1
|
Shimada E, Zhu M, Kimura S, Streiff C, Houle H, Datta S, Sahn DJ, Ashraf M. Quantitative assessment of mitral inflow and aortic outflow stroke volumes by 3-dimensional real-time full-volume color flow doppler transthoracic echocardiography: an in vivo study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2015; 34:95-103. [PMID: 25542944 DOI: 10.7863/ultra.34.1.95] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
OBJECTIVES Noninvasive quantification of left ventricular (LV) stroke volumes has an important clinical role in assessing circulation and monitoring therapeutic interventions for cardiac disease. This study validated the accuracy of a real-time 3-dimensional (3D) color flow Doppler method performed during transthoracic echocardiography (TTE) for quantifying volume flows through the mitral and aortic valves using a dedicated offline 3D flow computation program compared to LV sonomicrometry in an open-chest animal model. METHODS Forty-six different hemodynamic states in 5 open-chest pigs were studied. Three-dimensional color flow Doppler TTE and 2-dimensional (2D) TTE were performed by epicardial scanning. The dedicated software was used to compute flow volumes at the mitral annulus and the left ventricular outflow tract (LVOT) with the 3D color flow Doppler method. Stroke volumes by 2D TTE were computed in the conventional manner. Stroke volumes derived from sonomicrometry were used as reference values. RESULTS Mitral inflow and LVOT outflow derived from the 3D color flow Doppler method correlated well with stroke volumes by sonomicrometry (R = 0.96 and 0.96, respectively), whereas correlation coefficients for mitral inflow and LVOT outflow computed by 2D TTE and stroke volumes by sonomicrometry were R = 0.84 and 0.86. Compared to 2D TTE, the 3D method showed a smaller bias and narrower limits of agreement in both mitral inflow (mean ± SD: 3D, 2.36 ± 2.86 mL; 2D, 10.22 ± 8.46 mL) and LVOT outflow (3D, 1.99 ± 2.95 mL; 2D, 4.12 ± 6.32 mL). CONCLUSIONS Real-time 3D color flow Doppler quantification is feasible and accurate for measurement of mitral inflow and LVOT outflow stroke volumes over a range of hemodynamic conditions.
Collapse
Affiliation(s)
- Eriko Shimada
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - Meihua Zhu
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - Sumito Kimura
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - Cole Streiff
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - Helene Houle
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - Saurabh Datta
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| | - David J Sahn
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.).
| | - Muhammad Ashraf
- Oregon Health and Science University, Portland, Oregon USA (E.S., M.Z., S.K., C.S., D.J.S., M.A.); and Siemens Medical Solutions USA, Inc, Mountain View, California USA (H.H., S.D.)
| |
Collapse
|
2
|
|
3
|
Thavendiranathan P, Liu S, Datta S, Walls M, Nitinunu A, Van Houten T, Tomson NA, Vidmar L, Georgescu B, Wang Y, Srinivasan S, De Michelis N, Raman SV, Ryan T, Vannan MA. Automated Quantification of Mitral Inflow and Aortic Outflow Stroke Volumes by Three-Dimensional Real-Time Volume Color-Flow Doppler Transthoracic Echocardiography: Comparison with Pulsed-Wave Doppler and Cardiac Magnetic Resonance Imaging. J Am Soc Echocardiogr 2012; 25:56-65. [DOI: 10.1016/j.echo.2011.10.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Indexed: 10/15/2022]
|
4
|
Matthews F, Largiadèr T, Rhomberg P, van der Loo B, Schmid ER, Jenni R. A novel operator-independent algorithm for cardiac output measurements based on three-dimensional transoesophageal colour Doppler echocardiography. EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY 2010; 11:432-7. [PMID: 20106879 DOI: 10.1093/ejechocard/jep233] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Cardiac output (CO) measurements from three-dimensional (3D) trans-mitral Doppler echocardiography are prone to error as manual selection of the region of interest (i.e. the site of measurement) is required. We newly developed an automated, user-independent algorithm to select the site of colour Doppler CO measurement. We aimed to validate this new method by benchmarking it against thermodilution, the current gold standard for CO measurements. METHODS AND RESULTS Transoesophageal colour 3D Doppler echocardiographic studies were obtained from 15 patients who also had received a pulmonary catheter for invasive CO measurements. Trans-mitral flow was determined using a novel operator-independent algorithm to automatically select the optimal site of measurement. The operator-independent CO measurements were referenced against thermodilution. A good correlation was found between operator-independent Doppler flow computations and thermodilution with a mean bias of 0.09 L/min, standard deviation of bias 1.3 L/min, and a 26% error (2 SD/mean CO). Mean CO was 4.94 L/min (range 3.10-7.10 L/min). CONCLUSION Our findings demonstrate that CO computation from transoesophageal colour 3D Doppler echo can be automated concerning the site of velocity measurement. Our operator-independent algorithm provides an objective and reproducible alternative to thermodilution.
