly digested in simulated gastric fluid and their enzymatic activity was inhibited upon heat treatment. Acute oral toxicity testing of the protein in mice demonstrated lack of adverse effects. These evidences substantiated the lack of any identifiable hazards for both proteins and in combination with other existing comparative analyses provided assurance that food derived from this rice is safe. This conclusion is in line with those of the regulatory agencies of US Food and Drug Administration, Health Canada and Food Standard Australia and New Zealand.
Collapse
Affiliation(s)
- Norman Oliva
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Maria Florida Cueto-Reaño
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Kurniawan R Trijatmiko
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Mercy Samia
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Ralf Welsch
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Patrick Schaub
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Peter Beyer
- Faculty of Biology, Cell Biology, University of Freiburg, Freiburg, Germany
| | - Donald Mackenzie
- Institute for International Crop Improvement, Donald Danforth Plant Science Center, Saint Louis, Missouri, USA.
| | - Raul Boncodin
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Russell Reinke
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines
| | - Inez Slamet-Loedin
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines.
| | - B P Mallikarjuna Swamy
- Strategic Innovation Platform, International Rice Research Institute (IRRI), Metro Manila, Philippines.
| |
Collapse
|
7
|
Direct PCR-free electrochemical biosensing of plant-food derived nucleic acids in genomic DNA extracts. Application to the determination of the key allergen Sola l 7 in tomato seeds. Biosens Bioelectron 2019; 137:171-177. [DOI: 10.1016/j.bios.2019.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/02/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022]
|
8
|
Tan Y, Zhang J, Sun Y, Tong Z, Peng C, Chang L, Guo A, Wang X. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Sci Rep 2019; 9:8219. [PMID: 31160654 PMCID: PMC6547748 DOI: 10.1038/s41598-019-44748-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Proteomic differences were compared between phytase-transgenic (PT) maize seeds and nontransgenic (NT) maize seeds through two-dimensional electrophoresis (2-DE) with mass spectrometry (MS). When maize was grown under field conditions, 30 differentially accumulated proteins (DAPs) were successfully identified in PT seeds (PT/NT). Clusters of Orthologous Groups (COG) functional classification of these proteins showed that the largest group was associated with posttranslational modifications. To investigate the effects of environmental factors, we further compared the seed protein profiles of the same maize planted in a greenhouse or under field conditions. There were 76 DAPs between the greenhouse- and field-grown NT maize seeds and 77 DAPs between the greenhouse- and field-grown PT maize seeds However, under the same planting conditions, there were only 43 DAPs (planted in the greenhouse) or 37 DAPs (planted in the field) between PT and NT maize seeds. The results revealed that DAPs caused by environmental factors were more common than those caused by the insertion of exogenous genes, indicating that the environment has much more important effects on the seed protein profiles. Our maize seed proteomics results also indicated that the occurrence of unintended effects is not specific to genetically modified crops (GMCs); instead, such effects often occur in traditionally bred plants. Our data may be beneficial for biosafety assessments of GMCs at the protein profile level in the future.
Collapse
Affiliation(s)
- Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China. .,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
9
|
Denisow-Pietrzyk M, Pietrzyk Ł, Denisow B. Asteraceae species as potential environmental factors of allergy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:6290-6300. [PMID: 30666578 PMCID: PMC6428906 DOI: 10.1007/s11356-019-04146-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/02/2019] [Indexed: 05/09/2023]
Abstract
The statistics from Europe and the USA have proven a high risk for skin diseases associated with plant contact. Therefore, plant-induced dermatitis is of increasing attention in dermatology. The focus of this paper was to present the current knowledge on aspects of contact allergy related to Asteraceae (Compositae) species. The Asteraceae family is one of the largest in the world with members across all continents. The PubMed/Medline databases have been searched. The Asteraceae representatives consist of diverse secondary metabolites, which exhibit various advantageous effects in humans. In particular, sesquiterpene lactones (SLs) may cause sensitization resulting in skin irritation and inflammation. In this study, we tried to reveal the allergenic potential of several Asteraceae species. The Asteraceae-related allergy symptoms involve eczema, hay fever, asthma, or even anaphylaxis. Furthermore, the evidence of severe cross-reactivity with food and pollen allergens (PFS) in patients sensitive to Asteraceae allergens have been announced. Further identification and characterization of secondary metabolites and possible allergens in Asteraceae are necessary for the better understanding of Asteraceae-related immune response. The Asteraceae allergy screening panel (the SL mix and the Compositae mix of five plant species) is a promising tool to improve allergy diagnostics and therapy.
Collapse
Affiliation(s)
- Marta Denisow-Pietrzyk
- Department of Dermatology, 1st Military Clinical Hospital with the Outpatient Clinic in Lublin, Lublin, Poland
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-094, Lublin, Poland
| | - Łukasz Pietrzyk
- Department of Didactics and Medical Simulation, Chair of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-094, Lublin, Poland.
- Department of General, Oncological and Minimally Invasive Surgery, 1st Military Clinical Hospital with the Outpatient Clinic in Lublin, Lublin, Poland.
| | - Bożena Denisow
- Department of Botany, Subdepartment of Plants Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.
| |
Collapse
|
10
|
Olivry T, Bexley J. Cornstarch is less allergenic than corn flour in dogs and cats previously sensitized to corn. BMC Vet Res 2018; 14:207. [PMID: 29945608 PMCID: PMC6020376 DOI: 10.1186/s12917-018-1538-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Background Corn appears to be an uncommon food source of allergens in dogs and cats. There is limited information on the nature of the corn allergens in dogs and cats and their presence in the various foodstuffs used in commercial pet foods. The aim of this study was to determine if serum IgE from corn-sensitized dogs and cats recognized proteins in corn flour and cornstarch, which are common sources of carbohydrates in pet foods. Results We selected archived sera from allergy-suspected dogs (40) and cats (40) with either undetectable, low, medium or high serum levels of corn-specific IgE. These sera were tested then by ELISA on plates coated with extracts made from corn kernels, corn flour, cornstarch and the starch used in the commercially-available extensively-hydrolyzed pet food Anallergenic (Royal Canin). Immunoblotting was then performed on the same extracts with some of the sera from moderate-to-high corn-sensitized dogs and cats. Using ELISA, it is mostly the dogs and cats with moderate and high corn-specific IgE levels that also had IgE identifying allergens in the flour (dogs: 20/30 sera, 67% - cats: 20/29, 69%). In contrast, none of the tested sera had measurable IgE against proteins isolated from the cornstarch. Immunoblotting confirmed the existence of numerous major corn allergens in the corn kernel extract, fewer in that of the corn flour, while such allergens were not detectable using this technique in the two cornstarch extracts. Conclusions In this study, ELISA and immunoblotting results suggest that IgE from corn-sensitized dogs are less likely to recognize allergens in cornstarch than in kernel and flour extracts. As corn is not a common allergen source in dogs and cats, and as its starch seems to be less allergenic than its flour, pet foods containing cornstarch as a carbohydrate source are preferable for dogs and cats suspected of suffering from corn allergy. Electronic supplementary material The online version of this article (10.1186/s12917-018-1538-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thierry Olivry
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 Willliam Moore Drive, Raleigh, NC, 27606, USA. .,Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.
