1
|
McMillan MT, Soares KC. Advances in Vaccine-Based Therapies for Pancreatic Cancer. J Gastrointest Cancer 2025; 56:62. [PMID: 39939414 PMCID: PMC11821674 DOI: 10.1007/s12029-025-01165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/01/2025] [Indexed: 02/14/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers, with a 5-year survival rate that has improved only marginally over the past 30 years, despite numerous clinical trials. PDAC poses several unique challenges, including early metastatic spread and a predilection for liver metastasis. It is also highly resistant to anti-tumor immunity and immunotherapy due to its dense and immunosuppressive tumor microenvironment, low immunogenicity, and systemic immune suppression. PDAC has a low mutational burden, defective antigen presentation, and immune checkpoint molecule upregulation, which reduce immune recognition. Together, these factors leave PDAC as an "immune cold" tumor with minimal cytotoxic T-cell activity. Novel therapeutic approaches are urgently needed to reinvigorate anti-tumor immunity. Recent advances, such as adjuvant personalized mRNA neoantigen vaccines and mutant-KRAS targeted vaccines, have demonstrated sustained vaccine-induced T cell responses that are associated with improved recurrence-free survival in surgically resected PDAC. Combining different vaccine approaches with optimal sequencing of chemotherapy, surgery, radiotherapy, and other immunotherapies may further enhance outcomes. PDAC vaccines represent a promising strategy for overcoming PDAC's resistance to conventional therapies, with ongoing trials exploring their potential to improve long-term survival.
Collapse
Affiliation(s)
- Matthew T McMillan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical School, 1275 York Ave, C887, New York, NY, 10065, USA
| | - Kevin C Soares
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Hepatopancreatobiliary Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical School, 1275 York Ave, C887, New York, NY, 10065, USA.
| |
Collapse
|
2
|
Chen G, Li B, Li T, Lin M, Zhong H, Xie X, Zhang Q, Chen Q, Meng X, Xiao Z, Shuai X. Core-Satellite Nanoassembly Overcomes Spatial Heterogeneity of Dendric Cell Distribution in Pancreatic Tumors for Effective Chemoimmunotherapy. ACS NANO 2025; 19:4739-4753. [PMID: 39834130 DOI: 10.1021/acsnano.4c15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Pancreatic cancer therapies such as chemotherapy and immunotherapy are hindered by the dense extracellular matrix known as physical barriers, leading to heterogeneity impeding the effective penetration of chemotherapeutic agents and activation of antitumor immune responses. To address this challenge, we developed a hybrid nanoassembly with a distinct core-satellite-like heterostructure, PLAF@P/T-PD, which is responsive to both internal pH/redox and external ultrasound stimulations. This heterostructural nanoassembly features a polymersome core encapsulating an ultrasound contrast agent perfluoropentane and a chemotherapeutic agent Taxol (PLAF@P/T) electrostatically coated with satellite-like polyplexes carrying an immune agonist dsDNA (PD), which brings about synergistic functions inside the pancreatic tumor. The PLAF@P/T core functions as an enhancer for intratumor delivery through size enlargement and charge conversion in response to reactive oxygen species (ROS) and low pH, which triggers polyplex release and enables ultrasound-assisted tumor-penetrating Taxol delivery. Meanwhile, the released cationic polyplexes function as nucleic nanomedicine preferentially engulfed by peripheral dendritic cells (DCs) for immune modulation. Animal studies in mouse orthotopic pancreatic tumor model demonstrated exceptional therapeutic efficacy against both primary and metastatic tumors, which underlines the potential of this heterostructural nanoplatform for overcoming the therapeutic challenges associated with the heterogeneous physical barrier hindering intratumor drug delivery in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Gengjia Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tan Li
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoxue Xie
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Qiaoyun Zhang
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Qi Chen
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiaochun Meng
- Department of Radiology, Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
3
|
Giurini EF, Ralph O, Pappas SG, Gupta KH. Looking Beyond Checkpoint Inhibitor Monotherapy: Uncovering New Frontiers for Pancreatic Cancer Immunotherapy. Mol Cancer Ther 2025; 24:18-32. [PMID: 39311547 DOI: 10.1158/1535-7163.mct-24-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/01/2024] [Accepted: 09/09/2024] [Indexed: 01/03/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands out as one of the most aggressive and challenging tumors, characterized by a bleak prognosis with a mere 11% survival rate over 5 years in the United States. Its formidable nature is primarily attributed to its highly aggressive behavior and poor response to existing therapies. PDAC, being notably resistant to immune interventions, presents a significant obstacle in treatment strategies. While immune checkpoint inhibitor therapies have revolutionized outcomes for various cancers, their efficacy in PDAC remains exceedingly low, benefiting less than 1% of patients. The consistent failure of these therapies in PDAC has prompted intensive investigation, particularly at the preclinical level, to unravel the intricate mechanisms of resistance inherent in this cancer type. This pursuit aims to pave the way for the development of novel immunotherapeutic strategies tailored to the distinct characteristics of PDAC. This review endeavors to provide a comprehensive exploration of these emerging immunotherapy approaches in PDAC, with a specific emphasis on elucidating their underlying immunological mechanisms. Additionally, it sheds light on the recently identified factors driving resistance to immunotherapy and evasion of the immune system in PDAC, offering insights beyond the conventional drivers that have been extensively studied.
