1
|
Xie W, Lorenz M, Poosch F, Palme R, Zechner D, Vollmar B, Grambow E, Strüder D. 3D-printed lightweight dorsal skin fold chambers from PEEK reduce chamber-related animal distress. Sci Rep 2022; 12:11599. [PMID: 35803979 PMCID: PMC9270450 DOI: 10.1038/s41598-022-13924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
The dorsal skinfold chamber is one of the most important in vivo models for repetitive longitudinal assessment of microcirculation and inflammation. This study aimed to refine this model by introducing a new lightweight chamber made from polyetheretherketone (PEEK). Body weight, burrowing activity, distress, faecal corticosterone metabolites and the tilting angle of the chambers were analysed in mice carrying either a standard titanium chamber or a PEEK chamber. Data was obtained before chamber preparation and over a postoperative period of three weeks. In the early postoperative phase, reduced body weight and increased faecal corticosterone metabolites were found in mice with titanium chambers. Chamber tilting and tilting-related complications were reduced in mice with PEEK chambers. The distress score was significantly increased in both groups after chamber preparation, but only returned to preoperative values in mice with PEEK chambers. In summary, we have shown that light chambers reduce animal distress and may extend the maximum dorsal skinfold chamber observation time. Chambers made of PEEK are particularly suitable for this purpose: They are autoclavable, sufficiently stable to withstand rodent bites, inexpensive, and widely available through 3D printing.
Collapse
Affiliation(s)
- Wentao Xie
- Institute for Experimental Surgery, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Vascular and Thyroid Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Matthias Lorenz
- Faculty of Engineering, Technology, Business and Design, University of Applied Sciences, 23966, Wismar, Germany
| | - Friederike Poosch
- Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, 18057, Rostock, Germany
| | - Rupert Palme
- Unit of Physiology, Pathophysiology and Experimental Endocrinology, Department of Biomedical Sciences, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Dietmar Zechner
- Institute for Experimental Surgery, Rostock University Medical Center, 18057, Rostock, Germany
| | - Brigitte Vollmar
- Institute for Experimental Surgery, Rostock University Medical Center, 18057, Rostock, Germany
| | - Eberhard Grambow
- Institute for Experimental Surgery, Rostock University Medical Center, 18057, Rostock, Germany. .,Department of General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, Schillingallee 35, 18057, Rostock, Germany.
| | - Daniel Strüder
- Institute for Experimental Surgery, Rostock University Medical Center, 18057, Rostock, Germany.,Department of Otorhinolaryngology, Head and Neck Surgery "Otto Koerner", Rostock University Medical Center, 18057, Rostock, Germany
| |
Collapse
|
2
|
Canbay E, Agachan B, Ozturk T, Giris M, Asoglu O, Balik E, Bugra D. Dual Inhibition of Wound Healing and Oxidative Process by Montelukast in Experimental Colon Anastomoses. Surg Innov 2010; 17:248-55. [DOI: 10.1177/1553350610376393] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background. The authors aimed to investigate the effects of montelukast (ML) on the experimental rat colon anastomosis. Methods. A total of 80 Wistar albino rats were divided into 4 groups: sham-operated, colon anastomosis, and colon anastomosis with oral administration (OAML) and rectal administration of 10 mg/kg/d ML (RAML). Anastomotic bursting pressure, anastomotic hydroxyproline contents, malondialdehyde (MDA), glutathione (GSH), glutathione peroxidase (GPX), and superoxide dismutase (SOD) levels, and the expressions of Ki-67, vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF) with immunohistochemistry were assessed on postoperative day 5. Results . Anastomotic bursting pressures and bFGF expressions were not changed, whereas tissue hydroxyproline concentrations and MDA levels and the expressions of Ki-67 and VEGF were significantly decreased, and GSH, GPX, and SOD levels were significantly increased in the OAML and RAML groups. Conclusion. ML causes impairment of wound healing without altering the anastomosis bursting pressure and reverses the oxidative damage of the colon anastomoses in rats.