| | | |
Collapse
|
11
|
Lesponne I, Naar J, Planchon S, Serchi T, Montano M. DNA and Protein Analyses to Confirm the Absence of Cross-Contamination and Support the Clinical Reliability of Extensively Hydrolysed Diets for Adverse Food Reaction-Pets. Vet Sci 2018; 5:vetsci5030063. [PMID: 29949938 PMCID: PMC6163677 DOI: 10.3390/vetsci5030063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022] Open
Abstract
Adverse food reactions (AFR) are a common cause of skin diseases in cats and dogs. The correct diagnosis and management of AFR relies upon clinical nutrition. The reliability of commercial hypoallergenic diets commonly used in AFR has been questioned because studies have shown the presence of proteins not declared on the label ingredients. It is proposed that extensively hydrolysed protein-based diets constitute a reliable nutritional solution. Royal Canin Anallergenic™ Canine and Feline diets are formulated with very low molecular weight feather protein and purified corn starch. Protein gel electrophoresis and thin layer paper chromatography were used to characterize protein hydrolysis in these diets and their hydrolysed raw materials; protein species were identified by mass spectrometry. To detect cross-contaminating protein, species-specific DNA was measured and correlated with ancillary protein content using calibration curves. The only protein components detected in the extensively hydrolysed feather protein raw material were amino acids and small oligopeptides. GBSS-I (Granule-bound starch synthase 1) was detected in the finished diets; this has not been reported as a clinically apparent allergen in dogs or cats. The DNA threshold corresponding to the maximum acceptable level of ancillary protein was not exceeded in 99.9% of more than 2150 product batches tested and no products were released to the market with cross-contaminating proteins. These results demonstrate the extensive level of protein hydrolysis in Royal Canin Anallergenic™ Canine and Feline diets and the absence of cross-contaminating protein, both key requirements for a diet to be used during diagnosis and for management of pets with AFR.
Collapse
Affiliation(s)
| | - Jérôme Naar
- Research & Development, Royal Canin SAS, 30470 Aimargues, France.
| | - Sébastien Planchon
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belval, 4008 Luxembourg.
| | - Tommaso Serchi
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Belval, 4008 Luxembourg.
| | - Mauricio Montano
- Mars Petcare Central Laboratory, Mars Inc., 30470 Aimargues, France.
| |
Collapse
|
12
|
Volpicella M, Leoni C, Fanizza I, Distaso M, Leoni G, Farioli L, Naumann T, Pastorello E, Ceci LR. Characterization of maize chitinase-A, a tough allergenic molecule. Allergy 2017; 72:1423-1429. [PMID: 28328103 DOI: 10.1111/all.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2017] [Indexed: 11/29/2022]
Abstract
Food allergies are recognized as an increasing health concern. Proteins commonly identified as food allergens tend to have one of about 30 different biochemical activities. This leads to the assumption that food allergens must have specific structural features which causes their allergenicity. But these structural features are not completely understood. Uncovering the structural basis of allergenicity would allow improved diagnosis and therapy of allergies and would provide insights for safer food production. The availability of recombinant food allergens can accelerate their structural analysis and benefit specific studies in allergology. Plant chitinases are an example of food allergenic proteins for which structural analysis of allergenicity has only partially been reported. The recombinant maize chitinase, rChiA, was purified from Pichia pastoris extracellular medium by differential precipitation and cation exchange chromatography. Enzyme activity was evaluated by halo-assays and microcalorimetric procedures. rChiA modeling was performed by a two-step procedure, using the Swiss-Model server and Modeller software. Allergenicity of rChiA was verified by immunoblot assays with sera from allergic subjects. rChiA is active in the hydrolysis of glycol chitin and tetra-N-acetylchitotetraose and maintains its activity at high temperatures (70°C) and low pH (pH 3). The molecule is also reactive with IgE from sera of maize-allergic subjects. rChiA is a valuable molecule for further studies on structure-allergenicity relationships and as a tool for diagnosing allergies.
Collapse
Affiliation(s)
- M. Volpicella
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - C. Leoni
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - I. Fanizza
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | - M. Distaso
- Department of Biosciences, Biotechnologies and Biopharmaceutics; University of Bari; Bari Italy
| | | | - L. Farioli
- Department of Laboratory Medicine; ASST Grande Ospedale Metropolitano Niguarda Ca' Granda; Milano Italy
| | - T. Naumann
- Mycotoxin Prevention and Applied Mycology Research Unit; US Department of Agriculture-Agricultural Research Service-National Centre for Agricultural Utilization Research (USDA-ARS-NCAUR); Peoria Illinois
| | - E. Pastorello
- Department of Allergology and Immunology; ASST Grande Ospedale Metropolitano Niguarda Ca' Granda; Milano Italy
| | - L. R. Ceci
- Institute of Biomembranes and Bioenergetics; National Research Council; Bari Italy
| |
Collapse
|
13
|
Hill RC, Wang X, Schafer BW, Gampala SS, Herman RA. Measurement of lipid transfer proteins in genetically engineered maize using liquid chromatography with tandem mass spectrometry (LC-MS/MS). GM CROPS & FOOD 2017; 8:239-252. [PMID: 28758829 DOI: 10.1080/21645698.2017.1349602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Endogenous allergenicity evaluation is a required part of the risk assessment for genetically engineered (GE) crops. Although maize is not considered a major allergenic food, a lipid transfer protein (Zea m 14) in maize grain has been identified as a potential IgE-mediated food allergen. Currently, the relationship between allergen exposure and risk of sensitization is not well understood. Hence, reliable quantitative methods are useful for determining the natural range and variability of allergen levels across multiple geographies and genetic backgrounds. A LC-MS/MS analytical method was developed and validated in our laboratory to quantify Zea m 14 in grain from 2 GE maize hybrids and 20 non-GE maize hybrids. The measured Zea m 14 levels in GE maize grain and conventional non-GE maize grain ranged from 146.87 to 574.93 ng/mg across 16 field sites located in the United States and Argentina. The method accurately quantified endogenous Zea m 14 from maize grain and results show Zea m 14 levels in the GE maize varieties were within the natural variation observed in traditionally bred non-GE maize.