Collapse
Affiliation(s)
- Eileena F Giurini
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Oliver Ralph
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Sam G Pappas
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
| | - Kajal H Gupta
- Division of Surgical Oncology, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Division of Pediatric Surgery, Department of Surgery, Rush University Medical Center, Chicago, Illinois
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
4
|
Alam MS, Gaida MM, Witzel HR, Otsuka S, Abbasi A, Guerin T, Abdelmaksoud A, Wong N, Cam MC, Kozlov S, Ashwell JD. TNFR1 signaling promotes pancreatic tumor growth by limiting dendritic cell number and function. Cell Rep Med 2024; 5:101696. [PMID: 39178856 PMCID: PMC11528236 DOI: 10.1016/j.xcrm.2024.101696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Pancreatic adenocarcinoma (PDAC) is one the most intractable cancers, in part due to its highly inflammatory microenvironment and paucity of infiltrating dendritic cells (DCs). Here, we find that genetic ablation or antibody blockade of tumor necrosis factor receptor 1 (TNFR1) enhanced intratumor T cell activation and slowed PDAC growth. While anti-PD-1 checkpoint inhibition alone had little effect, it further enhanced intratumor T cell activation in combination with anti-TNFR1. The major cellular alteration in the tumor microenvironment in the absence of TNFR1 signaling was a large increase in DC number and immunostimulatory phenotype. This may reflect a direct effect on DCs, because TNF induced TNFR1-dependent apoptosis of bone-marrow-derived DCs. The therapeutic response to anti-TNFR1 alone was superior to the combination of DC-activating agonistic anti-CD40 and Flt3 ligand (Flt3L). These observations suggest that targeting TNFR1, perhaps in concert with other strategies that promote DC generation and mobilization, may have therapeutic benefits.
Collapse
Affiliation(s)
- Muhammad S Alam
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany; TRON, Translational Oncology at the University Medical Center, JGU-Mainz, 55131 Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Hagen R Witzel
- Institute of Pathology, University Medical Center Mainz, JGU-Mainz, 55131 Mainz, Germany
| | - Shizuka Otsuka
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aamna Abbasi
- Department of Integrative Immunobiology, Duke University, Durham, NC 27708, USA
| | - Theresa Guerin
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Abdalla Abdelmaksoud
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Nathan Wong
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Serguei Kozlov
- Center for Advanced Preclinical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21707, USA
| | - Jonathan D Ashwell
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
5
|
Somasundaram A, Yeh JJ. Future of Dendritic Cell-Based Approaches in Pancreatic Cancer. J Clin Oncol 2024; 42:3067-3070. [PMID: 38991191 PMCID: PMC11377165 DOI: 10.1200/jco.24.00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 07/13/2024] Open
Affiliation(s)
- Ashwin Somasundaram
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jen Jen Yeh
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Departments of Surgery and Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
6
|
van ‘t Land FR, Willemsen M, Bezemer K, van der Burg SH, van den Bosch TP, Doukas M, Fellah A, Kolijn PM, Langerak AW, Moskie M, van der Oost E, Rozendaal NE, Baart SJ, Aerts JG, van Eijck CH. Dendritic Cell-Based Immunotherapy in Patients With Resected Pancreatic Cancer. J Clin Oncol 2024; 42:3083-3093. [PMID: 38950309 PMCID: PMC11379361 DOI: 10.1200/jco.23.02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 04/16/2024] [Indexed: 07/03/2024] Open
Abstract
PURPOSE Immunotherapies have shown limited responses in patients with advanced pancreatic cancer. Recently, we reported that dendritic cell (DC)-based immunotherapy induced T-cell responses against pancreatic cancer antigens. The primary objective of this study was to determine the efficacy of DC-based immunotherapy to prevent recurrence of disease. METHODS This was a single-center, open-label, single-arm, combined phase I/II trial. The primary end point was the 2-year recurrence-free survival (RFS) rate. A 2-year RFS rate of ≥60% was defined as a clinically meaningful improvement. We included patients with pancreatic cancer after resection and completion of standard-of-care (SOC) treatment without recurrent disease on cross-sectional imaging. Patients were treated with autologous DCs pulsed with an allogeneic mesothelioma tumor cell lysate, comprising antigens also expressed in pancreatic ductal adenocarcinoma. RESULTS Thirty-eight patients were included in the analysis of the primary end point (47% male, 53% female). The median age was 62 years (IQR, 55-68). Twenty-eight patients (74%) received five DC vaccinations and completed the study protocol. Three patients (8%) received four vaccinations, and seven patients (16%) received three vaccinations. After a median follow-up of 25.5 months, 26 patients (68%) had not developed recurrence of disease. The estimated 2-year RFS was 64%. Vaccination led to the enrichment of circulating activated CD4+ T cells and the detection of treatment-induced immune responses in vitro. T-cell receptor-sequencing analyses of a resected solitary lung metastasis showed influx of vaccine-specific T cells. CONCLUSION This study reached its primary end point of a 2-year RFS rate of ≥60% following pancreatectomy after SOC treatment and adjuvant DC-based immunotherapy in patients with pancreatic cancer. These results warrant a future randomized trial.