Collapse
Affiliation(s)
- Emel Canbay
- General Surgery, Basaksehir State Hospital, Basaksehir, Istanbul, Turkey, Istanbul University, Istanbul, Turkey,
| | | | | | | | | | | | | |
Collapse
|
3
|
Kilicoglu SS, Kilicoglu B, Erdemli E. Ultrastructural view of colon anastomosis under propolis effect by transmission electron microscopy. World J Gastroenterol 2008; 14:4763-70. [PMID: 18720536 PMCID: PMC2739337 DOI: 10.3748/wjg.14.4763] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of propolis administration on the healing of colon anastomosis with light and transmission electron microscopes.
METHODS: Forty-eight Wistar-Albino female rats were divided into two groups and had colon resection and anastomosis. In group I, rats were fed with standard rat chow pre- and postoperatively. The rats in group II were fed with standard rat chow and began receiving oral supplementation of propolis 100 mg/kg per day beginning 7 d before the operation and continued until they were sacrificed. Rats were sacrificed 1, 3, 7 and 14 d after operation, and anastomotic bursting pressures measured. After the resection of anastomotic segments, histopathological examination was performed with light and transmission electron microscopes by two blinded histologists and photographed.
RESULTS: The colonic bursting pressures of the propolis group were statistically significantly better than the control group. Ultrastructural histopathological analysis of the colon anastomosis revealed that propolis accelerated the phases of the healing process and stimulated mature granulation tissue formation and collagen synthesis of fibroblasts.
CONCLUSION: Bursting pressure measurements and ultra structural histopathological evaluation showed that administration of propolis accelerated the healing of colon anastomosis following surgical excision.
Collapse
|
4
|
Sköld MK, Risling M, Holmin S. Inhibition of vascular endothelial growth factor receptor 2 activity in experimental brain contusions aggravates injury outcome and leads to early increased neuronal and glial degeneration. Eur J Neurosci 2006; 23:21-34. [PMID: 16420412 DOI: 10.1111/j.1460-9568.2005.04527.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Angiogenesis following traumatic brain injuries (TBIs) may be of importance for post-traumatic reparative processes and the development of secondary injuries. We have previously shown expression of vascular endothelial growth factor (VEGF), a major regulator of endothelial cell proliferation, angiogenesis and vascular permeability, and VEGF receptors (VEGFR1 and 2) after TBI in rat. In the present work we tried to further elucidate the role of VEGF after TBI by performing specific VEGFR2 activity inhibition. In rats subjected to VEGFR2 blockage we report an increased haemorrhagic area (P < 0.05), early increase in serum levels of neural injury marker neuron-specific enolase (P < 0.05) and glial injury marker S100beta (P < 0.05), and increased numbers of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labelling- (TUNEL-) and FluoroJade B- (P < 0.05) positive cells, all increases preceding the known VEGF/VEGFR vascular response in brain trauma. An increase in lesion area, as measured by decreased microtubuli-associated protein 2 expression (P < 0.05) and increased glial fibrillary acidic protein reactivity (P < 0.05), could also be demonstrated. In addition, vascular density, as measured by von Willebrandt factor-positive cells, was decreased (P < 0.05). No differences in post-traumatic inflammatory response, as measured by stainings for macrophages, granulocytes and intracellular adhesion molecules, were shown between the groups. Taken together, our findings point towards VEGF/VEGFR2 up-regulation after TBI as being an important endogenous cytoprotective mechanism in TBI. The possible importance of VEGF on the vascular, neuronal and glial compartments of the neurovascular unit after TBI is discussed.