Collapse
Affiliation(s)
- Ryan C Hill
- a Dow AgroSciences LLC , Indianapolis , IN , USA
| | - Xiujuan Wang
- a Dow AgroSciences LLC , Indianapolis , IN , USA
| | | | | | - Rod A Herman
- a Dow AgroSciences LLC , Indianapolis , IN , USA
| |
Collapse
|
14
|
Negi SS, Braun W. Cross-React: a new structural bioinformatics method for predicting allergen cross-reactivity. Bioinformatics 2017; 33:1014-1020. [PMID: 28062447 DOI: 10.1093/bioinformatics/btw767] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 12/01/2016] [Indexed: 11/14/2022] Open
Abstract
The phenomenon of cross-reactivity between allergenic proteins plays an important role to understand how the immune system recognizes different antigen proteins. Allergen proteins are known to cross-react if their sequence comparison shows a high sequence identity which also implies that the proteins have a similar 3D fold. In such cases, linear sequence alignment methods are frequently used to predict cross-reactivity between allergenic proteins. However, the prediction of cross-reactivity between distantly related allergens continues to be a challenging task. To overcome this problem, we developed a new structure-based computational method, Cross-React, to predict cross-reactivity between allergenic proteins available in the Structural Database of Allergens (SDAP). Our method is based on the hypothesis that we can find surface patches on 3D structures of potential allergens with amino acid compositions similar to an epitope in a known allergen. We applied the Cross-React method to a diverse set of seven allergens, and successfully identified several cross-reactive allergens with high to moderate sequence identity which have also been experimentally shown to cross-react. Based on these findings, we suggest that Cross-React can be used as a predictive tool to assess protein allergenicity and cross-reactivity. Availability and Implementation : Cross-React is available at: http://curie.utmb.edu/Cross-React.html. Contact ssnegi@utmb.edu.
Collapse
|
15
|
Molecular features of grass allergens and development of biotechnological approaches for allergy prevention. Biotechnol Adv 2017; 35:545-556. [PMID: 28535924 DOI: 10.1016/j.biotechadv.2017.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/28/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022]
Abstract
Allergic diseases are characterized by elevated allergen-specific IgE and excessive inflammatory cell responses. Among the reported plant allergens, grass pollen and grain allergens, derived from agriculturally important members of the Poaceae family such as rice, wheat and barley, are the most dominant and difficult to prevent. Although many allergen homologs have been predicted from species such as wheat and timothy grass, fundamental aspects such as the evolution and function of plant pollen allergens remain largely unclear. With the development of genetic engineering and genomics, more primary sequences, functions and structures of plant allergens have been uncovered, and molecular component-based allergen-specific immunotherapies are being developed. In this review, we aim to provide an update on (i) the distribution and importance of pollen and grain allergens of the Poaceae family, (ii) the origin and evolution, and functional aspects of plant pollen allergens, (iii) developments of allergen-specific immunotherapy for pollen allergy using biotechnology and (iv) development of less allergenic plants using gene engineering techniques. We also discuss future trends in revealing fundamental aspects of grass pollen allergens and possible biotechnological approaches to reduce the amount of pollen allergens in grasses.
Collapse
|
16
|
Gu X, Lee T, Geng T, Liu K, Thoma R, Crowley K, Edrington T, Ward JM, Wang Y, Flint-Garcia S, Bell E, Glenn KC. Assessment of Natural Variability of Maize Lipid Transfer Protein Using a Validated Sandwich ELISA. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1740-1749. [PMID: 28161956 DOI: 10.1021/acs.jafc.6b03583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lipid transfer protein (LTP) is the main causative agent for rare food allergic reactions to maize. This paper describes a new, validated ELISA that accurately measures maize LTP concentrations from 0.2 to 6.4 ng/mL. The levels of LTP ranged from 171 to 865 μg/g of grain, a 5.1-fold difference, across a set of 49 samples of maize B73 hybrids derived from the Nested Association Mapping (NAM) founder lines and a diverse collection of landrace accessions from North and South America. A second set of 107 unique samples from 18 commercial hybrids grown over two years across 10 U.S. states showed a comparable range of LTP level (212-751 μg/g of grain). Statistical analysis showed that genetic and environmental factors contributed 63 and 6%, respectively, to the variance in LTP levels. Therefore, the natural variation of maize LTP is up to 5-fold different across a diverse collection of varieties that have a history of safe cultivation and consumption.
Collapse
Affiliation(s)
- Xin Gu
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Thomas Lee
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Tao Geng
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kang Liu
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Richard Thoma
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kathleen Crowley
- Vasculox , 4320 Forest Park Avenue, Suite 304, St. Louis, Missouri 63108, United States
| | - Thomas Edrington
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Jason M Ward
- Royal Canin USA , 500 Fountain Lakes Boulevard, Suite 100, St. Charles, Missouri 63301, United States
| | - Yongcheng Wang
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Sherry Flint-Garcia
- Agricultural Research Service, U.S. Department of Agriculture , Columbia, Missouri 65211, United States
- Division of Plant Sciences, University of Missouri , Columbia, Missouri 65211, United States
| | - Erin Bell
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kevin C Glenn
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
17
|
Marquinez JIA, Lopez MA. Food Allergy and Food Poisoning. PHARMACEUTICAL SCIENCES 2017. [DOI: 10.4018/978-1-5225-1762-7.ch023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Taken into account data from which is considered a product not safe, estimate the safe level of a contaminant on food, for example, always have many unavoidable uncertainties. It cannot be overemphasized enough, that this also happens as in any other human activity. In most cases, we hope, to define as clearly as possible the eventual risk associated with particular conditions of exposure to a given substance in food. There are numerous toxic compounds that reside naturally in certain foods that unable these to be consumed above certain limits or even are fully prohibited in some other countries. Chapter starts with a clear explanation of differences and relationships between food allergy and food poisoning, continued with main allergens in food and main toxics. Finally, authors summarize different origins of toxins and allergens (natural from foods, from additives, pollutants and food processing).
Collapse
|
18
|
Marquinez JIA, Lopez MA. Food Allergy and Food Poisoning. EXAMINING THE DEVELOPMENT, REGULATION, AND CONSUMPTION OF FUNCTIONAL FOODS 2017. [DOI: 10.4018/978-1-5225-0607-2.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Taken into account data from which is considered a product not safe, estimate the safe level of a contaminant on food, for example, always have many unavoidable uncertainties. It cannot be overemphasized enough, that this also happens as in any other human activity. In most cases, we hope, to define as clearly as possible the eventual risk associated with particular conditions of exposure to a given substance in food. There are numerous toxic compounds that reside naturally in certain foods that unable these to be consumed above certain limits or even are fully prohibited in some other countries. Chapter starts with a clear explanation of differences and relationships between food allergy and food poisoning, continued with main allergens in food and main toxics. Finally, authors summarize different origins of toxins and allergens (natural from foods, from additives, pollutants and food processing).
