1
|
Filippone A, Kirchin MA, Monteith J, Storto ML, Spinazzi A. Safety of Lumason® (SonoVue®) in special populations and critically ill patients. Front Cardiovasc Med 2023; 10:1225654. [PMID: 37600063 PMCID: PMC10433219 DOI: 10.3389/fcvm.2023.1225654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 08/22/2023] Open
Abstract
Evidence for the safe use of Lumason® (SonoVue®), an ultrasound enhancing agent (UEA), in special patient populations is critical to enable healthcare professionals to make informed decisions concerning its use in such patients. Herein, we provide insight on the safety and tolerability of Lumason® in special patient populations. Findings are presented from clinical pharmacology studies conducted in patients with compromised cardiopulmonary conditions, from a retrospective study performed in critically ill patients, and from post-marketing surveillance data from over 20 years of market use of Lumason® (SonoVue®). No detrimental effects of Lumason® on cardiac electrophysiology were observed in patients with coronary artery disease (CAD), and no significant effects on pulmonary hemodynamics were noted in patients with pulmonary hypertension or congestive heart failure. Similarly, no effects on several assessments of pulmonary function (e.g., FVC) were observed in patients with chronic obstructive pulmonary disease (COPD), and no clinically meaningful changes in O2 saturation or other safety parameters were observed after administration of Lumason® to patients with diffuse interstitial pulmonary fibrosis (DIPF). The retrospective study of critically ill patients revealed no significant difference for in-hospital mortality between patients administered Lumason® for echocardiography versus those who had undergone echocardiography without contrast agent. Post-marketing surveillance revealed very low reporting rates (RR) for non-serious and serious adverse events and that serious hypersensitivity reactions were rare. These findings confirm that Lumason® is a safe and well tolerated UEA for use in special populations and critically ill patients.
Collapse
Affiliation(s)
- A. Filippone
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Milan, Italy
| | - M. A. Kirchin
- Global Medical & Regulatory Affairs, Bracco Imaging SpA, Milan, Italy
| | - J. Monteith
- Global Medical & Regulatory Affairs, Bracco Diagnostics Inc., Monroe, NJ, United States
| | - M. L. Storto
- Global Medical & Regulatory Affairs, Bracco Diagnostics Inc., Monroe, NJ, United States
| | - A. Spinazzi
- Global Medical & Regulatory Affairs, Bracco Diagnostics Inc., Monroe, NJ, United States
| |
Collapse
|
2
|
Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, Fiore LA, Scioscia G, Mirijello A, Saponara A, Sperandeo M. A Review on Biological Effects of Ultrasounds: Key Messages for Clinicians. Diagnostics (Basel) 2023; 13:855. [PMID: 36899998 PMCID: PMC10001275 DOI: 10.3390/diagnostics13050855] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Ultrasound (US) is acoustic energy that interacts with human tissues, thus, producing bioeffects that may be hazardous, especially in sensitive organs (i.e., brain, eye, heart, lung, and digestive tract) and embryos/fetuses. Two basic mechanisms of US interaction with biological systems have been identified: thermal and non-thermal. As a result, thermal and mechanical indexes have been developed to provide a means of assessing the potential for biological effects from exposure to diagnostic US. The main aims of this paper were to describe the models and assumptions used to estimate the "safety" of acoustic outputs and indices and to summarize the current state of knowledge about US-induced effects on living systems deriving from in vitro models and in vivo experiments on animals. This review work has made it possible to highlight the limits associated with the use of the estimated safety values of thermal and mechanical indices relating above all to the use of new US technologies, such as contrast-enhanced ultrasound (CEUS) and acoustic radiation force impulse (ARFI) shear wave elastography (SWE). US for diagnostic and research purposes has been officially declared safe, and no harmful biological effects in humans have yet been demonstrated with new imaging modalities; however, physicians should be adequately informed on the potential risks of biological effects. US exposure, according to the ALARA (As Low As Reasonably Achievable) principle, should be as low as reasonably possible.
Collapse
Affiliation(s)
- Carla Maria Irene Quarato
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Donato Lacedonia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Michela Salvemini
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Tuccari
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Grazia Mastrodonato
- Department of Basic Medical Science, Neuroscience and Sensory Organs, Institute of Sports Medicine, University “Aldo Moro” of Bari, 70122 Bari, Italy
| | - Rosanna Villani
- Department of Medical and Surgical Sciences, Institute of Internal Medicine, Liver Unit, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Lucia Angela Fiore
- Department of Medical and Surgical Sciences, Institute of Geriatric, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Giulia Scioscia
- Department of Medical and Surgical Sciences, Institute of Respiratory Diseases, Policlinico Universitario “Riuniti” di Foggia, University of Foggia, 71122 Foggia, Italy
| | - Antonio Mirijello
- Department of Internal of Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| | | | - Marco Sperandeo
- Unit of Interventional and Diagnostic Ultrasound of Internal Medicine, IRCCS Fondazione Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
3
|
Keller SB, Wang YN, Totten S, Yeung RS, Averkiou MA. Safety of Image-Guided Treatment of the Liver with Ultrasound and Microbubbles in an in Vivo Porcine Model. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3211-3220. [PMID: 34362584 DOI: 10.1016/j.ultrasmedbio.2021.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/15/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Ultrasound and microbubbles are useful for both diagnostic imaging and targeted drug delivery, making them ideal conduits for theranostic interventions. Recent reports have indicated the preclinical success of microbubble cavitation for enhancement of chemotherapy in abdominal tumors; however, there have been limited studies and variable efficacy in clinical implementation of this technique. This is likely because in contrast to the high pressures and long cycle lengths seen in successful preclinical work, current clinical implementation of microbubble cavitation for drug delivery generally involves low acoustic pressures and short cycle lengths to fit within clinical guidelines. To translate the preclinical parameter space to clinical adoption, a relevant safety study in a healthy large animal is required. Therefore, the purpose of this work was to evaluate the safety of ultrasound cavitation treatment (USCTx) in a healthy porcine model using a modified Philips EPIQ with S5-1 as the focused source. We performed USCTx on eight healthy pigs and monitored health over the course of 1 wk. We then performed an acute study of USCTx to evaluate immediate tissue damage. Contrast-enhanced ultrasound exams were performed before and after each treatment to investigate perfusion changes within the treated areas, and blood and urine were evaluated for liver damage biomarkers. We illustrate, through quantitative analysis of contrast-enhanced ultrasound data, blood and urine analyses and histology, that this technique and the parameter space considered are safe within the time frame evaluated. With its safety confirmed using a clinical-grade ultrasound scanner and contrast agent, USCTx could be easily translated into clinical trials for improvement of chemotherapy delivery. This represents the first safety study assessing the bio-effects of microbubble cavitation from relevant ultrasound parameters in a large animal model.
Collapse
Affiliation(s)
- Sara B Keller
- Department of Bioengineering, University of Washington, Seattle, Washington, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Stephanie Totten
- Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
| | - Raymond S Yeung
- Department of Surgery, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
4
|
Ntoulia A, Anupindi SA, Back SJ, Didier RA, Hwang M, Johnson AM, McCarville MB, Papadopoulou F, Piskunowicz M, Sellars ME, Darge K. Contrast-enhanced ultrasound: a comprehensive review of safety in children. Pediatr Radiol 2021; 51:2161-2180. [PMID: 34716453 PMCID: PMC11459369 DOI: 10.1007/s00247-021-05223-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/10/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) has been increasingly used in pediatric radiology practice worldwide. For nearly two decades, CEUS applications have been performed with the off-label use of gas-containing second-generation ultrasound contrast agents (UCAs). Since 2016, the United States Food and Drug Administration (FDA) has approved the UCA Lumason for three pediatric indications: the evaluation of focal liver lesions and echocardiography via intravenous administration and the assessment of vesicoureteral reflux via intravesical application (contrast-enhanced voiding urosonography, ceVUS). Prior to the FDA approval of Lumason, numerous studies with the use of second-generation UCAs had been conducted in adults and children. Comprehensive protocols for clinical safety evaluations have demonstrated the highly favorable safety profile of UCA for intravenous, intravesical and other intracavitary uses. The safety data on CEUS continue to accumulate as this imaging modality is increasingly utilized in clinical settings worldwide. As of August 2021, 57 pediatric-only original research studies encompassing a total of 4,518 children with 4,906 intravenous CEUS examinations had been published. As in adults, there were a few adverse events; the majority of these were non-serious, although very rarely serious anaphylactic reactions were reported. In the published pediatric-only intravenous CEUS studies included in our analysis, the overall incidence rate of serious adverse events was 0.22% (10/4,518) of children and 0.20% (10/4,906) of all CEUS examinations. Non-serious adverse events from the intravenous CEUS were observed in 1.20% (54/4,518) of children and 1.10% (54/4,906) of CEUS examinations. During the same time period, 31 studies with the intravesical use of UCA were conducted in 12,362 children. A few non-serious adverse events were encountered (0.31%; 38/12,362), but these were most likely attributable to the bladder catheterization rather than the UCA. Other developing clinical applications of UCA in children, including intracavitary and intralymphatic, are ongoing. To date, no serious adverse events have been reported with these applications. This article reviews the existing pediatric CEUS literature and provides an overview of safety-related information reported from UCA uses in children.