Collapse
Affiliation(s)
- Felix Matthews
- Surgical Planning Lab, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Abstract
Visualization of, and measurements related to, haemodynamic phenomena in arteries may be made using ultrasound systems. Most ultrasound technology relies on simple measurements of blood velocity taken from a single site, such as the peak systolic velocity for assessment of the degree of lumen reduction caused by an arterial stenosis. Real-time two-dimensional (2D) flow field visualization is possible using several methods, such as colour flow, blood flow imaging, and echo particle image velocimetry; these have applications in the examination of the flow field in diseased arteries and in heart chambers. Three-dimensional (3D) and four-dimensional ultrasound systems have been described. These have been used to provide 2D velocity profile data for the estimation of volumetric flow. However, they are limited for haemodynamic evaluation in that they provide only one component of the velocity. The provision of all seven components (three space, three velocity, and one time) is possible using image-guided modelling, in which 3D ultrasound is combined with computational fluid dynamics. This method also allows estimation of turbulence data and of relevant quantities such as the wall shear stress.
Collapse
Affiliation(s)
- P R Hoskins
- Department of Medical Physics, Edinburgh University, Chancellors Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK,
| |
Collapse
|
7
|
Lu X, Nadvoretskiy V, Klas B, Bu L, Stolpen A, Ayres NA, Sahn DJ, Ge S. Measurement of Volumetric Flow by Real-time 3-Dimensional Doppler Echocardiography in Children. J Am Soc Echocardiogr 2007; 20:915-20. [PMID: 17555931 DOI: 10.1016/j.echo.2007.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND We sought to assess the accuracy and reproducibility of an automated real-time (RT) 3-dimensional (3D) Doppler echocardiography (RT3DDE) technique for measuring volumetric flow (VF) in children. METHODS A total of 19 healthy children (age = 11.5 +/- 3.5 years) were studied to measure VF through mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV) by RT3DDE. RT 3D echocardiography was also performed to measure left ventricular (LV) end-systolic volume, LV end-diastolic volume, and stroke volume (stroke volume = LV end-diastolic volume--LV end-systolic volume), which served as a reference standard for comparison with VF by RT3DDE. RESULTS Compared with stroke volume by RT 3D echocardiography, the correlation with VF was excellent for MV (r = 0.91), good for AV (r = 0.89) and PV (r = 0.89), but poor for TV (r = 0.20) by RT3DDE. There were good agreements for AV (bias = 0.9 +/- 5.0 mL), PV (bias = -0.4 +/- 5.7 mL), and MV (bias = 4.1 +/- 4.7 mL), and marked underestimation for TV (bias = -24.4 +/- 14.6 mL). CONCLUSIONS Our data demonstrated that VF measurement by RT3DDE is feasible and reasonably accurate for MV, AV, and PV but problematic for TV.
Collapse
Affiliation(s)
- Xiuzhang Lu
- Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Pemberton J, Ge S, Thiele K, Jerosch-Herold M, Sahn DJ. Real-time Three-dimensional Color Doppler Echocardiography Overcomes the Inaccuracies of Spectral Doppler for Stroke Volume Calculation. J Am Soc Echocardiogr 2006; 19:1403-10. [PMID: 17098150 DOI: 10.1016/j.echo.2006.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Indexed: 11/22/2022]
Abstract
Real-time 3-dimensional echocardiography is increasingly used in clinical cardiology. Studies have been shown that this technique can be accurately used to assess both cardiac mass and chamber volumes. We review the work showing that real-time 3-dimensional Doppler echocardiography can be used to accurately calculate intracardiac flow volumes that can potentially be used to assess cardiac function, intracardiac shunt, and valve regurgitation.