Collapse
|
19
|
Salminen TA, Blomqvist K, Edqvist J. Lipid transfer proteins: classification, nomenclature, structure, and function. PLANTA 2016; 244:971-997. [PMID: 27562524 PMCID: PMC5052319 DOI: 10.1007/s00425-016-2585-4] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 08/10/2016] [Indexed: 05/20/2023]
Abstract
The non-specific lipid transfer proteins (LTPs) constitute a large protein family found in all land plants. They are small proteins characterized by a tunnel-like hydrophobic cavity, which makes them suitable for binding and transporting various lipids. The LTPs are abundantly expressed in most tissues. In general, they are synthesized with an N-terminal signal peptide that localizes the protein to spaces exterior to the plasma membrane. The in vivo functions of LTPs are still disputed, although evidence has accumulated for a role in the synthesis of lipid barrier polymers, such as cuticular waxes, suberin, and sporopollenin. There are also reports suggesting that LTPs are involved in signaling during pathogen attacks. LTPs are considered as key proteins for the plant's survival and colonization of land. In this review, we aim to present an overview of the current status of LTP research and also to discuss potential future applications of these proteins. We update the knowledge on 3D structures and lipid binding and review the most recent data from functional investigations, such as from knockout or overexpressing experiments. We also propose and argument for a novel system for the classification and naming of the LTPs.
Collapse
Affiliation(s)
- Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, 20520, Turku, Finland
| | | | - Johan Edqvist
- IFM, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
20
|
Allergenicity of Gramineae bee-collected pollen is proportional to its mass but is highly variable and depends on the members of the Gramineae family. Allergol Immunopathol (Madr) 2016; 44:232-40. [PMID: 26321600 DOI: 10.1016/j.aller.2015.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 11/21/2022]
Abstract
BACKGROUND Gramineae bee-collected pollen is identified as being at the origin of allergic accidents but the biological potency of Gramineae bee-collected pollen is not well known. Cereal grasses (e.g., Zea) and European wild forage grasses (FG) are contained in bee-collected pollen. METHOD In this experiment, Zea-mass and FG-mass were identified in bee pollen mass and the proportion of Zea and of FG was calculated using the bee pollen melissopalynology spectrum. Skin reactivity to Zea and to FG were assessed by measuring wheal diameters (W) from skin prick tests using three serial dilutions of bee-collected pollen on 10 allergic patients to Gramineae, in order to calculate the relationship between Zea mass (Masszea) or FG mass (MassFG) in bee pollen and skin reactivity. RESULTS The linear function Log10(WFG)=0.24(Log10(MassFG))+0.33 (R=0.99) was established using a bee pollen sample with 0.168mg of FG pollen per mg. The linear function Log10(Wzea)=0.23(Log10(Masszea))+0.14 (R=0.99) was established using a bee pollen sample with 0.983mg of Zea pollen per mg. Gramineae allergens seem to be little altered by bee secretions. Gramineae bee pollen retains its allergenic capacity but it depends on the members of the Gramineae family. CONCLUSIONS To our knowledge this is the first time it has been shown that skin reactivity to Gramineae is proportional to the absolute Gramineae mass contained in the bee-collected pollen and that it depends on the members of the Gramineae family.
Collapse
|
21
|
Breiteneder H. Grundlagen natürlicher Allergene. ALLERGOLOGIE 2016. [DOI: 10.1007/978-3-642-37203-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Uasuf CG, Villalta D, Conte ME, Di Sano C, Barrale M, Cantisano V, Pace E, Gjomarkaj M, Gangemi S, Brusca I. Different co-sensitizations could determine different risk assessment in peach allergy? Evaluation of an anaphylactic biomarker in Pru p 3 positive patients. Clin Mol Allergy 2015; 13:30. [PMID: 26633941 PMCID: PMC4667484 DOI: 10.1186/s12948-015-0035-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background In Italy, the nsLTP (Pru p 3) has been identified as the most frequent cause of food allergy and anaphylaxis. In order to estimate the risk assessment in peach allergy, we investigated the presence of correlations between the levels of sIgE to Pru p 3 with the severity of the clinical symptoms in two Pru p 3 positive populations from two different areas of Italy. Methods 133 consecutively Pru p 3 positive patients were recruited from South Italy, where the prevalence of PR-10 and profilin sensitization is low, and from North-East Italy, where the sensitization to pathogenesis related protein -10 (PR-10) and profilin is higher. Skin prick test (SPT) to peach extract and sIgE to peach panallergens were performed. Results All 133 patients were positive to SPT to peach extract and to sIgE to Pru p 3. The North-East population was simultaneously positive to Pru p 1 (42.8 %) and Pru p 4 (12.7 %), while no Southern patients were positive to PR-10 or to profilin. A significant difference in the levels of sIgE to Pru p 3 was found only in South Italy Pru p 3 + patients vs. asymptomatic patients (p = 0.01) and in mild reactions vs. severe reactions (p = 0.0008). In South Italy patients, it was also found a significant correlation between the severity of the clinical reaction and the levels of sIgE to Pru p 3 (p = 0.001). Conclusion Level of sIgE to Pru p 3 indicates the possibility of development a severe food allergic reaction. Pru p 3 positive patients from different geographical areas and with different co-sensitizations to Pru p 1 and/or Pru p 4 could have a different risk assessment in peach allergy.
Collapse
Affiliation(s)
- Carina Gabriela Uasuf
- Allergy Diseases Center "Prof. G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM)-National Research Council (CNR), Palermo, Italy
| | - Danilo Villalta
- Allergy and Clinical Immunology Unit, A.O "S. Maria degli Angeli di Pordenone", Pordenone, Italy
| | - Maria Elisabetta Conte
- Allergy and Clinical Immunology Unit, A.O "S. Maria degli Angeli di Pordenone", Pordenone, Italy
| | - Caterina Di Sano
- Allergy Diseases Center "Prof. G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM)-National Research Council (CNR), Palermo, Italy
| | - Maria Barrale
- Clinical Pathology, Allergy Unit, Buccheri La Ferla Hospital, Palermo, Italy
| | - Vincenzo Cantisano
- Clinical Pathology, Allergy Unit, Buccheri La Ferla Hospital, Palermo, Italy
| | - Elisabetta Pace
- Allergy Diseases Center "Prof. G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM)-National Research Council (CNR), Palermo, Italy
| | - Mark Gjomarkaj
- Allergy Diseases Center "Prof. G. Bonsignore", Institute of Biomedicine and Molecular Immunology "A. Monroy"(IBIM)-National Research Council (CNR), Palermo, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Ignazio Brusca
- Clinical Pathology, Allergy Unit, Buccheri La Ferla Hospital, Palermo, Italy
| |
Collapse
|
23
|
Vidal N, Barbosa H, Jacob S, Arruda M. Comparative study of transgenic and non-transgenic maize ( Zea mays ) flours commercialized in Brazil, focussing on proteomic analyses. Food Chem 2015; 180:288-294. [DOI: 10.1016/j.foodchem.2015.02.051] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/19/2015] [Accepted: 02/11/2015] [Indexed: 11/16/2022]
|
24
|
Flodrová D, Benkovská D, Laštovičková M. Study of quantitative changes of cereal allergenic proteins after food processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:983-990. [PMID: 24912629 DOI: 10.1002/jsfa.6773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Within last few years, the occurrence of food allergens and corresponding food allergies has been increasing, therefore research into the individual allergens is required. In the present work, the effect of cereal processing on the amounts of allergenic proteins is studied by modern proteomic-based approaches. The most important wheat and barley allergens are low-molecular-weight (LMW) proteins. Therefore we investigated the relative quantitative changes of these proteins after food technological processing, namely wheat couscous production and barley malting. RESULTS A comparative study using mass spectrometry in connection with the technique of isobaric tag for relative and absolute quantification (iTRAQ) revealed that the amount of wheat allergenic LMW proteins decreased significantly during couscous production (approximately to 5-26% of their initial content in wheat flour). After barley malting, the amounts of the majority of LMW proteins decreased as well, although to a lesser extent than in the case of wheat/couscous. The level of two allergens even slightly increased. CONCLUSION Suggested proteomic strategy proved as universal and sensitive method for fast and reliable identification of various cereal allergens and monitoring of their quantitative changes during food processing. Such information is important for consumers who suffer from allergies.