Collapse
Affiliation(s)
- Mattias K Sköld
- Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | |
Collapse
|
5
|
Attard JAP, Raval MJ, Martin GR, Kolb J, Afrouzian M, Buie WD, Sigalet DL. The effects of systemic hypoxia on colon anastomotic healing: an animal model. Dis Colon Rectum 2005; 48:1460-70. [PMID: 15909070 DOI: 10.1007/s10350-005-0047-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Acute postoperative systemic hypoxia occurs frequently in the clinical setting following intestinal resection, as a result of complications such as pneumonia, pulmonary edema, or the acute respiratory distress syndrome. Although it is well established that oxygen is essential for metabolism in general and intestinal anastomotic healing, the mechanisms by which systemic hypoxia affect this process are not clear. The purpose of this study was to establish an animal model to simulate acute systemic hypoxia and to examine the effects on anastomotic healing. We investigated the hypothesis that systemic hypoxia impairs anastomotic healing in the colon by disrupting revascularization via changes in the expression of two putative angiogenic factors: inducible nitric oxide synthase and vascular endothelial growth factor. METHODS Phase I: Juvenile male Sprague-Dawley rats underwent carotid artery cannulation. In a controlled environment the FiO2 was incrementally decreased from 21 to 9 percent and the resultant PaO2 measured. Phase II: Animals underwent colonic transection with immediate reanastomosis and were placed in either a normoxic (FiO2 21 percent) or hypoxic (FiO2 11 percent) environment for seven days. Perianastomotic in vivo tissue oxygen saturation was measured before segmental colon resection in each of the animals and at seven days before measurement of anastomotic bursting pressure. Perianastomotic tissue samples were assessed by Western blot assay for the expression of vascular endothelial growth factor and inducible nitric oxide synthase protein. Sections from each tissue sample were taken and evaluated by a pathologist blinded to treatment group for determination of anastomotic healing score. RESULTS Phase I: Incrementally decreasing the FiO2 resulted in a progressive decrease in PaO2 (r2 = 0.77). Phase II: Animals maintained in a hypoxic environment had a significant decrease in tissue oxygen saturation (73 +/- 9 percent vs. 94 +/- 3 percent; P < 0.0001) and anastomotic bursting pressure (118 +/- 18 mmHg vs. 207 +/- 30 mmHg; P < 0.0001) compared with normoxic controls. Systemic hypoxia induced a significant increase, when compared with normoxic controls, in vascular endothelial growth factor (247.1 +/- 9.5 vs. 142.2 +/- 10.6; P < 0.0001) and inducible nitric oxide synthase (259.6 +/- 21.1 vs. 120.2 +/- 10.9; P < 0.0001) protein expression and led to a significant decrease in the overall wound-healing score. CONCLUSION This study validates a new animal model to study the effects of acute systemic hypoxia on colonic anastomotic healing. In this model, systemic hypoxia directly translated into local tissue hypoxia, and anastomotic healing was impaired. Contrary to our original hypothesis, hypoxia led to a significant increase in vascular endothelial growth factor and inducible nitric oxide synthase protein expression at the colonic anastomotic site. Impairment in anastomotic integrity despite upregulation of these angiogenic factors could be a result of the inability of wounded tissue to respond to vascular endothelial growth factor and inducible nitric oxide synthase or alternatively, hypoxia may adversely affect collagen synthesis and deposition directly.
Collapse
Affiliation(s)
- Jo-Anne P Attard
- GI Research Group, Department of Surgery, University of Calgary, Calgary, Alberta, Canada.
| | | | | | | | | | | | | |
Collapse
|
6
|
van der Bilt JDW, Borel Rinkes IHM. Surgery and angiogenesis. Biochim Biophys Acta Rev Cancer 2004; 1654:95-104. [PMID: 14984770 DOI: 10.1016/j.bbcan.2004.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Revised: 01/15/2004] [Accepted: 01/15/2004] [Indexed: 12/13/2022]
Abstract
Surgery may be regarded as an angiogenesis-inducing condition since it evokes the release of many angiogenic factors. Regarding the mechanistic overlap between tumor-associated neovascularisation and (physiological) angiogenesis in response to injury and hypoxia, surgery may promote the uncontrolled growth of residual dormant tumor cells. With the advent of anti-angiogenic agents, surgeons will be faced with more patients undergoing surgery for primary and secondary tumors under anti-angiogenic treatment. This could present problems with regard to angiogenesis-dependent phenomena such as wound repair, healing of intestinal anastomoses and liver regeneration. In this review we will discuss these matters from a biomedical and clinical point of view.