Collapse
Affiliation(s)
- Freek R. van ‘t Land
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Marcella Willemsen
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Koen Bezemer
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Amphera B.V., ’S-Hertogenbosch, the Netherlands
| | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Amine Fellah
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - P. Martijn Kolijn
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anton W. Langerak
- Department of Immunology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Miranda Moskie
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Elise van der Oost
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Nina E.M. Rozendaal
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Sara J. Baart
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Joachim G.J.V. Aerts
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Casper H.J. van Eijck
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pulmonary Medicine, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Farhangnia P, Khorramdelazad H, Nickho H, Delbandi AA. Current and future immunotherapeutic approaches in pancreatic cancer treatment. J Hematol Oncol 2024; 17:40. [PMID: 38835055 PMCID: PMC11151541 DOI: 10.1186/s13045-024-01561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
Pancreatic cancer is a major cause of cancer-related death, but despondently, the outlook and prognosis for this resistant type of tumor have remained grim for a long time. Currently, it is extremely challenging to prevent or detect it early enough for effective treatment because patients rarely exhibit symptoms and there are no reliable indicators for detection. Most patients have advanced or spreading cancer that is difficult to treat, and treatments like chemotherapy and radiotherapy can only slightly prolong their life by a few months. Immunotherapy has revolutionized the treatment of pancreatic cancer, yet its effectiveness is limited by the tumor's immunosuppressive and hard-to-reach microenvironment. First, this article explains the immunosuppressive microenvironment of pancreatic cancer and highlights a wide range of immunotherapy options, including therapies involving oncolytic viruses, modified T cells (T-cell receptor [TCR]-engineered and chimeric antigen receptor [CAR] T-cell therapy), CAR natural killer cell therapy, cytokine-induced killer cells, immune checkpoint inhibitors, immunomodulators, cancer vaccines, and strategies targeting myeloid cells in the context of contemporary knowledge and future trends. Lastly, it discusses the main challenges ahead of pancreatic cancer immunotherapy.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hossein Khorramdelazad
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali-Akbar Delbandi
- Reproductive Sciences and Technology Research Center, Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Joseph AM, Al Aiyan A, Al-Ramadi B, Singh SK, Kishore U. Innate and adaptive immune-directed tumour microenvironment in pancreatic ductal adenocarcinoma. Front Immunol 2024; 15:1323198. [PMID: 38384463 PMCID: PMC10879611 DOI: 10.3389/fimmu.2024.1323198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
One of the most deadly and aggressive cancers in the world, pancreatic ductal adenocarcinoma (PDAC), typically manifests at an advanced stage. PDAC is becoming more common, and by the year 2030, it is expected to overtake lung cancer as the second greatest cause of cancer-related death. The poor prognosis can be attributed to a number of factors, including difficulties in early identification, a poor probability of curative radical resection, limited response to chemotherapy and radiotherapy, and its immunotherapy resistance. Furthermore, an extensive desmoplastic stroma that surrounds PDAC forms a mechanical barrier that prevents vascularization and promotes poor immune cell penetration. Phenotypic heterogeneity, drug resistance, and immunosuppressive tumor microenvironment are the main causes of PDAC aggressiveness. There is a complex and dynamic interaction between tumor cells in PDAC with stromal cells within the tumour immune microenvironment. The immune suppressive microenvironment that promotes PDAC aggressiveness is contributed by a range of cellular and humoral factors, which itself are modulated by the cancer. In this review, we describe the role of innate and adaptive immune cells, complex tumor microenvironment in PDAC, humoral factors, innate immune-mediated therapeutic advances, and recent clinical trials in PDAC.
Collapse
Affiliation(s)
- Ann Mary Joseph
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ahmad Al Aiyan
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shiv K. Singh
- Department of Gastroenterology and Gastrointestinal Oncology, University Medical Center, Goettingen, Germany
| | - Uday Kishore
- Department of Veterinary Medicine (CAVM), United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
9
|
Wittwer NL, Brown MP, Liapis V, Staudacher AH. Antibody drug conjugates: hitting the mark in pancreatic cancer? J Exp Clin Cancer Res 2023; 42:280. [PMID: 37880707 PMCID: PMC10598980 DOI: 10.1186/s13046-023-02868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic cancer is one of the most common causes of cancer-related death, and the 5-year survival rate has only improved marginally over the last decade. Late detection of the disease means that in most cases the disease has advanced locally and/or metastasized, and curative surgery is not possible. Chemotherapy is still the first-line treatment however, this has only had a modest impact in improving survival, with associated toxicities. Therefore, there is an urgent need for targeted approaches to better treat pancreatic cancer, while minimizing treatment-induced side-effects. Antibody drug conjugates (ADCs) are one treatment option that could fill this gap. Here, a monoclonal antibody is used to deliver extremely potent drugs directly to the tumor site to improve on-target killing while reducing off-target toxicity. In this paper, we review the current literature for ADC targets that have been examined in vivo for treating pancreatic cancer, summarize current and on-going clinical trials using ADCs to treat pancreatic cancer and discuss potential strategies to improve their therapeutic window.