Collapse
Affiliation(s)
- Dana Flodrová
- Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic, v. v. i., Veveří 97, Brno, 602 00, Czech Republic
| | | | | |
Collapse
|
25
|
Rojas Pérez-Ezquerra P, Sánchez-Morillas L, Davila-Ferandez G, Ruiz-Hornillos FJ, Carrasco García I, Herranz Mañas M, Laguna Martínez JJ, Bartolomé B. Contact urticaria to Cannabis sativa due to a lipid transfer protein (LTP). Allergol Immunopathol (Madr) 2015; 43:231-3. [PMID: 24657136 DOI: 10.1016/j.aller.2013.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/02/2013] [Accepted: 10/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - G Davila-Ferandez
- Allergy Unit, Hospital Universitario del Henares, Coslada, Madrid, Spain
| | | | | | - M Herranz Mañas
- Allergy Unit, Hospital Central de la Cruz Roja, Madrid, Spain
| | | | - B Bartolomé
- Research & Development Department, Bial-Arístegui, Bilbao, Spain
| |
Collapse
|
26
|
Mathur C, Kathuria PC, Dahiya P, Singh AB. Lack of detectable allergenicity in genetically modified maize containing "Cry" proteins as compared to native maize based on in silico & in vitro analysis. PLoS One 2015; 10:e0117340. [PMID: 25706412 PMCID: PMC4338076 DOI: 10.1371/journal.pone.0117340] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 12/23/2014] [Indexed: 12/26/2022] Open
Abstract
Background Genetically modified, (GM) crops with potential allergens must be evaluated for safety and endogenous IgE binding pattern compared to native variety, prior to market release. Objective To compare endogenous IgE binding proteins of three GM maize seeds containing Cry 1Ab,1Ac,1C transgenic proteins with non GM maize. Methods An integrated approach of in silico & in vitro methods was employed. Cry proteins were tested for presence of allergen sequence by FASTA in allergen databases. Biochemical assays for maize extracts were performed. Specific IgE (sIgE) and Immunoblot using food sensitized patients sera (n = 39) to non GM and GM maize antigens was performed. Results In silico approaches, confirmed for non sequence similarity of stated transgenic proteins in allergen databases. An insignificant (p> 0.05) variation in protein content between GM and non GM maize was observed. Simulated Gastric Fluid (SGF) revealed reduced number of stable protein fractions in GM then non GM maize which might be due to shift of constituent protein expression. Specific IgE values from patients showed insignificant difference in non GM and GM maize extracts. Five maize sensitized cases, recognized same 7 protein fractions of 88-28 kD as IgE bindng in both GM and non-GM maize, signifying absence of variation. Four of the reported IgE binding proteins were also found to be stable by SGF. Conclusion Cry proteins did not indicate any significant similarity of >35% in allergen databases. Immunoassays also did not identify appreciable differences in endogenous IgE binding in GM and non GM maize.
Collapse
Affiliation(s)
- Chandni Mathur
- CSIR-Institute of Genomics & Integrative Biology, Delhi University Campus, Delhi, India
| | | | - Pushpa Dahiya
- Maharishi Dayanand University, Rohtak, Haryana, India
| | - Anand B. Singh
- CSIR-Institute of Genomics & Integrative Biology, Delhi University Campus, Delhi, India
- * E-mail:
| |
Collapse
|
27
|
Stevenson SE, McClain S, Thelen JJ. Development of an isoform-specific tandem mass spectrometry assay for absolute quantitation of maize lipid transfer proteins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:821-8. [PMID: 25540820 DOI: 10.1021/jf504708u] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Precise and accurate quantitation of maize grain allergens is important for seed and food industries. The major allergen in maize grain is Zea m 14, a lipid transfer protein (LTP). The B73 maize genome encodes for at least six LTPs sharing 15%-87% sequence identity to Zea m 14. Phylogenetic analysis of the maize LTP family revealed one gene that corresponds to Zea m 14 (denoted as LTPa) and two other genes sharing 43% (LTPc) and 74% (LTPb) identity with Zea m 14 that are putative homologues. Using stable isotope peptide mimics as internal standards for LTPs, we present a multiple reaction monitoring mass spectrometry approach for multiplexed, absolute quantitation of all three LTP proteins and alternative transcript models therein. To validate quantitative accuracy, a redundant peptide, simultaneously representing the two most abundant LTPs, was included. Analysis of 21 maize varieties revealed LTPa was most prominently expressed in maize grain, ranging from 9 to 32 μg LTP/mg protein. Proteins belonging to the LTPb and LTPc gene models were also expressed but at approximately 10- and 100-fold lower levels than LTPa, respectively. The quantitative results provided by the redundant peptide show around 95% agreement with the sum of the two unique peptides, thus providing support for the LTP gene models and validating the accuracy of this method. Though not all Zea m 14-related LTPs are abundant in grain, their high sequence homology and detectable expression in maize grain signify that LTPb and LTPc are putative allergens and should be accounted for in any quantitation strategy for maize LTP allergens.
Collapse
Affiliation(s)
- Severin E Stevenson
- University of Missouri, Department of Biochemistry, Christopher Bond Life Sciences Center , 1201 Rollins Avenue, Columbia, Missouri 65211, United States
| | | | | |
Collapse
|
28
|
Davies JM. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases. Clin Exp Allergy 2015; 44:790-801. [PMID: 24684550 DOI: 10.1111/cea.12317] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Grass pollens of the temperate (Pooideae) subfamily and subtropical subfamilies of grasses are major aeroallergen sources worldwide. The subtropical Chloridoideae (e.g. Cynodon dactylon; Bermuda grass) and Panicoideae (e.g. Paspalum notatum; Bahia grass) species are abundant in parts of Africa, India, Asia, Australia and the Americas, where a large and increasing proportion of the world's population abide. These grasses are phylogenetically and ecologically distinct from temperate grasses. With the advent of global warming, it is conceivable that the geographic distribution of subtropical grasses and the contribution of their pollen to the burden of allergic rhinitis and asthma will increase. This review aims to provide a comprehensive synthesis of the current global knowledge of (i) regional variation in allergic sensitivity to subtropical grass pollens, (ii) molecular allergenic components of subtropical grass pollens and (iii) allergic responses to subtropical grass pollen allergens in relevant populations. Patients from subtropical regions of the world show higher allergic sensitivity to grass pollens of Chloridoideae and Panicoideae grasses, than to temperate grass pollens. The group 1 allergens are amongst the allergen components of subtropical grass pollens, but the group 5 allergens, by which temperate grass pollen extracts are standardized for allergen content, appear to be absent from both subfamilies of subtropical grasses. Whilst there are shared allergenic components and antigenic determinants, there are additional clinically relevant subfamily-specific differences, at T- and B-cell levels, between pollen allergens of subtropical and temperate grasses. Differential immune recognition of subtropical grass pollens is likely to impact upon the efficacy of allergen immunotherapy of patients who are primarily sensitized to subtropical grass pollens. The literature reviewed herein highlights the clinical need to standardize allergen preparations for both types of subtropical grass pollens to achieve optimal diagnosis and treatment of patients with allergic respiratory disease in subtropical regions of the world.