Collapse
Affiliation(s)
- Aikaterini Ntoulia
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA.
| | - Sudha A Anupindi
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan J Back
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ryne A Didier
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann M Johnson
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | - Maria E Sellars
- Department of Radiology, King's College Hospital, London, UK
| | - Kassa Darge
- Department of Radiology, Children's Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA, 19104, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Zhu Q, Zhang Y, Tang J, Tang N, He Y, Chen X, Gao S, Xu Y, Liu Z. Ultrasound-Targeted Microbubble Destruction Accelerates Angiogenesis and Ameliorates Left Ventricular Dysfunction after Myocardial Infarction in Mice. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2692-2701. [PMID: 34130882 DOI: 10.1016/j.ultrasmedbio.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/25/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Failure of coronary recanalization within 12 h or no flow in the myocardium after percutaneous coronary intervention is associated with high mortality from myocardial infarction, and insufficient angiogenesis in the border zone results in the expansion of infarct area. In this study, we examined the effects of ultrasound-targeted microbubble destruction (UTMD) on angiogenesis and left ventricular dysfunction in a mouse model of myocardial infarction. Fifty-four mice with MI were treated with no UTMD, ultrasound (US) alone or UTMD four times (days 1, 3, 5 and 7), and another 18 mice underwent sham operation and therapy. Therapeutic US was generated with a linear transducer connected to a commercial diagnostic US system (VINNO70). UTMD was performed with the VINNO70 at a peak negative pressure of 0.8 MPa and lipid microbubbles. Transthoracic echocardiography was performed on the first and seventh days. The results indicated that UTMD decreased the infarct size ratio from 78.1 ± 5.3% (untreated) to 43.3 ± 6.4%, accelerated angiogenesis and ameliorated left ventricular dysfunction. The ejection fraction increased from 25.05 ± 8.52% (untreated) to 42.83 ± 9.44% (UTMD). Compared with that in other groups, expression of vascular endothelial growth factor and endothelial nitric oxide synthase and release of nitric oxide were significantly upregulated after UTMD treatment, indicating angiogenesis. Therefore, UTMD is a potential physical approach in the treatment of myocardial infarction.
Collapse
Affiliation(s)
- Qiong Zhu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Yi Zhang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jiawei Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Najiao Tang
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ying He
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiaoqin Chen
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shunji Gao
- Department of Ultrasound, General Hospital of Central Theater Command, Wuhan, China
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zheng Liu
- Department of Ultrasound, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
6
|
Rifu K, Sasanuma H, Takayama N, Nitta N, Ogata Y, Akiyama I, Taniguchi N. Acoustic radiation force impulse under clinical conditions with single infusion of ultrasound contrast agent evoking arrhythmias in rabbit heart. J Med Ultrason (2001) 2021; 48:137-144. [PMID: 33837866 DOI: 10.1007/s10396-021-01085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We previously reported that acoustic radiation force impulse (ARFI) with concomitant administration of perfluorobutane as an ultrasound contrast agent (UCA)-induced arrhythmias at a mechanical index (MI) of 1.8 or 4.0 in a rabbit model. The present study identified the location of arrhythmias with a MI < 1.8 using a new system that can transmit ARFI with B-mode imaging. METHODS Under general anesthesia, six male Japanese white rabbits were placed in a supine position. Using this system, we targeted ARFI to the exact site of the heart. ARFI exposure with MI 0.9-1.2 was performed to the right or left ventricle of the heart 2 min after UCA injection. RESULTS ARFI with a MI lower than previously reported to rabbit heart evoked extrasystolic waves with single UCA infusion. Arrhythmias were not observed using ARFI without UCA. Extrasystolic waves were observed significantly more frequently in the right ventricle group than in the left ventricle group, with arrhythmias showing reversed shapes. No fatal arrhythmias were observed. CONCLUSION ARFI applied to simulate clinical conditions in rabbit heart evoked extrasystolic waves with single UCA infusion. The right ventricle group was significantly more sensitive to ARFI exposure, resulting in arrhythmias, than the left ventricle group. The shapes of PVCs that occurred in the right ventricle group and the left ventricle group were reversed. Ultrasound practitioners who use ARFI should be aware of this adverse reaction, even if the MI is below the previously determined value of 1.9.
Collapse
Affiliation(s)
- Kazuma Rifu
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Hideki Sasanuma
- Division of Gastroenterological, General and Transplant Surgery, Department of Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Noriya Takayama
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Naotaka Nitta
- National Institute of Advanced Industrial Science and Technology, Health and Medical Research Institute, 1-2-1 Namiki, Tsukuba, Ibaraki, 305-8564, Japan
| | - Yukiyo Ogata
- Department of Cardiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | - Iwaki Akiyama
- Medical Ultrasound Research Center, Doshisha University, 1-3 Tatara-miyakodani, Kyotanabe, Kyoto, 610-0321, Japan
| | - Nobuyuki Taniguchi
- Department of Clinical Laboratory Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| |
Collapse
|
7
|
Coiado OC, Lowe J, O'Brien WD. Therapeutic Ultrasound in Cardiovascular Medicine. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 40:1061-1076. [PMID: 32964505 DOI: 10.1002/jum.15493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 06/11/2023]
Abstract
An advantage of therapeutic ultrasound (US) is the ability to cause controlled biological effects noninvasively. Depending on the magnitude and frequency of exposure parameters, US can interact in different ways with a variety of biological tissues. The development and clinical utility of therapeutic US techniques are now rapidly growing, especially with regard to the application of US pulses for cardiac pacing and the potential treatment of cardiovascular diseases. This review outlines the basic principles of US-based therapy in cardiology, including the acoustic properties of the cardiovascular tissue, and the use of US in therapeutic cardiovascular medicine.
Collapse
Affiliation(s)
- Olivia C Coiado
- Department of Biomedical and Translational Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jacques Lowe
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - William D O'Brien
- Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
Diagnostic Ultrasound and Microbubbles Treatment Improves Outcomes of Coronary No-Reflow in Canine Models by Sonothrombolysis. Crit Care Med 2019; 46:e912-e920. [PMID: 29965834 PMCID: PMC6110622 DOI: 10.1097/ccm.0000000000003255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: Effective treatment for microvascular thrombosis-induced coronary no-reflow remains an unmet clinical need. This study sought to evaluate whether diagnostic ultrasound and microbubbles treatment could improve outcomes of coronary no-reflow by dissolving platelet- and erythrocyte-rich microthrombi. Design: Randomized controlled laboratory investigation. Setting: Research laboratory. Subjects: Mongrel dogs. Interventions: Coronary no-reflow models induced by platelet- or erythrocyte-rich microthrombi were established and randomly assigned to control, ultrasound, recombinant tissue-type plasminogen activator, ultrasound + microbubbles, or ultrasound + microbubbles + recombinant tissue-type plasminogen activator group. All treatments lasted for 30 minutes. Measurements and Main Results: Percentage of microemboli-obstructed coronary arterioles was lower in ultrasound + microbubbles group than that in control group for platelet- (> 50% obstruction: 10.20% ± 3.56% vs 31.80% ± 3.96%; < 50% obstruction: 14.80% ± 4.15% vs 28.20% ± 3.56%) and erythrocyte-rich microthrombi (> 50% obstruction: 8.20% ± 3.11% vs 30.60% ± 4.83%; < 50% obstruction: 12.80% ± 4.15% vs 25.80% ± 3.70%) (p < 0.001). Percentage change of myocardial blood flow in left anterior descending artery-dominated region, left ventricular ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles group than that in control group for both types of microthrombi (p < 0.001). Percentage change of myocardial blood flow, ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles and ultrasound + microbubbles + recombinant tissue-type plasminogen activator groups than that in recombinant tissue-type plasminogen activator group for platelet-rich microthrombi (p < 0.05). Conclusions: Ultrasound + microbubbles treatment could dissolve platelet- and erythrocyte-rich microthrombi, thereby improving outcomes of coronary no-reflow, making it a promising supplement to current reperfusion therapy for acute ST-segment elevation myocardial infarction.
Collapse
|
9
|
Combining Microbubble Contrast Agent with Pulsed-Laser Irradiation for Transdermal Drug Delivery. Pharmaceutics 2018; 10:pharmaceutics10040175. [PMID: 30282960 PMCID: PMC6321619 DOI: 10.3390/pharmaceutics10040175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 02/07/2023] Open
Abstract
The optodynamic process of laser-induced microbubble (MB) cavitation in liquids is utilized in various medical applications. However, how incident laser radiation interacts with MBs as an ultrasound contrast agent is rarely estimated when the liquid already contains stable MBs. The present study investigated the efficacy of the laser-mediated cavitation of albumin-shelled MBs in enhancing transdermal drug delivery. Different types and conditions of laser-mediated inertial cavitation of MBs were first evaluated. A CO2 fractional pulsed laser was selected for combining with MBs in the in vitro and in vivo experiments. The in vitro skin penetration by β-arbutin after 2 h was 2 times greater in the group combining a laser with MBs than in the control group. In small-animal experiments, the whitening effect on the skin of C57BL/6J mice in the group combining a laser with MBs on the skin plus penetrating β-arbutin increased (significantly) by 48.0% at day 11 and 50.0% at day 14, and then tended to stabilize for the remainder of the 20-day experimental period. The present results indicate that combining a CO2 laser with albumin-shelled MBs can increase skin permeability so as to enhance the delivery of β-arbutin to inhibit melanogenesis in mice without damaging the skin.