Collapse
Affiliation(s)
- Nicole L Wittwer
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia.
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Vasilios Liapis
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, SA, 5000, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, 5000, Australia
| |
Collapse
|
10
|
Laface C, Memeo R, Maselli FM, Santoro AN, Iaia ML, Ambrogio F, Laterza M, Cazzato G, Guarini C, De Santis P, Perrone M, Fedele P. Immunotherapy and Pancreatic Cancer: A Lost Challenge? Life (Basel) 2023; 13:1482. [PMID: 37511856 PMCID: PMC10381818 DOI: 10.3390/life13071482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Although immunotherapy has proved to be a very efficient therapeutic strategy for many types of tumors, the results for pancreatic cancer (PC) have been very poor. Indeed, chemotherapy remains the standard treatment for this tumor in the advanced stage. Clinical data showed that only a small portion of PC patients with high microsatellite instability/mismatch repair deficiency benefit from immunotherapy. However, the low prevalence of these alterations was not sufficient to lead to a practice change in the treatment strategy of this tumor. The main reasons for the poor efficacy of immunotherapy probably lie in the peculiar features of the pancreatic tumor microenvironment in comparison with other malignancies. In addition, the biomarkers usually evaluated to define immunotherapy efficacy in other cancers appear to be useless in PC. This review aims to describe the main features of the pancreatic tumor microenvironment from an immunological point of view and to summarize the current data on immunotherapy efficacy and immune biomarkers in PC.
Collapse
Affiliation(s)
- Carmelo Laface
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Riccardo Memeo
- Unit of Hepato-Pancreatic-Biliary Surgery, "F. Miulli" General Regional Hospital, 70021 Acquaviva Delle Fonti, Italy
| | | | | | - Maria Laura Iaia
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Francesca Ambrogio
- Section of Dermatology, Department of Biomedical Science and Human Oncology, University of Bari, 70124 Bari, Italy
| | - Marigia Laterza
- Division of Cardiac Surgery, University of Bari, 70124 Bari, Italy
| | - Gerardo Cazzato
- Department of Emergency and Organ Transplantation, Pathology Section, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Chiara Guarini
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Pierluigi De Santis
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Martina Perrone
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| | - Palma Fedele
- Medical Oncology, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy
| |
Collapse
|
11
|
Merchant AA, Goebel AM, Willingham FF. Radiofrequency ablation for the management of pancreatic mass lesions. Curr Opin Gastroenterol 2023:00001574-990000000-00066. [PMID: 37097824 DOI: 10.1097/mog.0000000000000939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
PURPOSE OF REVIEW Patients with pancreatic tumors may have limited treatment options. Pancreatic tumor ablation is a novel and emerging treatment modality which can now be performed using endoscopic ultrasound (EUS) guidance. This modality is well suited to guide energy delivery for radiofrequency ablation (RFA) and microwave ablation. These approaches provide minimally invasive, nonsurgical methods for delivering energy to ablate pancreatic tumors in situ. This review summarizes the current data and safety profile for ablation in managing pancreatic cancer and pancreatic neuroendocrine tumors. RECENT FINDINGS RFA uses thermal energy to induce cell death by coagulative necrosis and protein denaturation. Studies have reported increased overall survival in patients with pancreatic tumors treated with EUS-guided RFA in a multimodality systemic approach and when used in palliative surgeries. Radiofrequency ablation may have corollary benefits in inducing an immune-modulatory effect. Tumor marker carbohydrate antigen 19-9 has been reported to decrease in response to RFA. Microwave ablation is an emerging modality. SUMMARY RFA utilizes focal thermal energy to induce cell death. RFA has been applied through open, laparoscopic, and radiographic modalities. EUS-guided approaches are now allowing RFA and microwave ablation to be performed for pancreatic tumors in situ.
Collapse
Affiliation(s)
| | - Anna M Goebel
- Emory University School of Medicine, Emory University
| | - Field F Willingham
- Division of Digestive Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
13
|
Velasco RM, García AG, Sánchez PJ, Sellart IM, Sánchez-Arévalo Lobo VJ. Tumour microenvironment and heterotypic interactions in pancreatic cancer. J Physiol Biochem 2023; 79:179-192. [PMID: 35102531 DOI: 10.1007/s13105-022-00875-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/18/2022] [Indexed: 12/27/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a disease with a survival rate of 9%; this is due to its chemoresistance and the large tumour stroma that occupies most of the tumour mass. It is composed of a large number of cells of the immune system, such as Treg cells, tumour-associated macrophages (TAMs), myeloid suppressor cells (MDCs) and tumour-associated neutrophiles (TANs) that generate an immunosuppressive environment by the release of inflammatory cytokines. Moreover, cancer-associated fibroblast (CAFs) provide a protective coverage that would difficult the access of chemotherapy to the tumour. According to this, new therapies that could remodel this heterogeneous tumour microenvironment, such as adoptive T cell therapies (ACT), immune checkpoint inhibitors (ICI), and CD40 agonists, should be developed for targeting PDA. This review organizes the different cell populations found in the tumour stroma involved in tumour progression in addition to the different therapies that are being studied to counteract the tumour.