Collapse
Affiliation(s)
- J M Davies
- Lung and Allergy Research Centre, School of Medicine, The University of Queensland, Translational Research Institute, Woolloongabba, Qld, Australia
| |
Collapse
|
29
|
Van Winkle RC, Chang C. The biochemical basis and clinical evidence of food allergy due to lipid transfer proteins: a comprehensive review. Clin Rev Allergy Immunol 2014. [PMID: 23179517 DOI: 10.1007/s12016-012-8338-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Plant lipid transfer proteins (LTPs) are ubiquitous proteins that are found in divergent plant species. Although the exact function of LTPs is not fully understood, LTPs are conserved across a broad range of plant species. Because LTPs share structural features, there is an increased probability for significant allergic cross-reactivity. The molecular features of LTPs also decrease the probability of degradation due to cooking or digestion, thereby increasing the probability of systemic absorption and severe allergic reactions. LTP allergy, unlike other forms of anaphylaxis, tends to occur more frequently in areas of lower latitude. The geographic distribution of LTP allergy, along with evidence of increased sensitization after respiratory exposure, has led to the hypothesis that LTP-related food allergy may be secondary to sensitization via the respiratory route. Clinical reactions associated with LTPs have broad clinical phenotypes and can be severe in nature. Life-threatening clinical reactions have been associated with ingestion of a multitude of plant products. Component-resolved diagnosis has played a significant role in research applications for LTP allergy. In the future, component-resolved diagnosis may play a significant role in day-to-day clinical care. Also, quantitative analysis of LTPs in foodstuffs may allow for the identification and/or production of low-LTP foods, thereby decreasing the risk to patients with LTP allergy. Furthermore, sublingual immunotherapy may provide a therapeutic option for patients with LTP allergy.
Collapse
Affiliation(s)
- R Christopher Van Winkle
- Division of Allergy and Immunology, Thomas Jefferson University, Nemours/A.I. duPont Hospital for Children, Philadelphia, PA, USA
| | | |
Collapse
|
30
|
Cross-reactivity among non-specific lipid-transfer proteins from food and pollen allergenic sources. Food Chem 2014; 165:397-402. [DOI: 10.1016/j.foodchem.2014.05.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 02/16/2014] [Accepted: 05/16/2014] [Indexed: 01/02/2023]
|
31
|
Scientific Opinion on the evaluation of allergenic foods and food ingredients for labelling purposes. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3894] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Isolation and Molecular Cloning of a Major Wheat Allergen, Tri a Bd 27K. Biosci Biotechnol Biochem 2014; 73:85-92. [DOI: 10.1271/bbb.80485] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Gilissen LJ, van der Meer IM, Smulders MJ. Reducing the incidence of allergy and intolerance to cereals. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2014.01.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Current overview of allergens of plant pathogenesis related protein families. ScientificWorldJournal 2014; 2014:543195. [PMID: 24696647 PMCID: PMC3947804 DOI: 10.1155/2014/543195] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022] Open
Abstract
Pathogenesis related (PR) proteins are one of the major sources of plant derived allergens. These proteins are induced by the plants as a defense response system in stress conditions like microbial and insect infections, wounding, exposure to harsh chemicals, and atmospheric conditions. However, some plant tissues that are more exposed to environmental conditions like UV irradiation and insect or fungal attacks express these proteins constitutively. These proteins are mostly resistant to proteases and most of them show considerable stability at low pH. Many of these plant pathogenesis related proteins are found to act as food allergens, latex allergens, and pollen allergens. Proteins having similar amino acid sequences among the members of PR proteins may be responsible for cross-reactivity among allergens from diverse plants. This review analyzes the different pathogenesis related protein families that have been reported as allergens. Proteins of these families have been characterized in regard to their biological functions, amino acid sequence, and cross-reactivity. The three-dimensional structures of some of these allergens have also been evaluated to elucidate the antigenic determinants of these molecules and to explain the cross-reactivity among the various allergens.
Collapse
|
35
|
Guillen D, Barranco P, Palacín A, Quirce S. Occupational Rhinoconjunctivitis due to Maize in a Snack Processor: A Cross-Reactivity Study Between Lipid Transfer Proteins From Different Cereals and Peach. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2014; 6:470-3. [PMID: 25229007 PMCID: PMC4161691 DOI: 10.4168/aair.2014.6.5.470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/29/2013] [Accepted: 11/29/2013] [Indexed: 12/17/2022]
Abstract
We report the case of a snack processor who developed occupational rhinoconjunctivitis due to maize brand exposure during the extrusion process, and who experienced abdominal pain upon drinking beer. The allergens implicated and the cross-reactivity between non-specific lipid transfer proteins (LTPs) from different cereals and peach were investigated. Skin prick tests and specific IgE to cereal flours, pulmonary functions tests and specific conjunctival and inhalation challenges to maize extract were performed. In vitro studies included IgE immunoblotting and ELISA inhibition assays. Skin prick tests with maize flour, maize brand and wheat flour extracts were positive, whereas serum specific IgE was positive only to maize flour. Specific inhalation challenge (SIC) to maize flour did not elicit an asthmatic reaction; however, conjunctival challenge test with the same extract was positive. Patient's serum recognized IgE-binding bands in the maize and beer extracts corresponding to LTPs. In the ELISA inhibition assays, a significant degree of allergenic cross-reactivity was found between maize and beer LTPs, whereas no cross-reactivity was observed between maize LTP and wheat and peach LTPs.