Collapse
|
10
|
Izadifar Z, Babyn P, Chapman D. Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1085-1104. [PMID: 28342566 DOI: 10.1016/j.ultrasmedbio.2017.01.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 05/12/2023]
Abstract
Ultrasound is widely used for medical diagnosis and increasingly for therapeutic purposes. An understanding of the bio-effects of sonography is important for clinicians and scientists working in the field because permanent damage to biological tissues can occur at high levels of exposure. Here the underlying principles of thermal mechanisms and the physical interactions of ultrasound with biological tissues are reviewed. Adverse health effects derived from cellular studies, animal studies and clinical reports are reviewed to provide insight into the in vitro and in vivo bio-effects of ultrasound.
Collapse
Affiliation(s)
- Zahra Izadifar
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Paul Babyn
- Department of Medical Imaging, Royal University Hospital, University of Saskatchewan and Saskatoon Health Region, Saskatoon, Saskatchewan, Canada
| | - Dean Chapman
- Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
11
|
ICNIRP Statement on Diagnostic Devices Using Non-ionizing Radiation: Existing Regulations and Potential Health Risks. HEALTH PHYSICS 2017; 112:305-321. [PMID: 28121732 PMCID: PMC5515634 DOI: 10.1097/hp.0000000000000654] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Use of non-ionizing radiation (NIR) for diagnostic purposes allows non-invasive assessment of the structure and function of the human body and is widely employed in medical care. ICNIRP has published previous statements about the protection of patients during medical magnetic resonance imaging (MRI), but diagnostic methods using other forms of NIR have not been considered. This statement reviews the range of diagnostic NIR devices currently used in clinical settings; documents the relevant regulations and policies covering patients and health care workers; reviews the evidence around potential health risks to patients and health care workers exposed to diagnostic NIR; and identifies situations of high NIR exposure from diagnostic devices in which patients or health care workers might not be adequately protected by current regulations. Diagnostic technologies were classified by the types of NIR that they employ. The aim was to describe the techniques in terms of general device categories which may encompass more specific devices or techniques with similar scientific principles. Relevant legally-binding regulations for protection of patients and workers and organizations responsible for those regulations were summarized. Review of the epidemiological evidence concerning health risks associated with exposure to diagnostic NIR highlighted a lack of data on potential risks to the fetus exposed to MRI during the first trimester, and on long-term health risks in workers exposed to MRI. Most of the relevant epidemiological evidence that is currently available relates to MRI or ultrasound. Exposure limits are needed for exposures from diagnostic technologies using optical radiation within the body. There is a lack of data regarding risk of congenital malformations following exposure to ultrasound in utero in the first trimester and also about the possible health effects of interactions between ultrasound and contrast media.
Collapse
|
12
|
Miller DL, Lu X, Fabiilli M, Fields K, Dou C. Frequency Dependence of Petechial Hemorrhage and Cardiomyocyte Injury Induced during Myocardial Contrast Echocardiography. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1929-41. [PMID: 27126240 PMCID: PMC4912900 DOI: 10.1016/j.ultrasmedbio.2016.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/15/2016] [Accepted: 03/20/2016] [Indexed: 05/24/2023]
Abstract
Myocardial contrast echocardiography (MCE) for perfusion imaging can induce microscale bio-effects during intermittent high-Mechanical Index scans. The dependence of MCE-induced bio-effects on the ultrasonic frequency was examined in rats at 1.6, 2.5 and 3.5 MHz. Premature complexes were counted in the electrocardiogram, petechial hemorrhages with microvascular leakage on the heart surface were observed at the time of exposure, plasma troponin elevation was measured after 4 h and cardiomyocyte injury was detected at 24 h. Increasing response to exposure above an apparent threshold was observed for all endpoints at each frequency. The effects decreased with increasing ultrasonic frequency, and the thresholds increased. Linear regressions for frequency-dependent thresholds indicated coefficients and exponents of 0.6 and 1.07 for petechial hemorrhages, respectively, and 1.02 and 0.8 for cardiomyocyte death, compared with 1.9 and 0.5 (square root) for the guideline limit of the mechanical index. The results clarify the dependence of cardiac bio-effects on frequency, and should allow development of theoretical descriptions of the phenomena and improved safety guidance for MCE.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA.
| | - Xiaofang Lu
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Mario Fabiilli
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Kristina Fields
- Department of Pathology, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Chunyan Dou
- Department of Radiology, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Paefgen V, Doleschel D, Kiessling F. Evolution of contrast agents for ultrasound imaging and ultrasound-mediated drug delivery. Front Pharmacol 2015; 6:197. [PMID: 26441654 PMCID: PMC4584939 DOI: 10.3389/fphar.2015.00197] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/31/2015] [Indexed: 12/21/2022] Open
Abstract
Ultrasound (US) is one of the most frequently used diagnostic methods. It is a non-invasive, comparably inexpensive imaging method with a broad spectrum of applications, which can be increased even more by using bubbles as contrast agents (CAs). There are various different types of bubbles: filled with different gases, composed of soft- or hard-shell materials, and ranging in size from nano- to micrometers. These intravascular CAs enable functional analyses, e.g., to acquire organ perfusion in real-time. Molecular analyses are achieved by coupling specific ligands to the bubbles' shell, which bind to marker molecules in the area of interest. Bubbles can also be loaded with or attached to drugs, peptides or genes and can be destroyed by US pulses to locally release the entrapped agent. Recent studies show that US CAs are also valuable tools in hyperthermia-induced ablation therapy of tumors, or can increase cellular uptake of locally released drugs by enhancing membrane permeability. This review summarizes important steps in the development of US CAs and introduces the current clinical applications of contrast-enhanced US. Additionally, an overview of the recent developments in US probe design for functional and molecular diagnosis as well as for drug delivery is given.
Collapse
Affiliation(s)
| | | | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University Hospital, AachenGermany
| |
Collapse
|
14
|
Senior R. Imagify™ (perflubutane polymer microspheres) injectable suspension for the assessment of coronary artery disease. Expert Rev Cardiovasc Ther 2014; 5:413-21. [PMID: 17489666 DOI: 10.1586/14779072.5.3.413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myocardial contrast echocardiography is a rapidly evolving technique for the assessment of myocardial perfusion. Many studies have indicated their ability to detect flow-limiting coronary artery disease. Imagify (perflubutane polymer microspheres) injectable suspension, also known as AI-700, is a new ultrasound contrast agent that satisfies all the characteristics of an ideal agent for the assessment of myocardial perfusion. Preliminary studies with Imagify indicate that it is comparable with radionuclide perfusion techniques (presently the most widely used imaging technique to assess coronary artery disease) without the disadvantages of radiation and lack of availability at the bedside. This article provides an overview of Imagify, a new ultrasound contrast agent.
Collapse
Affiliation(s)
- Roxy Senior
- Department of Cardiovascular Medicine and Institute of Postgraduate Medical Education and Research, Northwick Park Hospital, Harrow, Middlesex, UK.
| |
Collapse
|
15
|
|
16
|
Seiler GS, Brown JC, Reetz JA, Taeymans O, Bucknoff M, Rossi F, Ohlerth S, Alder D, Rademacher N, Drost WT, Pollard RE, Travetti O, Pey P, Saunders JH, Shanaman MM, Oliveira CR, O'Brien RT, Gaschen L. Safety of contrast-enhanced ultrasonography in dogs and cats: 488 cases (2002-2011). J Am Vet Med Assoc 2013; 242:1255-9. [PMID: 23600783 DOI: 10.2460/javma.242.9.1255] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the incidence of adverse events within 24 hours after contrast-enhanced ultrasonography (CEUS) in dogs and cats and compare the risk of death within 24 hours after imaging for animals that underwent ultrasonography with and without injection of a contrast agent. DESIGN Retrospective case-control study. ANIMALS 750 animals (411 case dogs, 238 control dogs, 77 case cats, and 24 control cats). PROCEDURES At 11 institutions, medical records were reviewed of dogs and cats that had CEUS performed (cases) as were medical records of dogs and cats with clinical signs similar to those of case animals that had ultrasonography performed without injection of a contrast agent (controls). Information regarding signalment; preexisting disease; type, dose, and administration route of contrast agent used; immediate (within 1 hour after CEUS) and delayed (> 1 and ≤ 24 hours after CEUS) adverse events; and occurrence and cause of death (when available) was extracted from each medical record. Risk of death within 24 hours after ultrasonography was compared between case and control animals. RESULTS Of the 411 case dogs, 3 had immediate adverse events (vomiting or syncope) and 1 had a delayed adverse event (vomiting). No adverse events were recorded for case cats. Twenty-three of 357 (6.4%) clinically ill case animals and 14 of 262 (5.3%) clinically ill control animals died within 24 hours after ultrasonography; risk of death did not differ between cases and controls. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that CEUS was safe in dogs and cats.