Collapse
Affiliation(s)
- Raúl Muñoz Velasco
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Ana García García
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Paula Jiménez Sánchez
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain
| | - Inmaculada Montanuy Sellart
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain
| | - Víctor Javier Sánchez-Arévalo Lobo
- Molecular Oncology Group, Faculty of Experimental Sciences, Biosanitary Research Institute, Francisco de Vitoria University, 28223, Pozuelo de Alarcón, Madrid, UFV, Spain.
- Instituto de Investigación Hospital 12 de Octubre, Pathology Department, Av. Córdoba, s/n, 28041, Madrid, Spain.
| |
Collapse
|
14
|
Jugniot N, Dahl JJ, Paulmurugan R. Immunotheranostic microbubbles (iMBs) - a modular platform for dendritic cell vaccine delivery applied to breast cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:299. [PMID: 36224614 PMCID: PMC9555090 DOI: 10.1186/s13046-022-02501-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Therapeutic strategies engaging the immune system against malignant cells have revolutionized the field of oncology. Proficiency of dendritic cells (DCs) for antigen presentation and immune response has spurred interest on DC-based vaccines for anti-cancer therapy. However, despite favorable safety profiles in patients, current DC-vaccines have not yet presented significant outcome due to technical barriers in active DC delivery, tumor progression, and immune dysfunction. To maximize the therapeutic response, we present here a unique cell-free DC-based vaccine capable of lymphoid organ targeting and eliciting T-cell-mediated anti-tumor effect. METHODS We developed this novel immunotheranostic platform using plasma membranes derived from activated DCs incorporated into ultrasound contrast microbubbles (MBs), thereby offering real-time visualization of MBs' trafficking and homing in vivo. Human PBMC-derived DCs were cultured ex vivo for controlled maturation and activation using cell membrane antigens from breast cancer cells. Following DC membrane isolation, immunotheranostic microbubbles, called DC-iMBs, were formed for triple negative breast cancer treatment in a mouse model harboring a human reconstituted immune system. RESULTS Our results demonstrated that DC-iMBs can accumulate in lymphoid organs and induce anti-tumor immune response, which significantly reduced tumor growth via apoptosis while increasing survival length of the treated animals. The phenotypic changes in immune cell populations upon DC-iMBs delivery further confirmed the T-cell-mediated anti-tumor effect. CONCLUSION These early findings strongly support the potential of DC-iMBs as a novel immunotherapeutic cell-free vaccine for anti-cancer therapy.
Collapse
Affiliation(s)
- Natacha Jugniot
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| | - Jeremy J. Dahl
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA
| | - Ramasamy Paulmurugan
- grid.168010.e0000000419368956Department of Radiology, Molecular Imaging Program at Stanford, Canary Center for Cancer Early Detection, Stanford University, Palo Alto, CA USA ,grid.168010.e0000000419368956Molecular Imaging Program at Stanford (MIPS), Canary Center for Cancer Early Detection at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA 94304 USA
| |
Collapse
|
15
|
Skorupan N, Palestino Dominguez M, Ricci SL, Alewine C. Clinical Strategies Targeting the Tumor Microenvironment of Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:4209. [PMID: 36077755 PMCID: PMC9454553 DOI: 10.3390/cancers14174209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic cancer has a complex tumor microenvironment which engages in extensive crosstalk between cancer cells, cancer-associated fibroblasts, and immune cells. Many of these interactions contribute to tumor resistance to anti-cancer therapies. Here, new therapeutic strategies designed to modulate the cancer-associated fibroblast and immune compartments of pancreatic ductal adenocarcinomas are described and clinical trials of novel therapeutics are discussed. Continued advances in our understanding of the pancreatic cancer tumor microenvironment are generating stromal and immune-modulating therapeutics that may improve patient responses to anti-tumor treatment.