Collapse
Affiliation(s)
- Daiana Guillen
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Pilar Barranco
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain. ; CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| | - Arantxa Palacín
- Unidad de Bioquímica, Departamento de Biotecnología, E.T.S. Ingenieros Agrónomos, UPM, Madrid, Spain
| | - Santiago Quirce
- Department of Allergy, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain. ; CIBER de Enfermedades Respiratorias CIBERES, Madrid, Spain
| |
Collapse
|
36
|
Wang J, Yang L, Zhao X, Li J, Zhang D. Characterization and phylogenetic analysis of allergenic Tryp_alpha_amyl protein family in plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:270-278. [PMID: 24328177 DOI: 10.1021/jf402463w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Most known allergenic proteins in rice ( Oryza sativa ) seed belong to the Tryp_alpha_amyl family (PF00234), but the sequence characterization and the evolution of the allergenic Tryp_alpha_amyl family members in plants have not been fully investigated. In this study, two specific motifs were found besides the common alpha-amylase inhibitors (AAI) domain from the allergenic Tryp_alpha_amyl family members in rice seeds (trRSAs). To understand the evolution and functional importance of the Tryp_alpha_amy1 family and the specific motifs for the allergenic one, a BLAST search identified 75 homologous proteins of trRSAs (trHAs) from 22 plant species including main crops such as rice, maize ( Zea mays ), wheat ( Triticum aestivum ), and sorghum ( Sorghum bicolor ) from all available sequences in the public databases. Statistical analysis showed that the allergenicity of trHAs is closely associated with these two motifs with high number of cysteine residues (p value = 0.00026), and the trHAs with and without the two motifs were clustered into separate clades, respectively. Furthermore, significant difference was observed on the secondary and tertiary structures of allergenic and nonallergenic trHAs. In addition, expression analysis showed that trHA-encoding genes of purple false brome ( Brachypodium distachyon ), barrel medic ( Medicago truncatula ), rice, and sorghum are dominantly expressed in seeds. This work provides insight into the understanding of the properties of allergens in the Tryp_alpha_amyl family and is helpful for allergy therapy.
Collapse
Affiliation(s)
- Jing Wang
- National Center for Molecular Characterization of Genetically Modified Organisms, State Key Laboratory of Hybrid Rice, School of Life Science and Biotechnology, Shanghai Jiao Tong University , 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
37
|
Scientific opinion on applications EFSA‐GMO‐RX‐T25 and EFSA‐GMO‐NL‐2007‐46 for the renewal of authorisation of maize T25, and for the placing on the market of herbicide‐tolerant genetically modified maize T25, both for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Bayer CropScience AG. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Goodman RE, Panda R, Ariyarathna H. Evaluation of endogenous allergens for the safety evaluation of genetically engineered food crops: review of potential risks, test methods, examples and relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8317-32. [PMID: 23848840 DOI: 10.1021/jf400952y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The safety of food produced from genetically engineered (GE) crops is assessed for potential risks of food allergy on the basis of an international consensus guideline outlined by the Codex Alimentarius Commission (2003). The assessment focuses on evaluation of the potential allergenicity of the newly expressed protein(s) as the primary potential risk using a process that markedly limits risks to allergic consumers. However, Codex also recommended evaluating a second concern, potential increases in endogenous allergens of commonly allergenic food crops that might occur due to insertion of the gene. Unfortunately, potential risks and natural variation of endogenous allergens in non-GE varieties are not understood, and risks from increases have not been demonstrated. Because regulatory approvals in some countries are delayed due to increasing demands for measuring endogenous allergens, we present a review of the potential risks of food allergy, risk management for food allergy, and test methods that may be used in these evaluations. We also present new data from our laboratory studies on the variation of the allergenic lipid transfer protein in non-GE maize hybrids as well as data from two studies of endogenous allergen comparisons for three GE soybean lines, their nearest genetic soy lines, and other commercial lines. We conclude that scientifically based limits of acceptable variation cannot been established without an understanding of natural variation in non-GE crops. Furthermore, the risks from increased allergen expression are minimal as the risk management strategy for food allergy is for allergic individuals to avoid consuming any food containing their allergenic source, regardless of the crop variety.
Collapse
Affiliation(s)
- Richard E Goodman
- Food Allergy Research and Resource Program, University of Nebraska-Lincoln , 143 Food Industry Complex, Lincoln, Nebraska 68583-0955, United States
| | | | | |
Collapse
|
39
|
Scientific Opinion on application (EFSA-GMO-UK-2006-34) for the placing on the market of genetically modified maize 3272 with a thermotolerant alpha-amylase, for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Syngenta Cr. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Purification and structural characterisation of lipid transfer protein from red wine and grapes. Food Chem 2013; 138:263-9. [DOI: 10.1016/j.foodchem.2012.09.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 11/24/2022]
|
41
|
Romano A, Scala E, Rumi G, Gaeta F, Caruso C, Alonzi C, Maggioletti M, Ferrara R, Palazzo P, Palmieri V, Zeppilli P, Mari A. Lipid transfer proteins: the most frequent sensitizer in Italian subjects with food-dependent exercise-induced anaphylaxis. Clin Exp Allergy 2013; 42:1643-53. [PMID: 23106665 DOI: 10.1111/cea.12011] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Specific food-dependent exercise-induced anaphylaxis (S-FDEIAn) is a distinct form of food allergy in which symptoms are elicited by exercise performed after ingesting food to which the patient has become sensitised. Non-specific FDEIAn (NS-FDEIAn) is a syndrome provoked by exercise performed after ingesting any food. OBJECTIVE We sought to identify the culprit allergenic molecules in patients with FDEIAn, combining 'classic' allergy testing with an allergenic molecule-based microarray approach for IgE detection. METHODS All subjects were evaluated who reported at least one episode of anaphylaxis in association with physical exercise performed within 4 h after a meal. We performed skin prick tests (SPT) with commercial food extracts, prick plus prick tests (P + P) with fresh foods (P + P), and serum specific IgE assays by means of both the ImmunoCAP (CAP) and the ISAC 89 microarray system (ISAC). RESULTS Among our 82 FDEIAn patients, the most frequent suspected foods were tomato, cereals, and peanut. SPT, P + P, and CAP displayed different degrees of sensitivity. Each test disclosed some positivities not discovered by others. Seventy-nine subjects were positive to at least one food (49 to more than 20), whereas three were negative. All suspected foods were positive to at least one of SPT, P + P, and CAP. When tested using the ISAC, 64 (78%) subjects were positive to Pru p 3 [peach lipid transfer protein (LTP)], 13 were positive to other food allergen molecules, and five displayed negative results to all food allergenic molecules. Overall, 79 patients probably had S-FDEIAn and the other 3 NS-FDEIAn. CONCLUSIONS Multiple food hypersensitivity represents a clinical hallmark of a large percentage of FDEIAn patients. The very high prevalence of IgE to the LTP suggests a role of this allergen group in causing S-FDEIAn.