Collapse
Affiliation(s)
- James Pemberton
- James Cook University Hospital, Middlesbrough, United Kingdom
| | | | | | | | | |
Collapse
|
9
|
Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ. Three-Dimensional Echocardiography. J Am Coll Cardiol 2006; 48:2053-69. [PMID: 17112995 DOI: 10.1016/j.jacc.2006.07.047] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 07/06/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Over the past 3 decades, echocardiography has become a major diagnostic tool in the arsenal of clinical cardiology for real-time imaging of cardiac dynamics. More and more, cardiologists' decisions are based on images created from ultrasound wave reflections. From the time ultrasound imaging technology provided the first insight into the human heart, our diagnostic capabilities have increased exponentially as a result of our growing knowledge and developing technology. One of the most significant developments of the last decades was the introduction of 3-dimensional (3D) imaging and its evolution from slow and labor-intense off-line reconstruction to real-time volumetric imaging. While continuing its meteoric rise instigated by constant technological refinements and continuing increase in computing power, this tool is guaranteed to be integrated in routine clinical practice. The major proven advantage of this technique is the improvement in the accuracy of the echocardiographic evaluation of cardiac chamber volumes, which is achieved by eliminating the need for geometric modeling and the errors caused by foreshortened views. Another benefit of 3D imaging is the realistic and unique comprehensive views of cardiac valves and congenital abnormalities. In addition, 3D imaging is extremely useful in the intraoperative and postoperative settings because it allows immediate feedback on the effectiveness of surgical interventions. In this article, we review the published reports that have provided the scientific basis for the clinical use of 3D ultrasound imaging of the heart and discuss its potential future applications.
Collapse
Affiliation(s)
- Roberto M Lang
- Cardiac Imaging Center, Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | |
Collapse
|
10
|
Abstract
The relationship between developing biologic tissues and their dynamic fluid environments is intimate and complex. Increasing evidence supports the notion that these embryonic flow-structure interactions influence whether development will proceed normally or become pathogenic. Genetic, pharmacological, or surgical manipulations that alter the flow environment can thus profoundly influence morphologic and functional cardiovascular phenotypes. Functionally deficient phenotypes are particularly poorly described as there are few imaging tools with sufficient spatial and temporal resolution to quantify most intra-vital flows. The ability to visualize biofluids flow in vivo would be of great utility in functionally phenotyping model animal systems and for the elucidation of the mechanisms that underlie flow-related mechano-sensation and transduction in living organisms. This review summarizes the major methodological advances that have evolved for the quantitative characterization of intra-vital fluid dynamics with an emphasis on assessing cardiovascular flows in vertebrate model organisms.
Collapse
Affiliation(s)
- Jay R Hove
- Department of Genome Science, Genome Research Institute, University of Cincinnati, OH 45237, USA. jay.hove.@uc.edu
| |
Collapse
|
11
|
Pemberton J, Li X, Kenny A, Davies CH, Minette MS, Sahn DJ. Real-time 3-Dimensional Doppler Echocardiography for the Assessment of Stroke Volume: An In Vivo Human Study Compared with Standard 2-Dimensional Echocardiography. J Am Soc Echocardiogr 2005; 18:1030-6. [PMID: 16198879 DOI: 10.1016/j.echo.2005.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Indexed: 10/25/2022]
Abstract
BACKGROUND Invasive monitors and noninvasive 2-dimensional echocardiography are the standard clinical methods for stroke volume (SV) and cardiac output computation. We studied the use of real-time color Doppler 3-dimensional (3D) echocardiography (3DE) for the assessment of SV in human beings. METHODS In all, 55 pediatric and adult patients with good transthoracic windows and a normal aortic valve were studied. Real-time 3DE color Doppler volumes incorporating the left ventricular outflow tract and aortic valve were taken. SV was calculated from the color Doppler data in the 3DE DICOM dataset. This was compared with 2-dimensional echocardiography SV calculation from the pulsed wave velocity through the aortic valve along with the left ventricular outflow tract diameter. RESULTS Five patients were excluded because of mismatching of the 3D color Doppler segments in the 3D volume. The 3D Doppler volumes from the remaining 50 patients were analyzed. There was good correlation between the patients' averaged 3DE SV calculations and the 2-dimensional echocardiography pulsed wave SV estimation (y = 0.84x + 7.8, r2 = 0.90). CONCLUSION Real-time 3D Doppler echocardiography can be used to accurately calculate SV and cardiac output, compared with conventional pulsed Doppler measurement, in pediatric and adult patients from transthoracic imaging.