Collapse
Affiliation(s)
- Gabriela S Seiler
- Department of Molecular Biomedical Science, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wood SC, Antony S, Brown RP, Chen J, Gordon EA, Hitchins VM, Zhang Q, Liu Y, Maruvada S, Harris GR. Effects of ultrasound and ultrasound contrast agent on vascular tissue. Cardiovasc Ultrasound 2012; 10:29. [PMID: 22805356 PMCID: PMC3493263 DOI: 10.1186/1476-7120-10-29] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 06/25/2012] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Ultrasound (US) imaging can be enhanced using gas-filled microbubble contrast agents. Strong echo signals are induced at the tissue-gas interface following microbubble collapse. Applications include assessment of ventricular function and virtual histology. AIM While ultrasound and US contrast agents are widely used, their impact on the physiological response of vascular tissue to vasoactive agents has not been investigated in detail. METHODS AND RESULTS In the present study, rat dorsal aortas were treated with US via a clinical imaging transducer in the presence or absence of the US contrast agent, Optison. Aortas treated with both US and Optison were unable to contract in response to phenylephrine or to relax in the presence of acetylcholine. Histology of the arteries was unremarkable. When the treated aortas were stained for endothelial markers, a distinct loss of endothelium was observed. Importantly, terminal deoxynucleotidyl transferase mediated dUTP nick-end-labeling (TUNEL) staining of treated aortas demonstrated incipient apoptosis in the endothelium. CONCLUSIONS Taken together, these ex vivo results suggest that the combination of US and Optison may alter arterial integrity and promote vascular injury; however, the in vivo interaction of Optison and ultrasound remains an open question.
Collapse
Affiliation(s)
- Steven C Wood
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Sible Antony
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
- School of Medicine and Health Sciences, The George Washington University, 2300, Eye Street, NW, Washington, DC, 20037, USA
| | - Ronald P Brown
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Jin Chen
- Food and Drug Administration, Center for Drug Evaluation and Research (CDER), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Edward A Gordon
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Victoria M Hitchins
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Qin Zhang
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Yunbo Liu
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Subha Maruvada
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| | - Gerald R Harris
- Food and Drug Administration, Center for Devices and Radiological Health (CDRH), 10903 New Hampshire Avenue, Silver Spring, MD, 20993, USA
| |
Collapse
|
18
|
Takada E, Kudo N, Endoh N, Hachiya H, Takeuchi SI, Tsuchiya T, Natori M. Transmission electron microscopy study on the effects of the ultrasound contrast agent Levovist on hepatic cells. J Med Ultrason (2001) 2012; 39:107-13. [PMID: 27278970 DOI: 10.1007/s10396-012-0349-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 01/05/2012] [Indexed: 11/28/2022]
Abstract
PURPOSE The Ultrasound Equipment and Safety Committee of The Japan Society of Ultrasonics in Medicine performed experiments to confirm whether contrast-enhanced ultrasonography damages liver cells. METHODS Rats were injected with 0.1 ml of 300 mg/ml ultrasound contrast agent (UCA). Diagnostic ultrasound pulses with a center frequency of 6 MHz and a mechanical index of 1.9 were applied to rat livers with a water bag as a coupler to maintain a distance of 2-6 cm between the ultrasound probe surface and the liver. Contrast-enhanced ultrasonography was carried out for 10 s to visualize the entire liver. Then, specimens of liver tissue were fixed using two types of fixation: immersion and perfusion fixation. RESULTS Although some variations were found in electron micrographs of liver tissue fixed using immersion fixation, none of three blinded readers found any significant differences between micrographs of liver tissue from rats receiving UCA with sonication and those from sham-treated control rats. Changes observed were not thought to be group-specific but instead due to differences between individual rats. When the livers were fixed using perfusion fixation and the hepatic vein was cut after injection of physiological saline for perfusion, a large number of vacuoles ≥2 μm in diameter were observed. This finding suggested that hepatic cell damage observed in this study was caused by high perfusion pressure during the liver fixation process rather than by sonication with UCA. CONCLUSION Blinded readings of electron micrographs showed no clear evidence that the use of Levovist in ADI mode ultrasonography causes significant damage to liver tissue.
Collapse
Affiliation(s)
- Etsuo Takada
- Center of Medical Ultrasonics, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| | - Nobuki Kudo
- Laboratory of Biomedical Engineering, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Japan
| | - Nobuyuki Endoh
- Department of Electronics and Informatics Frontiers, Faculty of Engineering, Kanagawa University, Yokohama, Japan
| | - Hiroyuki Hachiya
- Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Shin-Ichi Takeuchi
- Department of Clinical Engineering, Faculty of Biomedical Engineering, Toin University of Yokohama, Yokohama, Japan
| | - Takenobu Tsuchiya
- Department of Electronics and Informatics Frontiers, Faculty of Engineering, Kanagawa University, Yokohama, Japan
| | - Michiya Natori
- Research Institute, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
19
|
Abdelmoneim SS, Mulvagh SL. Perflutren lipid microsphere injectable suspension for cardiac ultrasound. ACTA ACUST UNITED AC 2012. [DOI: 10.2217/iim.12.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Le DE, Bragadeesh T, Zhao Y, Wang YG, Zha D, Kaul S. Detection of coronary stenosis with myocardial contrast echocardiography using regadenoson, a selective adenosine A2A receptor agonist. Eur Heart J Cardiovasc Imaging 2011; 13:298-308. [DOI: 10.1093/ejechocard/jer232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
21
|
Ultrasound molecular imaging of tumor angiogenesis with an integrin targeted microbubble contrast agent. Invest Radiol 2011; 46:215-24. [PMID: 21343825 DOI: 10.1097/rli.0b013e3182034fed] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
RATIONALE AND OBJECTIVES Ultrasound molecular imaging is an emerging technique for sensitive detection of intravascular targets. Molecular imaging of angiogenesis has strong potential for both clinical use and as a research tool in tumor biology and the development of antiangiogenic therapies. Our objectives are to develop a robust ultrasound contrast agent platform using microbubbles (MB) to which targeting ligands can be conjugated by biocompatible, covalent conjugation chemistry, and to develop a pure low mechanical index (MI) imaging processing method and corresponding quantification method. The MB and the imaging methods were evaluated in a mouse model of breast cancer in vivo. MATERIALS AND METHODS We used a cyclic arginine-glycine-aspartic acid (cRGD) pentapeptide containing a terminal cysteine group conjugated to the surface of MB bearing pyridyldithio-propionate (PDP) for targeting αvβ3 integrins. As negative controls, MB without a ligand or MB bearing a scrambled sequence (cRAD) were prepared. To enable characterization of peptides bound to MB surfaces, the cRGD peptide was labeled with FITC and detected by plate fluorometry, flow cytometry, and fluorescence microscopy. Targeted adhesion of cRGD-MB was demonstrated in an in vitro flow adhesion assay against recombinant murine αvβ3 integrin protein and αvβ3 integrin-expressing endothelial cells (bEnd.3). The specificity of cRGD-MB for αvβ3 integrin was demonstrated by treating bEnd.3 EC with a blocking antibody. A murine model of mammary carcinoma was used to assess targeted adhesion and ultrasound molecular imaging in vivo. The targeted MB were visualized using a low MI contrast imaging pulse sequence, and quantified by intensity normalization and 2-dimensional Fourier transform analysis. RESULTS The cRGD ligand concentration on the MB surface was ∼8.2 × 10(6) molecules per MB. At a wall shear stress of 1.0 dynes/cm, cRGD-MB exhibited 5-fold higher adhesion to immobilized recombinant αvβ3 integrin relative to nontargeted MB and cRAD-MB controls. Similarly, cRGD-MB showed significantly greater adhesion to bEnd.3 EC compared with nontargeted MB and cRAD-MB. In addition, cRGD-MB, but not nontargeted MB or cRAD-MB, showed significantly enhanced contrast signals with a high tumor-to-background ratio. The adhesion of cRGD-MB to bEnd.3 was reduced by 80% after using anti-αv monoclonal antibody to treat bEnd.3. The normalized image intensity amplitude was ∼0.8, 7 minutes after the administration of cRGD-MB relative to the intensity amplitude at the time of injection, while the spatial variance in image intensity improved the detection of bound agents. The accumulation of cRGD-MB was blocked by preadministration with an anti-αv blocking antibody. CONCLUSIONS The results demonstrate the functionality of a novel MB contrast agent covalently coupled to an RGD peptide for ultrasound molecular imaging of αvβ3 integrin and the feasibility of quantitative molecular ultrasound imaging with a low MI.