Collapse
Affiliation(s)
- Nebojsa Skorupan
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Medical Oncology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mayrel Palestino Dominguez
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Samuel L. Ricci
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christine Alewine
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
16
|
D'Onofrio M, Beleù A, Sarno A, De Robertis R, Paiella S, Viviani E, Frigerio I, Girelli R, Salvia R, Bassi C. US-Guided Percutaneous Radiofrequency Ablation of Locally Advanced Pancreatic Adenocarcinoma: A 5-Year High-Volume Center Experience. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:380-386. [PMID: 32797463 DOI: 10.1055/a-1178-0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
PURPOSE The aim of this study was to investigate the safety and effectiveness of percutaneous radiofrequency ablation (RFA) in locally advanced pancreatic cancer (LAPC) of the pancreatic body by assessing the overall survival of patients and evaluating the effects of the procedure in the clinical and radiological follow-up. MATERIALS AND METHODS Patients with unresectable LAPC after failed chemoradiotherapy for at least six months were retrospectively included. Percutaneous RFA was performed after a preliminary ultrasound (US) feasibility evaluation. Contrast-enhanced computed tomography (CT) and CA 19.9 sampling were performed before and 24 hours and 30 days after the procedure to evaluate the effects of the ablation. Patients were followed-up after discharge considering the two main endpoints: procedure-related complications and death. RESULTS 35 patients were included, 5 were excluded. All patients underwent RFA with no procedure-related complications reported. The mean size of tumors was 49 mm before treatment. The mean dimension of the ablated necrotic zone was 32 mm, with a mean extension of 65 % compared to the whole tumor size. Tumor density was statistically reduced one day after the procedure (p < 0.001). The mean CA 19.9 levels before and 24 hours and 30 days after the procedure were 285.8 U/mL, 635.2 U/mL, and 336.0 U/mL, respectively, with a decrease or stability at the 30-day evaluation in 80 % of cases. The mean survival was 310 (65-718) days. CONCLUSION Percutaneous RFA of LAPC is a feasible technique in patients who cannot undergo surgery, with great debulking effects and a very low complication rate.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabella Frigerio
- Surgery, Pederzoli Hospital Private Clinic SpA, Peschiera del Garda, Italy
| | - Roberto Girelli
- Surgery, Pederzoli Hospital Private Clinic SpA, Peschiera del Garda, Italy
| | | | | |
Collapse
|
17
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
18
|
Muller M, Haghnejad V, Schaefer M, Gauchotte G, Caron B, Peyrin-Biroulet L, Bronowicki JP, Neuzillet C, Lopez A. The Immune Landscape of Human Pancreatic Ductal Carcinoma: Key Players, Clinical Implications, and Challenges. Cancers (Basel) 2022; 14:cancers14040995. [PMID: 35205742 PMCID: PMC8870260 DOI: 10.3390/cancers14040995] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and deadliest cancer worldwide with an overall survival rate, all stages combined, of still <10% at 5 years. The poor prognosis is attributed to challenges in early detection, a low opportunity for radical resection, limited response to chemotherapy, radiotherapy, and resistance to immune therapy. Moreover, pancreatic tumoral cells are surrounded by an abundant desmoplastic stroma, which is responsible for creating a mechanical barrier, preventing appropriate vascularization and leading to poor immune cell infiltration. Accumulated evidence suggests that PDAC is impaired with multiple “immune defects”, including a lack of high-quality effector cells (CD4, CD8 T cells, dendritic cells), barriers to effector cell infiltration due to that desmoplastic reaction, and a dominance of immune cells such as regulatory T cells, myeloid-derived suppressor cells, and M2 macrophages, resulting in an immunosuppressive tumor microenvironment (TME). Although recent studies have brought new insights into PDAC immune TME, its understanding remains not fully elucidated. Further studies are required for a better understanding of human PDAC immune TME, which might help to develop potent new therapeutic strategies by correcting these immune defects with the hope to unlock the resistance to (immune) therapy. In this review, we describe the main effector immune cells and immunosuppressive actors involved in human PDAC TME, as well as their implications as potential biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Marie Muller
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- Correspondence:
| | - Vincent Haghnejad
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Marion Schaefer
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Guillaume Gauchotte
- Department of Pathology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France;
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Bénédicte Caron
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Jean-Pierre Bronowicki
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
- INSERM U1256, NGERE, Faculty of Medicine, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France
| | - Cindy Neuzillet
- Medical Oncology Department, Curie Institute, Versailles Saint-Quentin University (UVQ), Paris Saclay University, 92064 Saint-Cloud, France;
| | - Anthony Lopez
- Department of Gastroenterology, Nancy University Hospital, University of Lorraine, 54500 Vandœuvre-lès-Nancy, France; (V.H.); (M.S.); (B.C.); (L.P.-B.); (J.-P.B.); (A.L.)
| |
Collapse
|
19
|
Wandmacher AM, Mehdorn AS, Sebens S. The Heterogeneity of the Tumor Microenvironment as Essential Determinant of Development, Progression and Therapy Response of Pancreatic Cancer. Cancers (Basel) 2021; 13:4932. [PMID: 34638420 PMCID: PMC8508450 DOI: 10.3390/cancers13194932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at advanced stages and most anti-cancer therapies have failed to substantially improve prognosis of PDAC patients. As a result, PDAC is still one of the deadliest tumors. Tumor heterogeneity, manifesting at multiple levels, provides a conclusive explanation for divergent survival times and therapy responses of PDAC patients. Besides tumor cell heterogeneity, PDAC is characterized by a pronounced inflammatory stroma comprising various non-neoplastic cells such as myofibroblasts, endothelial cells and different leukocyte populations which enrich in the tumor microenvironment (TME) during pancreatic tumorigenesis. Thus, the stromal compartment also displays a high temporal and spatial heterogeneity accounting for diverse effects on the development, progression and therapy responses of PDAC. Adding to this heterogeneity and the impact of the TME, the microbiome of PDAC patients is considerably altered. Understanding this multi-level heterogeneity and considering it for the development of novel therapeutic concepts might finally improve the dismal situation of PDAC patients. Here, we outline the current knowledge on PDAC cell heterogeneity focusing on different stromal cell populations and outline their impact on PDAC progression and therapy resistance. Based on this information, we propose some novel concepts for treatment of PDAC patients.