Collapse
Affiliation(s)
- James Pemberton
- Clinical Care Center for Congenital Heart Disease, Department of Cardiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
12
|
Houck RC, Cooke J, Gill EA. Three-dimensional echo: transition from theory to real-time, a technology now ready for prime time. Curr Probl Diagn Radiol 2005; 34:85-105. [PMID: 15886612 DOI: 10.1016/j.cpradiol.2005.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Robin C Houck
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Harborview Medical Center, Seattle, WA 98104-2599, USA
| | | | | |
Collapse
|
13
|
Pemberton J, Hui L, Young M, Li X, Kenny A, Sahn DJ. Accuracy of 3-dimensional color Doppler-derived flow volumes with increasing image depth. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2005; 24:1109-15. [PMID: 16040826 DOI: 10.7863/jum.2005.24.8.1109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
OBJECTIVES We and others have reported on the use of digital color Doppler sonography from real-time 3-dimensional (3D) echocardiography and its use in accurately calculating cardiac flow volumes, namely stroke volume (SV) and, hence, cardiac output. However, in some patients, image depth is higher than average, and this may affect the accuracy of volume calculation. We sought to investigate the impact of image depth and the accompanying change in signal strength, spatial resolution, and pulse repetition frequency on the accuracy of SV calculation from 3D color Doppler data in an in vitro model. METHODS A tube model of the left ventricular outflow tract was constructed from plastic tubing and connected to a pulsatile pump. The volume flowing through the tube was imaged using a 3D echocardiography system. Stroke volumes from the pump were computed from the DICOM data using commercially available software and compared with a reference standard of timed volumes with the use of a graduated measuring cylinder over a range of depth settings and SVs. RESULTS There was good correlation between the 3D-derived SVs and the reference cylinder measures over all depths from 4 to 16 cm at 1-cm increments with a tube diameter of 17 mm, a pump rate of 60 beats/min, and SVs ranging from 20 to 70 mL. The average r(2) value for the 13 different depths was 0.976. However, the accuracy of the 3D method of volume calculation appeared to fall at depths greater than 13 cm, especially at higher SVs. CONCLUSIONS Stroke volume calculation from real-time 3D color Doppler data in this in vitro study shows that at depths greater than approximately 13 cm, accuracy decreases, especially at higher SVs. This may be due to decreased resolution and the reduced frame rate at these depths. At shallower depths, volume calculation form the 3D Doppler data appears very accurate.
Collapse
Affiliation(s)
- James Pemberton
- Oregon Health & Science University, Portland, 97239-3098, USA
| | | | | | | | | | | |
Collapse
|
14
|
Pemberton J, Li X, Karamlou T, Sandquist CA, Thiele K, Shen I, Ungerleider RM, Kenny A, Sahn DJ. The use of live three-dimensional Doppler echocardiography in the measurement of cardiac output. J Am Coll Cardiol 2005; 45:433-8. [PMID: 15680724 DOI: 10.1016/j.jacc.2004.10.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 10/05/2004] [Accepted: 10/12/2004] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The purpose of this study was to investigate whether cardiac output (CO) could be accurately computed from live three-dimensional (3-D) Doppler echocardiographic data in an acute open-chested animal preparation. BACKGROUND The accurate measurement of CO is important in both patient management and research. Current methods use invasive pulmonary artery catheters or two-dimensional (2-D) echocardiography or esophageal aortic Doppler measures, with the inherent risks and inaccuracies of these techniques. METHODS Seventeen juvenile, open-chested pigs were studied before undergoing a separate cardiopulmonary bypass procedure. Live 3-D Doppler echocardiography images of the left ventricular outflow tract and aortic valve were obtained by epicardial scanning, using a Philips Medical Systems (Andover, Massachusetts) Sonos 7500 Live 3-D Echo system with a 2.5-MHz probe. Simultaneous CO measurements were obtained from an ultrasonic flow probe placed around the aortic root. Subsequent offline processing using custom software computed the CO from the digital 3-D Doppler DICOM data, and this was compared to the gold standard of the aortic flow probe measurements. RESULTS One hundred forty-three individual CO measurements were taken from 16 pigs, one being excluded because of severe aortic regurgitation. There was good correlation between the 3-D Doppler and flow probe methods of CO measurement (y = 1.1x - 9.82, R(2) = 0.93). CONCLUSIONS In this acute animal preparation, live 3-D Doppler echocardiographic data allowed for accurate assessment of CO as compared to the ultrasonic flow probe measurement.