Collapse
Affiliation(s)
- A Romano
- Allergy Unit, Complesso Integrato Columbus, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Panda R, Ariyarathna H, Amnuaycheewa P, Tetteh A, Pramod SN, Taylor SL, Ballmer-Weber BK, Goodman RE. Challenges in testing genetically modified crops for potential increases in endogenous allergen expression for safety. Allergy 2013; 68:142-51. [PMID: 23205714 DOI: 10.1111/all.12076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2012] [Indexed: 11/29/2022]
Abstract
Premarket, genetically modified (GM) plants are assessed for potential risks of food allergy. The major risk would be transfer of a gene encoding an allergen or protein nearly identical to an allergen into a different food source, which can be assessed by specific serum testing. The potential that a newly expressed protein might become an allergen is evaluated based on resistance to digestion in pepsin and abundance in food fractions. If the modified plant is a common allergenic source (e.g. soybean), regulatory guidelines suggest testing for increases in the expression of endogenous allergens. Some regulators request evaluating endogenous allergens for rarely allergenic plants (e.g. maize and rice). Since allergic individuals must avoid foods containing their allergen (e.g. peanut, soybean, maize, or rice), the relevance of the tests is unclear. Furthermore, no acceptance criteria are established and little is known about the natural variation in allergen concentrations in these crops. Our results demonstrate a 15-fold difference in the major maize allergen, lipid transfer protein between nine varieties, and complex variation in IgE binding to various soybean varieties. We question the value of evaluating endogenous allergens in GM plants unless the intent of the modification was production of a hypoallergenic crop.
Collapse
Affiliation(s)
- R Panda
- Food Allergy Research and Resource Program, University of Nebraska, Lincoln, NE 68583, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Pechanova O, Takáč T, Šamaj J, Pechan T. Maize proteomics: An insight into the biology of an important cereal crop. Proteomics 2013. [DOI: 10.1002/pmic.201200275] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Olga Pechanova
- Mississippi State Chemical Laboratory; Mississippi State University; Mississippi State; MS; USA
| | - Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science; Palacký University; Olomouc; Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Cell Biology, Faculty of Science; Palacký University; Olomouc; Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station,; Mississippi State University; Mississippi State; MS; USA
| |
Collapse
|
44
|
Scientific Opinion on an application (EFSA-GMO-NL-2009-70) for the placing on the market of genetically modified drought tolerant maize MON 87460 for food and feed uses, import and processing under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
45
|
|
46
|
Fonseca C, Planchon S, Renaut J, Oliveira MM, Batista R. Characterization of maize allergens — MON810 vs. its non-transgenic counterpart. J Proteomics 2012; 75:2027-37. [DOI: 10.1016/j.jprot.2012.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/29/2011] [Accepted: 01/04/2012] [Indexed: 01/23/2023]
|
47
|
Ramazzina I, Amato S, Passera E, Sforza S, Mistrello G, Berni R, Folli C. Isoform identification, recombinant production and characterization of the allergen lipid transfer protein 1 from pear (Pyr c 3). Gene 2012; 491:173-81. [DOI: 10.1016/j.gene.2011.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 11/16/2022]
|
48
|
Trcka J, Schäd SG, Scheurer S, Conti A, Vieths S, Gross G, Trautmann A. Rice-induced anaphylaxis: IgE-mediated allergy against a 56-kDa glycoprotein. Int Arch Allergy Immunol 2011; 158:9-17. [PMID: 22205234 DOI: 10.1159/000330641] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 06/20/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Although rice (Oryza sativa) is one of the most common cereals produced and consumed around the world, there have been only a few reports on immediate hypersensitivity reactions after ingestion of rice. Few clinical studies on rice allergy in Asia have been reported concerning rhinitis, asthma and atopic dermatitis. In this case study, we identify allergens presumably responsible for anaphylaxis after ingestion of rice in a German patient. METHODS Prick-to-prick tests, determination of specific IgE and the basophil activation test (BAT) were performed to confirm IgE-mediated allergy. IgE reactivity was further analyzed by immunoblotting of protein extracts from cooked commercial rice products. Rice allergens were purified, subjected to N-terminal sequencing and characterized by IgE binding and IgE inhibition assays using additional sera from 8 subjects with sensitization to rice and/or a history of hypersensitivity symptoms after rice ingestion. RESULTS Prick-to-prick tests were positive to raw and cooked rice (basmati rice and long-grain rice) and preparations of different rice extracts. Specific IgE against rice (f9) was 1.87 kU(A)/l. The BAT showed specific IgE-mediated activation of basophils after stimulation with rice extracts. Four IgE-reactive rice proteins with an apparent molecular weight of 49, 52, 56 and 98 kDa were identified. Interestingly, only binding to the 56-kDa glycoprotein was at least partially independent from cross-reactive carbohydrate determinants (CCD), whereas IgE binding to the other rice proteins was completely inhibited by pre-incubation with the CCD MUXF derived from bromelain. CONCLUSIONS Yet unidentified high-molecular-weight allergens from rice seeds, predominantly a 56-kDa glycoprotein, seem to be responsible for anaphylaxis after consumption of rice in a German patient.
Collapse
Affiliation(s)
- Jiri Trcka
- Department of Dermatology and Venereology, University of Rostock, Rostock, Germany.
| | | | | | | | | | | | | |
Collapse
|
49
|
Scientific Opinion on application (EFSA-GMO-UK-2008-60) for placing on the market of genetically modified herbicide tolerant maize GA21 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003 from Syngenta Seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
50
|
Maize pollen is an important allergen in occupationally exposed workers. J Occup Med Toxicol 2011; 6:32. [PMID: 22165847 PMCID: PMC3269392 DOI: 10.1186/1745-6673-6-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 12/13/2011] [Indexed: 11/30/2022] Open
Abstract
Background The work- or environmental-related type I sensitization to maize pollen is hardly investigated. We sought to determine the prevalence of sensitization to maize pollen among exposed workers and to identify the eliciting allergens. Methods In July 2010, 8 out of 11 subjects were examined who were repeatedly exposed to maize pollen by pollinating maize during their work in a biological research department. All 8 filled in a questionnaire and underwent skin prick testing (SPT) and immune-specific analyses. Results 5 out of the 8 exposed subjects had repeatedly suffered for at least several weeks from rhinitis, 4 from conjunctivitis, 4 from urticaria, and 2 from shortness of breath upon occupational exposure to maize pollen. All symptomatic workers had specific IgE antibodies against maize pollen (CAP class ≥ 1). Interestingly, 4 of the 5 maize pollen-allergic subjects, but none of the 3 asymptomatic exposed workers had IgE antibodies specific for grass pollen. All but one of the maize pollen-allergic subjects had suffered from allergic grass pollen-related symptoms for 6 to 11 years before job-related exposure to maize pollen. Lung function testing was normal in all cases. In immunoblot analyses, the allergenic components could be identified as Zea m 1 and Zea m 13. The reactivity is mostly caused by cross-reactivity to the homologous allergens in temperate grass pollen. Two sera responded to Zea m 3, but interestingly not to the corresponding timothy allergen indicating maize-specific IgE reactivity. Conclusion The present data suggest that subjects pollinating maize are at high risk of developing an allergy to maize pollen as a so far underestimated source of occupational allergens. For the screening of patients with suspected maize pollen sensitization, the determination of IgE antibodies specific for maize pollen is suitable.
Collapse
|