Collapse
|
22
|
Miller DL, Dou C, Lucchesi BR. Are ECG premature complexes induced by ultrasonic cavitation electrophysiological responses to irreversible cardiomyocyte injury? ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:312-20. [PMID: 21257092 PMCID: PMC3046393 DOI: 10.1016/j.ultrasmedbio.2010.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 11/10/2010] [Accepted: 11/23/2010] [Indexed: 05/03/2023]
Abstract
The objective of this study was to explore the relationship between premature complexes (PCs) in the electrocardiogram (ECG) and lethal injury of cardiomyocytes induced by ultrasound exposure of the heart with contrast-agent gas bodies in the circulation. Anesthetized rats were exposed in a heated water bath to 1.55 MHz focused ultrasound with bursts triggered at end systole during contrast agent infusion. PCs were detected in ECG recordings and cardiomyocyte necrosis was scored by identifying Evans blue-stained cells in multiple frozen sections. With 0.1 μL/kg/min infusion of contrast agent for 5 min, both effects increased strongly for 2-ms bursts with increasing peak rarefactional pressure amplitude >1 MPa. At 8 MPa, statistically significant effects were found even for no agent infusion relative to sham tests. For 2-ms bursts at 2 MPa, the highly significant bioeffects seen for 10-, 1- and 0.1-μL/kg/min infusion became marginally significant for 0.01 μL/kg/min, which indicated a lower probability of cavitation nucleation. Burst duration variation from 0.2-20 ms produced no substantial trends in the results. Overall, the two effects were well correlated (r(2) = 0.88). The PCs occurring during contrast-enhanced ultrasound therefore appear to be electrophysiological responses to irreversible cardiomyocyte injury induced by ultrasonic cavitation.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
23
|
Fujii H, Li SH, Wu J, Miyagi Y, Yau TM, Rakowski H, Egashira K, Guo J, Weisel RD, Li RK. Repeated and targeted transfer of angiogenic plasmids into the infarcted rat heart via ultrasound targeted microbubble destruction enhances cardiac repair. Eur Heart J 2010; 32:2075-84. [PMID: 21196445 DOI: 10.1093/eurheartj/ehq475] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Ultrasound-targeted microbubble destruction (UTMD) uses ultrasound energy to selectively deliver genes into the myocardium using plasmids conjugated to microbubbles. We hypothesized that repeated delivery of stem cell-mobilizing genes could boost the ability of this therapy to enhance cardiac repair and ventricular function after a myocardial infarction. METHODS AND RESULTS Beginning 7 days after coronary artery ligation, stem cell factor (SCF) and stromal cell-derived factor (SDF)-1α genes were administered to adult rats using 1, 3, or 6 UTMD treatments (repeat 1, 3, and 6 groups) at 2-day intervals (control=6 treatments with empty plasmid). Cardiac function (echocardiography) and myocardial perfusion (myocardial contrast echocardiography) were assessed on Days -7, 0, and 24 relative to the first treatment. Histological and biochemical assessments were performed on Day 24. Multiple UTMD treatments were associated with an increased presence of myocardial SCF and SDF-1α proteins and their receptors (vs. control and Repeat 1). All UTMD recipients exhibited increased vascular densities and smaller infarct regions (vs. control), with the highest ventricular densities in response to multiple treatments. Myocardial perfusion and ventricular function at Day 24 also improved progressively (vs. control) with the number of UTMD treatments. CONCLUSIONS Targeted ultrasound delivery of SCF and SDF-1α genes to the infarcted myocardium recruited progenitor cells and increased vascular density. Multiple UTMD treatments enhanced tissue repair, perfusion, and cardiac function. Repeated UTMD therapy may be applied to tailor the number of interventions required to optimize cardiac regeneration after an infarction.
Collapse
Affiliation(s)
- Hiroko Fujii
- Division of Cardiovascular Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arnold JR, Karamitsos TD, Pegg TJ, Francis JM, Olszewski R, Searle N, Senior R, Neubauer S, Becher H, Selvanayagam JB. Adenosine Stress Myocardial Contrast Echocardiography for the Detection of Coronary Artery Disease. JACC Cardiovasc Imaging 2010; 3:934-43. [PMID: 20846628 DOI: 10.1016/j.jcmg.2010.06.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 11/16/2022]
Affiliation(s)
- J Ranjit Arnold
- University of Oxford Centre for Clinical Magnetic Resonance Research, John Radcliffe Hospital, Oxford, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Khawaja OA, Shaikh KA, Al-Mallah MH. Meta-analysis of adverse cardiovascular events associated with echocardiographic contrast agents. Am J Cardiol 2010; 106:742-7. [PMID: 20723656 DOI: 10.1016/j.amjcard.2010.04.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 04/15/2010] [Accepted: 04/15/2010] [Indexed: 10/19/2022]
Abstract
In October 2007, the Federal Drug Agency issued a black box warning for contrast agents used in patients undergoing echocardiography and restricted their use in patients with acute coronary syndrome, a decompensated heart, and respiratory failure. We performed a systemic review and meta-analysis to study the adverse effects of contrast agents used with respect to myocardial infarction and all-cause mortality. MEDLINE, EMBASE, BIOSIS, and Cochrane databases from inception to October 2009 were searched for studies that reported myocardial infarction and all-cause mortality after the use of contrast agents for echocardiography. A total of 8 studies were included in the present meta-analysis. A random-effect model was used, and between-studies heterogeneity was estimated with I(2). A total of 8 studies reported death as an outcome and only 4 reported myocardial infarction. The incidence of death in the contrast group was 0.34% (726 of 211,162 patients) compared to 0.9% (45,970 of 5,078,666 patients) in the noncontrast group. The pooled odds ratio was 0.57 (95% confidence interval 0.32 to 1.01, p = 0.05). The reported incidence of myocardial infarction in the contrast group was 0.15% (86 of 57,264 patients) compared to 0.2% (92 of 44,503 patients) in the noncontrast group. The pooled odds ratio was 0.85 (95% confidence interval 0.35 to 2.05, p = 0.72). Significant heterogeneity was seen among the studies. In conclusion, the cumulative evidence has suggested that the use of contrast agents for echocardiography is safe and not associated with a greater incidence of myocardial infarction or and mortality.
Collapse
|
26
|
Hernot S, Cosyns B, Droogmans S, Garbar C, Couck P, Vanhove C, Caveliers V, Van Camp G, Bossuyt A, Lahoutte T. Effect of high-intensity ultrasound-targeted microbubble destruction on perfusion and function of the rat heart assessed by pinhole-gated SPECT. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:158-165. [PMID: 19931973 DOI: 10.1016/j.ultrasmedbio.2009.08.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 08/11/2009] [Accepted: 08/19/2009] [Indexed: 05/28/2023]
Abstract
Although ultrasound-targeted microbubble destruction (UTMD) has been shown to induce bioeffects, UTMD is still desirable for therapeutic applications. Therefore, we studied the effects of UTMD on perfusion and function of the rat heart, assessed by (99m)Tc-MIBI pinhole-gated SPECT (Ph-gSPECT) compared with biomarker release and histopathology. Fifty-two male Wistar rats were studied. UTMD was performed using SonoVue, with a mechanical index of 1.0 or 1.6. Controls were treated without microbubbles or without ultrasound application. At baseline, day 1, day 7 and day 30, 35 rats were imaged with (99m)Tc-MIBI Ph-gSPECT to quantify left ventricular perfusion and function. In addition, troponin release and histopathology were investigated. No significant differences were observed for left ventricular ejection fractions, end-systolic and end-diastolic volumes, regional perfusion and functional scores up to 30 days after UTMD compared with controls. UTMD induced mild troponin release and early erythrocyte extravasation without necrosis, inflammation or fibrosis. Although UTMD has the potential to induce microlesions of the heart in small animals, these effects were transient without histological evidence of irreversible damage. Furthermore, UTMD does not induce abnormalities on perfusion or function of the heart, as assessed by Ph-gSPECT, which is reassuring concerning the use of SonoVue for potential therapeutic applications. (E-mail: sophie.hernot@gmail.com).
Collapse
Affiliation(s)
- Sophie Hernot
- ICMI, Vrije Universiteit Brussel, UZ Brussel, Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Miller DL, Dou C, Lucchesi BR. Cardiac arrhythmia and injury induced in rats by burst and pulsed mode ultrasound with a gas body contrast agent. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2009; 28:1519-26. [PMID: 19854967 PMCID: PMC2770178 DOI: 10.7863/jum.2009.28.11.1519] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
OBJECTIVE Premature complexes (PCs) in the electrocardiogram (ECG) signal have been reported for myocardial contrast echocardiography and also for burst mode (physical therapy) ultrasound with gas body contrast agents at lower peak rarefactional pressure amplitudes (PRPAs). For contrast echocardiography, irreversibly injured cardiomyocytes have been associated with the arrhythmia. The objective was to determine whether cardiomyocyte injury is associated with the PCs induced by the burst mode at lower PRPAs. METHODS Anesthetized rats were exposed to focused 1.5-MHz ultrasound in a water bath. Evans blue dye was injected intraperitoneally to stain injured cardiomyocytes, and a perflutren lipid microsphere ultrasound contrast agent was infused intravenously. The continuous burst mode simulated physical therapy ultrasound. Intermittent 2-millisecond bursts, or envelopes of pulses simulating diagnostic ultrasound, were triggered 1:4 at end systole. Premature complexes were observed on ECG recordings, and stained cardiomyocytes were counted in frozen sections. RESULTS The continuous burst mode produced variable PCs and stained cells above a 0.3-MPa PRPA. The triggered bursts above 0.3 MPa and pulse envelopes above 1.2 MPa produced statistically significant (P < .01) PCs and stained cardiomyocytes. CONCLUSIONS Irreversible cardiomyocyte injury was associated with the development of PCs for the burst mode and occurred at substantially lower PRPAs than for pulsed ultrasound.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, 1301 Catherine St, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
28
|
Fan Z, Kumon RE, Park J, Deng CX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release 2009; 142:31-9. [PMID: 19818371 DOI: 10.1016/j.jconrel.2009.09.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 09/02/2009] [Accepted: 09/30/2009] [Indexed: 11/27/2022]
Abstract
Ultrasound application in the presence of microbubbles is a promising strategy for intracellular drug and gene delivery, but it may also trigger other cellular responses. This study investigates the relationship between the change of cell membrane permeability generated by ultrasound-driven microbubbles and the changes in intracellular calcium concentration ([Ca(2+)](i)). Cultured rat cardiomyoblast (H9c2) cells were exposed to a single ultrasound pulse (1MHz, 10-15cycles, 0.27MPa) in the presence of a Definity(TM) microbubble. Intracellular transport via sonoporation was assessed in real time using propidium iodide (PI), while [Ca(2+)](i) and dye loss from the cells were measured with preloaded fura-2. The ultrasound exposure generated fragmentation or shrinking of the microbubble. Only cells adjacent to the ultrasound-driven microbubble exhibited propidium iodide uptake with simultaneous [Ca(2+)](i) increase and fura-2 dye loss. The amount of PI uptake was correlated with the amount of fura-2 dye loss. Cells with delayed [Ca(2+)](i) transients from the time of ultrasound application had no uptake of PI. These results indicate the formation of non-specific pores in the cell membrane by ultrasound-stimulated microbubbles and the generation of calcium waves in surrounding cells without pores.