Collapse
Affiliation(s)
- James Pemberton
- Clinical Care Center for Congenital Heart Disease, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ge S, Bu L, Zhang H, Schelbert E, Disterhoft M, Li X, Li X, Sahn D, Stolpen A, Sonka M. A real-time 3-dimensional digital Doppler method for measurement of flow rate and volume through mitral valve in children: A validation study compared with magnetic resonance imaging. J Am Soc Echocardiogr 2005; 18:1-7. [PMID: 15637481 DOI: 10.1016/j.echo.2004.08.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We developed and assessed a real-time 3-dimensional (3D) digital Doppler method for measurement of flow volumes through the mitral valve in children. A total of 13 children (aged 10.46 +/- 2.5 years; 8 boys/5 girls) were enrolled. An ultrasound system (Sonos 7500, Philips, Andover, Mass) was used to acquire raw 3D velocity data for flow measurement based on Gaussian control surface theorem [flow (mL/s) = mean velocity x flow area]. Stroke volume (SV) measured by real-time 3D digital Doppler with the control surface at the mitral valve annulus or orifice was compared with the SV by phase velocity cine magnetic resonance imaging (MRI) at the ascending aorta and by left ventricular volumetric MRI measurement. The best correlation and agreement were seen at the mitral valve orifice by real-time 3D digital Doppler compared with SV by phase velocity cine MRI at the ascending aorta (r = 0.92, mean difference = -5.2 +/- 12.0 mL) and SV by left ventricular volumetric MRI measurement (r = 0.94, mean difference = -0.2 +/- 10.3 mL).
Collapse
Affiliation(s)
- Shuping Ge
- Division of Pediatric Cardiology, University of Iowa, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim B, Soble JS, Stamos TD, Neumann A, Robergé J. Automated volumetric flow quantification using angle-corrected color Doppler image. Echocardiography 2004; 21:399-408. [PMID: 15209718 DOI: 10.1111/j.0742-2822.2004.03066.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have developed a fully automated method for measuring volumetric blood flow with angle-corrected blood velocity from a color Doppler image. By computing the blood flow vector through a conduit, the angle of incidence between the direction of ultrasound beam and the direction of blood flow can be measured to correct the underestimated blood velocity. This correction immediately contributes to the improvement of measurement accuracy. The developed method also enhances the conduit identification procedure that is one of the most important factors affecting the accuracy of volumetric measurement. To evaluate the validity of the developed algorithm, experimental studies had been applied to 21 healthy subjects and 10 patients. Volumetric flows were measured from a color Doppler image of the left ventricular outflow track, which were compared with blood volumes that were measured by traditional pulsed-wave (PW)-Doppler technique. The mean stroke volume difference between two methods was -0.45 +/- 11.7 (mean +/- SD). The proposed algorithm is a viable method for determining blood flow volume in an automated fashion.