Collapse
Affiliation(s)
| | - Anna Maxi Wandmacher
- Department of Internal Medicine II, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, 24105 Kiel, Germany;
| | - Anne-Sophie Mehdorn
- Department of General, Visceral, Thoracic, Transplantation and Pediatric Surgery, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building C, 24105 Kiel, Germany;
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str. 3, Building U30 Entrance 1, 24105 Kiel, Germany
| |
Collapse
|
20
|
Chopra A, Zamora R, Vodovotz Y, Hodges JC, Barclay D, Brand R, Simmons RL, Lee KK, Paniccia A, Murthy P, Lotze MT, Boone BA, Zureikat AH. Baseline Plasma Inflammatory Profile Is Associated With Response to Neoadjuvant Chemotherapy in Patients With Pancreatic Adenocarcinoma. J Immunother 2021; 44:185-192. [PMID: 33935273 PMCID: PMC8102434 DOI: 10.1097/cji.0000000000000370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/12/2021] [Indexed: 11/26/2022]
Abstract
Despite its increased application in pancreatic ductal adenocarcinoma (PDAC), complete response to neoadjuvant therapy (NAT) is rare. Given the critical role of host immunity in regulating cancer, we sought to correlate baseline inflammatory profiles to significant response to NAT. PDAC patients receiving NAT were classified as responders (R) or nonresponders (NR) by carbohydrate antigen 19-9 response, pathologic tumor size, and lymph node status in the resected specimen. Baseline (treatment-naive) plasma was analyzed to determine levels of 27 inflammatory mediators. Logistic regression was used to correlate individual mediators with response. Network analysis and Pearson correlation maps were derived to determine baseline inflammatory mediator profiles. Forty patients (20R and 20NR) met study criteria. The R showed significantly higher overall survival (59.4 vs. 21.25 mo, P=0.002) and disease-free survival (50.97 vs. 10.60 mo, P=0.005), compared with NR. soluble interleukin-2 receptor alpha was a significant predictor of no response to NAT (P=0.045). Analysis of inflammatory profiles using the Pearson heat map analysis followed by network analysis depicted increased inflammatory network complexity in NR compared with R (1.69 vs. 1), signifying a more robust baseline inflammatory status of NR. A panel of inflammatory mediators identified by logistic regression and Fischer score analysis was used to create a potential decision tree to predict NAT response. We demonstrate that baseline inflammatory profiles are associated with response to NAT in PDAC, and that an upregulated inflammatory status is associated with a poor response to NAT. Further analysis into the role of inflammatory mediators as predictors of chemotherapy response is warranted.
Collapse
Affiliation(s)
- Asmita Chopra
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacob C. Hodges
- Wolff Center of UPMC, University of Pittsburgh, Pittsburgh, PA, USA
| | - Derek Barclay
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Randall Brand
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Richard L. Simmons
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kenneth K Lee
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alessandro Paniccia
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pranav Murthy
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T. Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Immunology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brian A. Boone
- Department of Surgery and Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - Amer H. Zureikat
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Zhang H, Zhu X, Zeng Z, Gao X. Interventional therapy combined with radiotherapy for pancreatic carcinoma. INTEGRATIVE PANCREATIC INTERVENTION THERAPY 2021:523-539. [DOI: 10.1016/b978-0-12-819402-7.00023-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
22
|
Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett 2020; 500:1-10. [PMID: 33359211 DOI: 10.1016/j.canlet.2020.12.024] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone and has a high propensity for local invasion and metastasis. Although combining surgery with chemotherapy has immensely improved the outcomes of osteosarcoma patients, the prognosis of metastatic or recurrent osteosarcomas is still unsatisfactory. Immunotherapy has proven to be a promising therapeutic strategy against human malignancies and improved understanding of the immune response to OS, and biomarker development has increased the number of patients who benefit from immunotherapies in recent years. Here, we review recent advances in immunotherapy in osteosarcoma and discuss the mechanisms and status of immunotherapies in both preclinical and clinical trials as well as future therapies on the horizon. These advances may pave the way for novel treatments requisite for patients with osteosarcoma in need of new therapies.