Collapse
Affiliation(s)
- Z Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109-2099, USA
| | | | | | | |
Collapse
|
29
|
Abdelmoneim SS, Bernier M, Scott CG, Dhoble A, Ness SAC, Hagen ME, Moir S, McCully RB, Pellikka PA, Mulvagh SL. Safety of Contrast Agent Use During Stress Echocardiography. JACC Cardiovasc Imaging 2009; 2:1048-56. [DOI: 10.1016/j.jcmg.2009.03.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/23/2009] [Accepted: 03/28/2009] [Indexed: 11/27/2022]
|
30
|
Kaul S, Wei K. When you have eliminated the impossible, whatever remains, however improbable, must be the truth. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2009; 10:713-5. [DOI: 10.1093/ejechocard/jep102] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
31
|
Dijkmans PA, Juffermans LJM, van Dijk J, Musters RJP, Spreeuwenberg, Kamp O. Safety and Feasibility of Real Time Adenosine Myocardial Contrast Echocardiography with Emphasis on Induction of Arrhythmias: A Study in Healthy Volunteers and Patients with Stable Coronary Artery Disease. Echocardiography 2009; 26:807-14. [DOI: 10.1111/j.1540-8175.2008.00890.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
32
|
Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput 2009; 47:893-900. [DOI: 10.1007/s11517-009-0507-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 06/21/2009] [Indexed: 10/20/2022]
|
33
|
Wink MH, Wijkstra H, De La Rosette JJMCH, Grimbergen CA. Ultrasound imaging and contrast agents: A safe alternative to MRI? MINIM INVASIV THER 2009; 15:93-100. [PMID: 16754192 DOI: 10.1080/13645700600674252] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microbubble contrast media are used to enhance ultrasound images. Because ultrasound is a real-time investigation, contrast-enhanced ultrasound offers possibilities for perfusion imaging. This review is conducted to evaluate the safety of contrast-enhanced ultrasound and its possible role in medical imaging. The safety of diagnostic ultrasound is still an important field of research. The wanted and unwanted effects of ultrasound and microbubble contrast media as well as the effects of ultrasound on these microbubbles are described. Furthermore, some of the possible applications and indications of contrast-enhanced ultrasound will be discussed. The shared advantages of MRI and ultrasound are the use of non-ionizing radiation and non-nephrotoxic contrast media. From this review it can be concluded that, for certain indications, contrast enhanced ultrasound could be a safe alternative to MRI and a valuable addition to medical imaging.
Collapse
Affiliation(s)
- Margot H Wink
- Department of Urology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.
| | | | | | | |
Collapse
|
34
|
Tran TA, Le Guennec JY, Babuty D, Bougnoux P, Tranquart F, Bouakaz A. On the mechanisms of ultrasound contrast agents-induced arrhythmias. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1050-1056. [PMID: 19195768 DOI: 10.1016/j.ultrasmedbio.2008.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/02/2008] [Accepted: 11/20/2008] [Indexed: 05/27/2023]
Abstract
Recent reports have shown that imaging hard-shelled ultrasound (US) contrast agents at high mechanical indices engenders premature ventricular contractions (PVCs). We have shown that the oscillations of microbubbles next to a cell induce a mechanical pressure on its membrane resulting in the activation of stretch activated channels (SAC). The aim of this study is to demonstrate, in vivo and in vitro, the relationship between PVCs and SAC opening. Five anesthetized rats were used. PVCs were created in vivo with (1) US and a diluted solution of contrast microbubbles injected intravenously through the tail vein at a rate of 0.5 mL per min and (2) a manually induced mechanical stimulus, which consisted of stimulations by a flexible catheter introduced into the rat aorta and pushed until the left ventricle. PVCs were quantified through ECG measurements. In vitro experiments consisted of patch Clamp measurements on HL-1 heart cell line. The stimulation was carried out either manually with a glass rod or with US and microbubbles. For both in vivo and in vitro experiments, US consisted of 40-cycle waveforms at 1 MHz and peak negative pressures up to 300 kPa and exposure time varied from 1 to 2 min. We should emphasize that these parameters are different from those used in diagnostic conditions. In vivo, microbubbles and US at 300 kPa induced modification of rat's ECG while pressures below 300 kPa did not induce any PVC. US alone did not modify the rat's ECG. Similar PVCs were also created when stimulation with a catheter was applied. Regular heart beat rate was recovered immediately after the stimulation was stopped. In vitro, the mechanical stretch induced a cell membrane depolarization due to SAC opening. Similar effect was observed with US and microbubbles. The cell potential returned to its initial value when the stimulation was released. In conclusion, we presume that PVCs are generated through a cascade of events characterized by a mechanical action of oscillating microbubbles, opening of stretch activated ion channels, membrane depolarization and triggering of action potentials.
Collapse
|
35
|
|
36
|
Miller DL, Dou C, Wiggins RC. Glomerular capillary hemorrhage induced in rats by diagnostic ultrasound with gas-body contrast agent produces intratubular obstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:869-77. [PMID: 19152998 PMCID: PMC2695589 DOI: 10.1016/j.ultrasmedbio.2008.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/20/2008] [Accepted: 10/29/2008] [Indexed: 05/04/2023]
Abstract
Glomerular capillary hemorrhage (GCH) induced by ultrasonic cavitation during diagnostic imaging represents a unique contrast agent-related nephron injury. Consequences of GCH during 1.5-MHz diagnostic ultrasound with contrast agent were examined by histologic methods in rats. Definity was infused at 10 microl/kg/min for 5 min at the start of 8 min of intermittent image-exposure, with 2.3 MPa in situ peak rarefactional pressure amplitude. Kidney samples were taken for histology at 5 min, 30 min, 4 h, 2 d, 1 week and 4 weeks post exposure. In addition, samples were taken at 4 h from groups treated with heparin or aminocaproic acid. GCH was found in 61% of glomeruli in the center of the scan plane 5 min after exposure, which declined (p < 0.05) to 36.3% after 4 h. The width of Bowman's space was significantly increased for glomeruli with GCH relative to glomeruli without GCH (p < 0.05), consistent with tubular obstruction. Antibody staining revealed fibrin clotting in Bowman's space in 4-h samples and this persisted in the 2-d samples. Heparin reduced and aminocaproic acid increased the GCH seen in 4-h samples. Tubular dilation was evident with injury to the epithelium after 2 d. After one week, areas of inflammatory cell infiltration were present. After four weeks, areas of interstitial fibrosis were revealed by Masson's trichrome stain. The consequences of GCH induced by diagnostic ultrasound with contrast agents include rupture of glomerular capillaries, procoagulant activity resulting in intratubular obstruction, and the potential for progression of the resulting tubular injury toward interstitial fibrosis.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan Health System, Ann Arbor, MI 48109-5667, USA.
| | | | | |
Collapse
|
37
|
Vancraeynest D, Havaux X, Pasquet A, Gerber B, Beauloye C, Rafter P, Bertrand L, Vanoverschelde JL. Myocardial injury induced by ultrasound-targeted microbubble destruction: evidence for the contribution of myocardial ischemia. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:672-679. [PMID: 19110365 DOI: 10.1016/j.ultrasmedbio.2008.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) can cause left ventricular (LV) dysfunction and tissue alterations in rats when high ultrasound (US) energy and long duration of imaging are used. However, the mechanism underlying these alterations remains unclear. The aim of the present work was to investigate the possible role of ischemia in the pathogenesis of the UTMD-induced LV damages in rats. To address this issue, rat hearts were exposed in situ to perfluorocarbon-enhanced sonicated dextrose albumin (PESDA) and US at peak negative pressures of 0.6, 1.2 or 1.8 MPa for 1, 3, 9, 15 or 30 min. Blood pressure and electrocardiogram were continuously recorded during insonation. LV function was assessed before and immediately after US exposure, as well as at 24 h and 7 d. At each time point, groups of rats were euthanized and their hearts were harvested for morphologic analysis. Rats exposed to either PESDA alone or US alone showed no functional or morphologic abnormalities. By contrast, rats exposed to both PESDA and US exhibited transient LV dysfunction, transient ST-segment elevation, premature ventricular contractions, microvascular ruptures, contraction band necrosis and morphologic tissue damage. These bio-effects were spontaneously and completely reversible by one week, except in the groups exposed to the highest peak negative pressure for the longest duration, in which mild dysfunction persisted and interstitial fibrosis developed. In conclusion, simultaneous exposure of rat hearts to PESDA and US in vivo results in significant bio-effects that are similar to myocardial ischemia, including transient regional LV dysfunction, transient ST-segment elevation and myocyte contraction band necrosis.