Collapse
Affiliation(s)
- Beomjin Kim
- Department of Computer Science, Indiana University-Purdue University, Fort Wayne, 46805, USA.
| | | | | | | | | |
Collapse
|
17
|
Tsujino H, Jones M, Qin JX, Sitges M, Cardon LA, Morehead AL, Zetts AD, Bauer F, Kim YJ, Hang XY, Greenberg N, Thomas JD, Shiota T. Combination of pulsed-wave Doppler and real-time three-dimensional color Doppler echocardiography for quantifying the stroke volume in the left ventricular outflow tract. ULTRASOUND IN MEDICINE & BIOLOGY 2004; 30:1441-1446. [PMID: 15588954 DOI: 10.1016/j.ultrasmedbio.2004.08.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Revised: 08/25/2004] [Accepted: 08/31/2004] [Indexed: 05/24/2023]
Abstract
Real-time three-dimensional (3-D) color Doppler echocardiography (RT3D) is capable of quantifying flow. However, low temporal resolution limits its application to stroke volume (SV) measurements. The aim of the present study was, therefore, to develop a reliable method to quantify SV. In animal experiments, cross-sectional images of the LV outflow tract were selected from the RT3D data to calculate peak flow rates (Q(p3D)). Conventional pulsed-wave (PW) Doppler was performed to measure the velocity-time integral (VTI) and the peak velocity (V(p)). By assuming that the flow is proportional to the velocity temporal waveform, SV was calculated as alpha x Q(p3D) x VTI/V(p), where alpha is a temporal correction factor. There was an excellent correlation between the reference flow meter and RT3D SV (mean difference = -1. 3 mL, y = 1. 05 x -2. 5, r = 0. 94, p < 0. 01). The new method allowed accurate SV estimations without any geometric assumptions of the spatial velocity distributions.
Collapse
Affiliation(s)
- Hiroyuki Tsujino
- Cardiovascular Imaging Center, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Hofmann T, Franzen O, Koschyk DH, Von Kodolitsch Y, Goldmann B, Meinertz T. Three-dimensional color Doppler echocardiography for assessing shunt volume in atrial septal defects. J Am Soc Echocardiogr 2004; 17:1173-8. [PMID: 15502792 DOI: 10.1016/j.echo.2004.06.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Background Three-dimensional color Doppler echocardiography has been used to assess cardiac blood flow in experimental settings. We tested whether this technique can be applied to assess transatrial shunt flow in patients with atrial septal defect in a clinical setting. Methods In 46 consecutive patients with atrial septal defects, shunt flow was assessed during cardiac catheterization using the Fick method and by conventional 2-D quantitative transesophageal Doppler echocardiography. The averaged values for shunt flow obtained by both methods were used as a reference. Transesophageal 3-D color Doppler echocardiography was performed for analysis of the 3-D flow velocity field of transatrial shunt flow. Shunt volume was calculated by application of the Gauss theorem. Results We found a close correlation between shunt volume (L/min) obtained by either 3-D color Doppler echocardiography or the reference methods ( r = 0.981, P < .001). Using 3-D color Doppler data to predict the reference values, 95% confidence limits were -11.5 to +11.6%. Conclusions Shunt flow in patients with atrial septal defects can be assessed in a clinical setting by transesophageal 3-D color Doppler echocardiography.
Collapse
Affiliation(s)
- Thomas Hofmann
- Universitätsklinikum Hamburg-Eppendorf, Medizinische Klinik III, Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Macnab A, Jenkins NP, Ewington I, Bridgewater BJM, Hooper TL, Greenhalgh DL, Patrick MR, Ray SG. A method for the morphological analysis of the regurgitant mitral valve using three dimensional echocardiography. BRITISH HEART JOURNAL 2004; 90:771-6. [PMID: 15201247 PMCID: PMC1768334 DOI: 10.1136/hrt.2003.013565] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Atrial en-face reconstructions are commonly used to assess mitral valve morphology in three dimensional (3D) echocardiography but may miss important abnormalities. OBJECTIVE To present a systematic method for the analysis of the regurgitant mitral valve using a combination of en-face and longitudinal views for better anatomical evaluation. METHODS Detailed 3D assessment was done on 58 patients undergoing mitral valve repair. En-face and longitudinal views were compared for detection and location of primary pathology. The quality of acquisitions under general anaesthesia and sedation was also compared. RESULTS Recognition of valve structure was significantly better with longitudinal reconstruction for both mitral leaflets but not for the commissures. Accurate identification of pathology was possible in 95% cases, compared with 50% for en-face reconstruction (p < 0.001). There was no significant difference between imaging under sedation and anaesthesia. CONCLUSION En-face reconstructions alone are inadequate. Additional longitudinal reconstructions are necessary to ensure full inspection of valve morphology.