Collapse
Affiliation(s)
- Jarmila D W van der Bilt
- Department of Surgery, University Medical Center Utrecht, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | |
Collapse
|
7
|
Jacobi J, Tam BYY, Sundram U, von Degenfeld G, Blau HM, Kuo CJ, Cooke JP. Discordant effects of a soluble VEGF receptor on wound healing and angiogenesis. Gene Ther 2004; 11:302-9. [PMID: 14737090 DOI: 10.1038/sj.gt.3302162] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Soluble receptors to vascular endothelial growth factor (VEGF) can inhibit its angiogenic effect. Since angiogenesis is involved in wound repair, we hypothesized that adenovirus-mediated gene transfer of a soluble form of VEGF receptor 2 (Flk-1) would attenuate wound healing in mice. C57Bl/6J and genetically diabetic (db/db) mice (each n=20) received intravenous (i.v.) injections of recombinant adenoviruses (10(9) PFU) encoding the ligand-binding ectodomain of VEGF receptor 2 (Flk-1) or cDNA encoding the murine IgG2alpha Fc fragment (each n=10). At 4 days after gene transfer, two full-thickness skin wounds (0.8 cm) were created on the dorsum of each animal. Wound closure was measured over 9-14 days after which wounds were resected for histological analysis. Prior to killing, fluorescent microspheres were systemically injected for quantitation of wound vascularity. Single i.v. injections of adenoviruses encoding soluble Flk-1 significantly decreased wound angiogenesis in both wild-type and diabetic mice. Fluorescence microscopy revealed a 2.0-fold (wild type) and 2.9-fold (diabetic) reduction in wound vascularity in Flk-1-treated animals (p<0.05). Impairment of angiogenesis was confirmed by CD31 immunohistochemistry. Interestingly, despite significant reductions in wound vascularity, wound closure was not grossly delayed. Our data indicates that while VEGF function is essential for optimal wound angiogenesis, it is not required for wound closure.
Collapse
Affiliation(s)
- Johannes Jacobi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Giles FJ, Stopeck AT, Silverman LR, Lancet JE, Cooper MA, Hannah AL, Cherrington JM, O'Farrell AM, Yuen HA, Louie SG, Hong W, Cortes JE, Verstovsek S, Albitar M, O'Brien SM, Kantarjian HM, Karp JE. SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood 2003; 102:795-801. [PMID: 12649163 DOI: 10.1182/blood-2002-10-3023] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Increased bone marrow angiogenesis and vascular endothelial growth factor (VEGF) levels are adverse prognostic features in patients with acute myeloid leukemia (AML) or myelodysplastic syndromes (MDSs). VEGF is a soluble circulating angiogenic molecule that stimulates signaling via receptor tyrosine kinases (RTKs), including VEGF receptor 2 (VEGFR-2). AML blasts may express VEGFR-2, c-kit, and FLT3. SU5416 is a small molecule RTK inhibitor (RTKI) of VEGFR-2, c-kit, and both wild-type and mutant FLT3. A multicenter phase 2 study of SU5416 was conducted in patients with refractory AML or MDS. For a median of 9 weeks (range, 1-55 weeks), 55 patients (33 AML: 10 [30%] primary refractory, 23 [70%] relapsed; 22 MDS: 15 [68%] relapsed) received 145 mg/m2 SU5416 twice weekly intravenously. Grade 3 or 4 drug-related toxicities included headaches (14%), infusion-related reactions (11%), dyspnea (14%), fatigue (7%), thrombotic episodes (7%), bone pain (5%), and gastrointestinal disturbance (4%). There were 11 patients (20%) who did not complete 4 weeks of therapy (10 progressive disease, 1 adverse event); 3 patients (5%) who achieved partial responses; and 1 (2%) who achieved hematologic improvement. Single agent SU5416 had biologic and modest clinical activity in refractory AML/MDS. Overall median survival was 12 weeks in AML patients (range, 4-41 weeks) and not reached in MDS patients. Most observed toxicities were attributable to drug formulation (polyoxyl 35 castor oil or hyperosmolarity of the SU5416 preparation). Studies of other RTKI and/or other antiangiogenic approaches, with correlative studies to examine biologic effects, may be warranted in patients with AML/MDS.
Collapse
Affiliation(s)
- Francis J Giles
- Department of Leukemia, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Box 428, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|