Collapse
Affiliation(s)
- David Vancraeynest
- Division of Cardiology, Université Catholique de Louvain, School of Medicine, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol 2009; 54:R27-57. [PMID: 19229096 PMCID: PMC2818980 DOI: 10.1088/0031-9155/54/6/r01] [Citation(s) in RCA: 274] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microbubble contrast agents and the associated imaging systems have developed over the past 25 years, originating with manually-agitated fluids introduced for intra-coronary injection. Over this period, stabilizing shells and low diffusivity gas materials have been incorporated in microbubbles, extending stability in vitro and in vivo. Simultaneously, the interaction of these small gas bubbles with ultrasonic waves has been extensively studied, resulting in models for oscillation and increasingly sophisticated imaging strategies. Early studies recognized that echoes from microbubbles contained frequencies that are multiples of the microbubble resonance frequency. Although individual microbubble contrast agents cannot be resolved-given that their diameter is on the order of microns-nonlinear echoes from these agents are used to map regions of perfused tissue and to estimate the local microvascular flow rate. Such strategies overcome a fundamental limitation of previous ultrasound blood flow strategies; the previous Doppler-based strategies are insensitive to capillary flow. Further, the insonation of resonant bubbles results in interesting physical phenomena that have been widely studied for use in drug and gene delivery. Ultrasound pressure can enhance gas diffusion, rapidly fragment the agent into a set of smaller bubbles or displace the microbubble to a blood vessel wall. Insonation of a microbubble can also produce liquid jets and local shear stress that alter biological membranes and facilitate transport. In this review, we focus on the physical aspects of these agents, exploring microbubble imaging modes, models for microbubble oscillation and the interaction of the microbubble with the endothelium.
Collapse
Affiliation(s)
- Shengping Qin
- Department of Biomedical Engineering, University of California, 451 East Health Sciences Drive, Davis, CA 95616, USA
| | | | | |
Collapse
|
39
|
American Society of Echocardiography Consensus Statement on the Clinical Applications of Ultrasonic Contrast Agents in Echocardiography. J Am Soc Echocardiogr 2009; 21:1179-201; quiz 1281. [PMID: 18992671 DOI: 10.1016/j.echo.2008.09.009] [Citation(s) in RCA: 312] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
UNLABELLED ACCREDITATION STATEMENT: The American Society of Echocardiography (ASE) is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians. The ASE designates this educational activity for a maximum of 1 AMA PRA Category 1 Credit.trade mark Physicians should only claim credit commensurate with the extent of their participation in the activity. The American Registry of Diagnostic Medical Sonographers and Cardiovascular Credentialing International recognize the ASE's certificates and have agreed to honor the credit hours toward their registry requirements for sonographers. The ASE is committed to resolving all conflict-of-interest issues, and its mandate is to retain only those speakers with financial interests that can be reconciled with the goals and educational integrity of the educational program. Disclosure of faculty and commercial support sponsor relationships, if any, have been indicated. TARGET AUDIENCE This activity is designed for all cardiovascular physicians, cardiac sonographers, and nurses with a primary interest and knowledge base in the field of echocardiography; in addition, residents, researchers, clinicians, sonographers, and other medical professionals having a specific interest in contrast echocardiography may be included. OBJECTIVES Upon completing this activity, participants will be able to: 1. Demonstrate an increased knowledge of the applications for contrast echocardiography and their impact on cardiac diagnosis. 2. Differentiate the available ultrasound contrast agents and ultrasound equipment imaging features to optimize their use. 3. Recognize the indications, benefits, and safety of ultrasound contrast agents, acknowledging the recent labeling changes by the US Food and Drug Administration (FDA) regarding contrast agent use and safety information. 4. Identify specific patient populations that represent potential candidates for the use of contrast agents, to enable cost-effective clinical diagnosis. 5. Incorporate effective teamwork strategies for the implementation of contrast agents in the echocardiography laboratory and establish guidelines for contrast use. 6. Use contrast enhancement for endocardial border delineation and left ventricular opacification in rest and stress echocardiography and unique patient care environments in which echocardiographic image acquisition is frequently challenging, including intensive care units (ICUs) and emergency departments. 7. Effectively use contrast echocardiography for the diagnosis of intracardiac and extracardiac abnormalities, including the identification of complications of acute myocardial infarction. 8. Assess the common pitfalls in contrast imaging and use stepwise, guideline-based contrast equipment setup and contrast agent administration techniques to optimize image acquisition.
Collapse
|
40
|
Juffermans L, Meijering D, van Wamel A, Henning R, Kooiman K, Emmer M, de Jong N, van Gilst W, Musters R, Paulus W, van Rossum A, Deelman L, Kamp O. Ultrasound and microbubble-targeted delivery of therapeutic compounds: ICIN Report Project 49: Drug and gene delivery through ultrasound and microbubbles. Neth Heart J 2009; 17:82-6. [PMID: 19247472 PMCID: PMC2644385 DOI: 10.1007/bf03086223] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
The molecular understanding of diseases has been accelerated in recent years, producing many new potential therapeutic targets. A noninvasive delivery system that can target specific anatomical sites would be a great boost for many therapies, particularly those based on manipulation of gene expression. The use of microbubbles controlled by ultrasound as a method for delivery of drugs or genes to specific tissues is promising. It has been shown by our group and others that ultrasound increases cell membrane permeability and enhances uptake of drugs and genes. One of the important mechanisms is that microbubbles act to focus ultrasound energy by lowering the threshold for ultrasound bioeffects. Therefore, clear understanding of the bioeffects and mechanisms underlying the membrane permeability in the presence of microbubbles and ultrasound is of paramount importance. (Neth Heart J 2009;17:82-6.).
Collapse
Affiliation(s)
- L.J.M. Juffermans
- Department of Cardiology and Physiology, VU University Medical Center, Amsterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - D.B.M. Meijering
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - A. van Wamel
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Center, Rotterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - R.H. Henning
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, the Netherlands
| | - K. Kooiman
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Center, Rotterdam, the Netherlands
| | - M. Emmer
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Center, Rotterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - N. de Jong
- Department of Biomedical Engineering, Thoraxcentre, Erasmus Medical Center, Rotterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - W.H. van Gilst
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - R. Musters
- Department of Cardiology and Physiology, VU University Medical Center, Amsterdam, the Netherlands, Utrecht, the Netherlands
| | - W.J. Paulus
- Department of Cardiology and Physiology, VU University Medical Center, Amsterdam, the Netherlands, Utrecht, the Netherlands
| | - A.C. van Rossum
- Department of Cardiology and Physiology, VU University Medical Center, Amsterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - L.E. Deelman
- Department of Clinical Pharmacology, University Medical Center Groningen, Groningen, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - O. Kamp
- Department of Cardiology and Physiology, VU University Medical Center, Amsterdam, and Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| |
Collapse
|
41
|
Duck FA. Hazards, risks and safety of diagnostic ultrasound. Med Eng Phys 2008; 30:1338-48. [DOI: 10.1016/j.medengphy.2008.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/27/2008] [Accepted: 06/01/2008] [Indexed: 10/21/2022]
|
42
|
Bierig SM, Mikolajczak P, Herrmann SC, Elmore N, Kern M, Labovitz AJ. Comparison of myocardial contrast echocardiography derived myocardial perfusion reserve with invasive determination of coronary flow reserve. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2008; 10:250-5. [DOI: 10.1093/ejechocard/jen217] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev 2008; 60:1177-92. [PMID: 18474407 DOI: 10.1016/j.addr.2008.03.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/04/2008] [Indexed: 11/22/2022]
Abstract
Ultrasound targeted microbubble destruction has evolved as a promising tool for organ specific gene and drug delivery. This technique has initially been developed as a method in myocardial contrast echocardiography, destroying intramyocardial microbubbles to characterize refill kinetics. When loading similar microbubbles with a bioactive substance, ultrasonic destruction of microbubbles may release the transported substance in the targeted organ. Furthermore, high amplitude oscillations of microbubbles lead to increased capillary and cell membrane permeability, thus facilitating tissue and cell penetration of the released substance. While this technique has been successfully used in many organs, its application in the cardiovascular system has dominated so far. Drug delivery using microbubbles has played a minor role in the cardiovascular system. In contrast, gene transfer has been successfully achieved in many studies. Both viral and non-viral vectors were used for loading on microbubbles. This review article will give an overview on studies that have applied ultrasound targeted microbubble destruction to deliver substances in the heart and blood vessels. It will show potential therapeutic targets, especially for gene therapy, describe feasible substances that can be loaded on microbubbles, and critically discuss prospects and limitations of this technique.