Collapse
Affiliation(s)
- A Macnab
- Regional Cardiothoracic Unit, Wythenshawe Hospital, Manchester, UK.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pasipoularides A, Shu M, Shah A, Womack MS, Glower DD. Diastolic right ventricular filling vortex in normal and volume overload states. Am J Physiol Heart Circ Physiol 2003; 284:H1064-72. [PMID: 12666664 PMCID: PMC5790989 DOI: 10.1152/ajpheart.00804.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Functional imaging computational fluid dynamics simulations of right ventricular (RV) inflow fields were obtained by comprehensive software using individual animal-specific dynamic imaging data input from three-dimensional (3-D) real-time echocardiography (RT3D) on a CRAY T-90 supercomputer. Chronically instrumented, lightly sedated awake dogs (n = 7) with normal wall motion (NWM) at control and normal or diastolic paradoxical septal motion (PSM) during RV volume overload were investigated. Up to the E-wave peak, instantaneous inflow streamlines extended from the tricuspid orifice to the RV endocardial surface in an expanding fanlike pattern. During the descending limb of the E-wave, large-scale (macroscopic or global) vortical motions ensued within the filling RV chamber. Both at control and during RV volume overload (with or without PSM), blood streams rolled up from regions near the walls toward the base. The extent and strength of the ring vortex surrounding the main stream were reduced with chamber dilatation. A hypothesis is proposed for a facilitatory role of the diastolic vortex for ventricular filling. The filling vortex supports filling by shunting inflow kinetic energy, which would otherwise contribute to an inflow-impeding convective pressure rise between inflow orifice and the large endocardial surface of the expanding chamber, into the rotational kinetic energy of the vortical motion that is destined to be dissipated as heat. The basic information presented should improve application and interpretation of noninvasive (Doppler color flow mapping, velocity-encoded cine magnetic resonance imaging, etc.) diastolic diagnostic studies and lead to improved understanding and recognition of subtle, flow-associated abnormalities in ventricular dilatation and remodeling.
Collapse
Affiliation(s)
- Ares Pasipoularides
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- T Irvine
- Cardiothoracic Unit, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | |
Collapse
|
22
|
Mehwald PS, Rusk RA, Mori Y, Li XN, Zetts AD, Jones M, Sahn DJ. A validation study of aortic stroke volume using dynamic 4-dimensional color Doppler: an in vivo study. J Am Soc Echocardiogr 2002; 15:1045-50. [PMID: 12373245 DOI: 10.1067/mje.2002.122103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the feasibility of directly quantifying transaortic stroke volume with a newly developed dynamic 3-dimensional (3D) color Doppler flow measurement technique, an in vivo experimental study was performed. BACKGROUND Traditional methods for flow quantification require geometric assumptions about flow area and flow profiles. Accurate quantification of flow across the aortic valve is clinically important as a means of estimating cardiac output. METHODS Eight open-chest sheep were scanned with apical epicardial placement of a 7 to 4 MHz multiplane transesophageal probe scanning parallel to aortic flow and running on an ATL HDI 5000 system. An electromagnetic flow meter implanted on the ascending aorta was used as reference. Thirty different hemodynamic conditions were studied after steady states were obtained in the animals by administration of blood, angiotensin, and sodium nitroprusside. Electrocardiogram-gated digital color 3D velocity data were acquired for each of the 30 steady states. The aortic stroke volumes were computed by temporal and spatial integration of flow areas and actual velocities across a projected surface perpendicular to the direction of flow, at a level just below the aortic valve. RESULTS There was close correlation between the 3D color Doppler calculated aortic stroke volumes and the electromagnetic data (r = 0.91, y = 0.96x + 1.01, standard error of the estimate = 2.6 mL/beat). CONCLUSION Our results showed that dynamic 3D color Doppler measurements obtained in an open-chest animals provide the basis for accurate, geometry-independent quantitative evaluation of the aortic flow. Therefore, 3D digital color Doppler flow computation could potentially represent an important method for noninvasively determining cardiac output in patients.
Collapse
|