1
|
López-Morales MA, Castelló-Ruiz M, Burguete MC, Jover-Mengual T, Aliena-Valero A, Centeno JM, Alborch E, Salom JB, Torregrosa G, Miranda FJ. Molecular mechanisms underlying the neuroprotective role of atrial natriuretic peptide in experimental acute ischemic stroke. Mol Cell Endocrinol 2018; 472:1-9. [PMID: 29842904 DOI: 10.1016/j.mce.2018.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 05/04/2018] [Accepted: 05/24/2018] [Indexed: 10/16/2022]
Abstract
Along with its role in regulating blood pressure and fluid homeostasis, the natriuretic peptide system could be also part of an endogenous protective mechanism against brain damage. We aimed to assess the possibility that exogenous atrial natriuretic peptide (ANP) could protect against acute ischemic stroke, as well as the molecular mechanisms involved. Three groups of rats subjected to transient middle cerebral artery occlusion (tMCAO, intraluminal filament technique, 60 min) received intracerebroventricular vehicle, low-dose ANP (0.5 nmol) or high-dose ANP (2.5 nmol), at 30 min reperfusion. Neurofunctional condition, and brain infarct and edema volumes were measured at 24 h after tMCAO. Apoptotic cell death and expression of natriuretic peptide receptors (NPR-A and NPR-C), K+ channels (KATP, KV and BKCa), and PI3K/Akt and MAPK/ERK1/2 signaling pathways were analyzed. Significant improvement in neurofunctional status, associated to reduction in infarct and edema volumes, was shown in the high-dose ANP group. As to the molecular mechanisms analyzed, high-dose ANP: 1) reduced caspase-3-mediated apoptosis; 2) did not modify the expression of NPR-A and NPR-C, which had been downregulated by the ischemic insult; 3) induced a significant reversion of ischemia-downregulated KATP channel expression; and 4) induced a significant reversion of ischemia-upregulated pERK2/ERK2 expression ratio. In conclusion, ANP exerts a significant protective role in terms of both improvement of neurofunctional status and reduction in infarct volume. Modulation of ANP on some molecular mechanisms involved in ischemia-induced apoptotic cell death (KATP channels and MAPK/ERK1/2 signaling pathway) could account, at least in part, for its beneficial effect. Therefore, ANP should be considered as a potential adjunctive neuroprotective agent improving stroke outcome after successful reperfusion interventions.
Collapse
Affiliation(s)
- Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Teresa Jover-Mengual
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Alicia Aliena-Valero
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - José M Centeno
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Enrique Alborch
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Germán Torregrosa
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Hospital Universitari i Politècnic La Fe, Valencia, Spain; Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain.
| | - Francisco J Miranda
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
2
|
Abstract
The natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP), are a family of polypeptide mediators exerting numerous actions in cardiovascular homeostasis. ANP and BNP are cardiac derived, being secreted and up-regulated in myocardium in response to many pathophysiological stimuli. CNP is an endothelium-derived mediator. The classical endocrine effects of ANP and BNP on fluid homeostasis and blood pressure, especially in conditions characterised by left ventricular dysfunction, are well recognised and extensively researched. However, there is accumulating evidence that, in addition to endocrine actions, ANP and BNP exhibit important autocrine and paracrine functions within the heart and coronary circulation. These include regulation of myocyte growth, inhibition of fibroblast proliferation and extracellular matrix deposition, a cytoprotective anti-ischaemic (preconditioning-like) function, and influences on coronary endothelium and vascular smooth muscle proliferation and contractility. Most if not all of these actions can be ascribed to particulate guanylyl cyclase activation because the ANP/BNP receptor, natriuretic peptide receptor (NPR)-A, has an intracellular guanylyl cyclase domain. Subsequent elevation of the intracellular second messenger cGMP may exert diverse physiological effects through activation of cGMP-dependent protein kinases (cGK), predominantly cGK-I. However, there appear to be other contributory mechanisms in several of these actions, including the augmentation of nitric oxide synthesis. These diverse actions may represent counterregulatory mechanisms in the pathophysiology of many cardiovascular diseases, not just those typified by left ventricular dysfunction. Ultimately, insights from the autocrine/paracrine actions of natriuretic peptides may provide routes to therapeutic application in cardiac diseases of natriuretic peptides and drugs that modify their availability.
Collapse
|
3
|
Mtairag EM, Houard X, Rais S, Pasquier C, Oudghiri M, Jacob MP, Meilhac O, Michel JB. Pharmacological potentiation of natriuretic peptide limits polymorphonuclear neutrophil-vascular cell interactions. Arterioscler Thromb Vasc Biol 2002; 22:1824-31. [PMID: 12426211 DOI: 10.1161/01.atv.0000037102.31086.f4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Activated polymorphonuclear neutrophils (PMNs) are the main source of circulating neutral endopeptidase (NEP). We tested the hypothesis that NEP inhibition could potentiate the effect of atrial natriuretic peptide (ANP) on PMN-vascular cell interactions in vitro. METHODS AND RESULTS ANP alone and its potentiation by retrothiorphan, the NEP inhibitor, significantly inhibited superoxide, lysozyme, and matrix metalloproteinase (MMP)-9 release by N-formyl-Met-Leu-Phe-stimulated PMNs. Activated PMNs degraded exogenous ANP, which was prevented by NEP inhibition. Hypoxia significantly increased the adhesion of PMNs to endothelial cells and their subsequent MMP-9 release by 60% and 150%, respectively (P<0.01). ANP and its potentiation by retrothiorphan limited PMN adhesion to hypoxic endothelial cells and thus decreased their MMP-9 release (P<0.01). Smooth muscle cells (SMCs) incubated with conditioned medium of N-formyl-Met-Leu-Phe-stimulated PMNs exhibited morphological and biochemical changes characteristic of apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling positivity, nuclear condensation/fragmentation, poly ADP-ribose polymerase cleavage, and DNA laddering). SMC detachment and subsequent apoptosis could be related to leukocyte elastase-induced pericellular proteolysis, inasmuch as both events are inhibited by elastase inhibitors. ANP and its potentiation by retrothiorphan were able to limit elastase release, fibronectin degradation, and SMC apoptosis. CONCLUSIONS ANP potentiation by NEP inhibition could limit PMN activation and its consequences on vascular cells.
Collapse
MESH Headings
- Atrial Natriuretic Factor/metabolism
- Atrial Natriuretic Factor/pharmacology
- Cell Adhesion/drug effects
- Cell Adhesion/physiology
- Cell Communication/drug effects
- Cell Communication/physiology
- Cell Degranulation/drug effects
- Cell Degranulation/physiology
- Culture Media, Conditioned/pharmacology
- Drug Synergism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Fibronectins/metabolism
- Humans
- Hypoxia/physiopathology
- Leukocyte Elastase/metabolism
- Matrix Metalloproteinase 9/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Neprilysin/antagonists & inhibitors
- Neprilysin/metabolism
- Neutrophil Activation/drug effects
- Neutrophil Activation/physiology
- Neutrophils/drug effects
- Neutrophils/enzymology
- Neutrophils/metabolism
- Neutrophils/pathology
- Respiratory Burst/drug effects
- Respiratory Burst/physiology
- Thiorphan/analogs & derivatives
- Thiorphan/pharmacology
- Umbilical Veins/cytology
Collapse
|