Collapse
|
44
|
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60:1153-66. [PMID: 18486268 DOI: 10.1016/j.addr.2008.03.005] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/04/2008] [Indexed: 12/12/2022]
Abstract
Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection are observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials.
Collapse
Affiliation(s)
- Sophie Hernot
- Cardiovascular Division, Department of Medicine, University of Virginia School of Medicine, P.O. Box 800158, RM1026, Hospital Drive, Cobb Hall, Charlottesville, VA 22908-0158, USA
| | | |
Collapse
|
45
|
Miller DL, Averkiou MA, Brayman AA, Everbach EC, Holland CK, Wible JH, Wu J. Bioeffects considerations for diagnostic ultrasound contrast agents. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:611-32; quiz 633-6. [PMID: 18359911 DOI: 10.7863/jum.2008.27.4.611] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Diagnostic ultrasound contrast agents have been developed for enhancing the echogenicity of blood and for delineating other structures of the body. Approved agents are suspensions of gas bodies (stabilized microbubbles), which have been designed for persistence in the circulation and strong echo return for imaging. The interaction of ultrasound pulses with these gas bodies is a form of acoustic cavitation, and they also may act as inertial cavitation nuclei. This interaction produces mechanical perturbation and a potential for bioeffects on nearby cells or tissues. In vitro, sonoporation and cell death occur at mechanical index (MI) values less than the inertial cavitation threshold. In vivo, bioeffects reported for MI values greater than 0.4 include microvascular leakage, petechiae, cardiomyocyte death, inflammatory cell infiltration, and premature ventricular contractions and are accompanied by gas body destruction within the capillary bed. Bioeffects for MIs of 1.9 or less have been reported in skeletal muscle, fat, myocardium, kidney, liver, and intestine. Therapeutic applications that rely on these bioeffects include targeted drug delivery to the interstitium and DNA transfer into cells for gene therapy. Bioeffects of contrast-aided diagnostic ultrasound happen on a microscopic scale, and their importance in the clinical setting remains uncertain.
Collapse
Affiliation(s)
- Douglas L Miller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109-0553, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Stratmeyer ME, Greenleaf JF, Dalecki D, Salvesen KA. Fetal ultrasound: mechanical effects. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2008; 27:597-609. [PMID: 18359910 DOI: 10.7863/jum.2008.27.4.597] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this discussion, any biological effect of ultrasound that is accompanied by temperature increments less than 1 degrees C above normal physiologic levels is called a mechanical effect. However, one should keep in mind that the term mechanical effect also includes processes that are not of a mechanical nature but arise secondary to mechanical interaction between ultrasound and tissues, such as chemical reactions initiated by free oxygen species generated during cavitation and sonoluminescence. Investigations with laboratory animals have documented that pulsed ultrasound can produce damage to biological tissues in vivo through nonthermal mechanisms. The acoustic output used to induce these adverse bio-effects is considerably greater than the output of diagnostic devices when gas bodies are not present. However, low-intensity pulsed ultrasound is used clinically to accelerate the bone fracture repair process and induce healing of nonunions in humans. Low-intensity pulsed ultrasound also has been shown to enhance repair of soft tissue damage and accelerate nerve regeneration in animal models. Although such exposures to low intensity do not appear to cause damage to exposed tissues, they do raise questions about the acoustic threshold that might induce potentially adverse developmental effects in the fetus. To date, bioeffects studies in humans do not substantiate a causal relationship between diagnostic ultrasound exposure during pregnancy and adverse biological effects to the fetus. However, the epidemiologic studies were conducted with commercially available devices predating 1992, having outputs not exceeding a derated spatial-peak temporal-average intensity (ISPTA.3) of 94 mW/cm2. Current limits in the United States allow an ISPTA.3 of 720 mW/cm2 for obstetric modes. At the time of this report, available evidence, experimental or epidemiologic, is insufficient to conclude that there is a causal relationship between obstetric diagnostic ultrasound exposure and adverse nonthermal effects to the fetus. However, low-intensity pulsed ultrasound effects reported in humans and animal models indicate a need for further investigation of potentially adverse developmental effects.
Collapse
Affiliation(s)
- Melvin E Stratmeyer
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, 9200 Corporate Blvd, HFZ-120, Rockville, MD 20850 USA.
| | | | | | | |
Collapse
|
47
|
Juffermans LJM, Kamp O, Dijkmans PA, Visser CA, Musters RJP. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. ULTRASOUND IN MEDICINE & BIOLOGY 2008; 34:502-8. [PMID: 17993242 DOI: 10.1016/j.ultrasmedbio.2007.09.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 08/29/2007] [Accepted: 09/10/2007] [Indexed: 05/19/2023]
Abstract
Ultrasound (US) contrast agents have gained wide interest in gene therapy as many researchers reported increased membrane permeability and transfection efficiency by sonoporation in the presence of US contrast agents. We recently demonstrated an increase in cell membrane permeability for Ca2+ in rat cardiomyoblast (H9c2) cells insonified in the presence of microbubbles. In the present study, we specifically investigated whether US-exposed microbubbles have an effect on the cell membrane potential and whether Ca2+-dependent potassium (BK(Ca)) channels are involved. We particularly focused on local events where the microbubble was in contact with the cell membrane. H9c2 cells were cultured on US transparent membranes. US exposure consisted of bursts with a frequency of 1 MHz with a peak-to-peak pressure of 0.1 or 0.5 MPa. Pulse repetition frequency was set to 20 Hz, with a duty cycle of 0.2%. Cells were insonified during 30 s in the presence of Sonovue(trade mark) microbubbles. The membrane potential was monitored during US exposure using the fluorescent dye di-4-aminonaphtylethenylpyridinium (di-4-ANEPPS). The experiments were repeated in the presence of iberiotoxin (100 nM), a specific inhibitor of BK(Ca) channels. Surprisingly, despite the previously reported Ca(2+) influx, we found patches of hyperpolarization of the cell membrane, as reflected by local increases in di-4-ANEPPS mean intensity of fluorescence (MIF) to 118.6 +/- 2.5% (p < 0.001, n = 267) at 0.1 MPa and 125.7 +/- 5.9% (p < 0.001, n = 161) at 0.5 MPa at t = 74 s, respectively, compared with "no US" (100.3 +/- 3.4%, n = 52). This hyperpolarization was caused by the activation of BK(Ca) channels, as iberiotoxin completely prevented hyperpolarization. (MIF(t74) = 100.6 +/- 1.4%; p < 0.001, n = 267) and 0.5 MPa (MIF(t74) = 88.8 +/- 2.0%; p< 0.001, n = 193), compared with 0.1 and 0.5 MPa microbubbles without iberiotoxin. In conclusion, US-exposed microbubbles elicit a Ca2+ influx, which leads to activation of BK(Ca) channels and a subsequent, local hyperpolarization of the cell membrane. This local hyperpolarization of the cell membrane may facilitate uptake of macromolecules through endocytosis and macropinocytosis. (E-mail: ljm.juffermans@vumc.nl).
Collapse
Affiliation(s)
- Lynda J M Juffermans
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
48
|
Abstract
In this overview safety aspects of ultrasound contrast agents (USCA) are described and discussed. In general USCA are very safe drugs. However, allergic adverse reactions can rarely occur, particularly due to the colloidal structure of USCA. In addition, the use of USCA could reduce the threshold for acoustically induced bioeffects and has the potential to increase these effects. In in vitro studies and animal trials USCA caused petechial hemorrhages, vascular damage, and the formation of free radicals. Even DNA damage with single strand breaks could be demonstrated. In human studies and clinical practice none of these bioeffects could be observed. In contrast-enhanced echocardiography a higher rate of premature ventricular contractions has been reported when imaging was triggered at the end systole. Compared with other contrast agents contrast-enhanced ultrasound showed no nephrotoxic effects and could prove to be an alternative diagnostic method for patients with renal failure.
Collapse
Affiliation(s)
- M Krix
- Forschungsschwerpunkt Innovative Krebsdiagnostik und -therapie, Abteilung Radiologie, Deutsches Krebsforschungszentrum, Heidelberg, Deutschland.
| | | |
Collapse
|
49
|
Greenbaum L, Burns P, Copel J, Cosgrove D, Fowlkes JB, Goldberg B, Mattrey R, Merton D, Robbin M, Wilson S. American Institute ofUltrasound in Medicine recommendations for contrast-enhanced liver ultrasound imaging clinical trials. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2007; 26:705-16. [PMID: 17526602 DOI: 10.7863/jum.2007.26.6.705] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|
50
|
Dalecki D. WFUMB Safety Symposium on Echo-Contrast Agents: bioeffects of ultrasound contrast agents in vivo. ULTRASOUND IN MEDICINE & BIOLOGY 2007; 33:205-13. [PMID: 17239521 DOI: 10.1016/j.ultrasmedbio.2006.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Diane Dalecki
- Department of Biomedical Engineering, Rochester Center for Biomedical Ultrasound, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|