Collapse
|
23
|
Bear AS, Vonderheide RH, O'Hara MH. Challenges and Opportunities for Pancreatic Cancer Immunotherapy. Cancer Cell 2020; 38:788-802. [PMID: 32946773 PMCID: PMC7738380 DOI: 10.1016/j.ccell.2020.08.004] [Citation(s) in RCA: 348] [Impact Index Per Article: 69.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/10/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDA) is among the most immune-resistant tumor types. Its unique genomic landscape shaped by oncogenic drivers promotes immune suppression from the earliest stages of tumor inception to subvert adaptive T cell immunity. Single-agent immune modulators have thus far proven clinically ineffective, and multi-modal therapies targeting mechanisms of immunotherapy resistance are likely needed. Here, we review novel immunotherapy strategies currently under investigation to (1) confer antigen specificity, (2) enhance T cell effector function, and (3) neutralize immunosuppressive elements within the tumor microenvironment that may be rationally combined to untangle the web of immune resistance in PDA and other tumors.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA. mark.o'
| |
Collapse
|
24
|
Elebo N, Fru P, Omoshoro-Jones J, Candy GP, Nweke EE. Role of different immune cells and metabolic pathways in modulating the immune response in pancreatic cancer (Review). Mol Med Rep 2020; 22:4981-4991. [PMID: 33174057 PMCID: PMC7646946 DOI: 10.3892/mmr.2020.11622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is an aggressive cancer, making it a leading cause of cancer‑related deaths. It is characteristically resistant to treatment, which results in low survival rates. In pancreatic cancer, immune cells undergo transitions that can inhibit or promote their functions, enabling treatment resistance and tumor progression. These transitions can be fostered by metabolic pathways that are dysregulated during tumorigenesis. The present review aimed to summarize the different immune cells and their roles in pancreatic cancer. The review also highlighted the individual metabolic pathways in pancreatic cancer and how they enable transitions in immune cells. Finally, the potential of targeting metabolic pathways for effective therapeutic strategies was considered.
Collapse
Affiliation(s)
- Nnenna Elebo
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Pascaline Fru
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Geoffrey Patrick Candy
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, Gauteng 2193, South Africa
| |
Collapse
|
25
|
Zagorulya M, Duong E, Spranger S. Impact of anatomic site on antigen-presenting cells in cancer. J Immunother Cancer 2020; 8:e001204. [PMID: 33020244 PMCID: PMC7537336 DOI: 10.1136/jitc-2020-001204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/24/2022] Open
Abstract
Checkpoint blockade immunotherapy (CBT) can induce long-term clinical benefits in patients with advanced cancer; however, response rates to CBT vary by cancer type. Cancers of the skin, lung, and kidney are largely responsive to CBT, while cancers of the pancreas, ovary, breast, and metastatic lesions to the liver respond poorly. The impact of tissue-resident immune cells on antitumor immunity is an emerging area of investigation. Recent evidence indicates that antitumor immune responses and efficacy of CBT depend on the tissue site of the tumor lesion. As myeloid cells are predominantly tissue-resident and can shape tumor-reactive T cell responses, it is conceivable that tissue-specific differences in their function underlie the tissue-site-dependent variability in CBT responses. Understanding the roles of tissue-specific myeloid cells in antitumor immunity can open new avenues for treatment design. In this review, we discuss the roles of tissue-specific antigen-presenting cells (APCs) in governing antitumor immune responses, with a particular focus on the contributions of tissue-specific dendritic cells. Using the framework of the Cancer-Immunity Cycle, we examine the contributions of tissue-specific APC in CBT-sensitive and CBT-resistant carcinomas, highlight how these cells can be therapeutically modulated, and identify gaps in knowledge that remain to be addressed.
Collapse
Affiliation(s)
- Maria Zagorulya
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Ellen Duong
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Stefani Spranger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
26
|
Lau SP, van Montfoort N, Kinderman P, Lukkes M, Klaase L, van Nimwegen M, van Gulijk M, Dumas J, Mustafa DAM, Lievense SLA, Groeneveldt C, Stadhouders R, Li Y, Stubbs A, Marijt KA, Vroman H, van der Burg SH, Aerts J, van Hall T, Dammeijer F, van Eijck CHJ. Dendritic cell vaccination and CD40-agonist combination therapy licenses T cell-dependent antitumor immunity in a pancreatic carcinoma murine model. J Immunother Cancer 2020; 8:e000772. [PMID: 32690771 PMCID: PMC7373331 DOI: 10.1136/jitc-2020-000772] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is notoriously resistant to treatment including checkpoint-blockade immunotherapy. We hypothesized that a bimodal treatment approach consisting of dendritic cell (DC) vaccination to prime tumor-specific T cells, and a strategy to reprogram the desmoplastic tumor microenvironment (TME) would be needed to break tolerance to these pancreatic cancers. As a proof-of-concept, we investigated the efficacy of combined DC vaccination with CD40-agonistic antibodies in a poorly immunogenic murine model of PDAC. Based on the rationale that mesothelioma and pancreatic cancer share a number of tumor associated antigens, the DCs were loaded with either pancreatic or mesothelioma tumor lysates. METHODS Immune-competent mice with subcutaneously or orthotopically growing KrasG12D/+;Trp53R172H/+;Pdx-1-Cre (KPC) PDAC tumors were vaccinated with syngeneic bone marrow-derived DCs loaded with either pancreatic cancer (KPC) or mesothelioma (AE17) lysate and consequently treated with FGK45 (CD40 agonist). Tumor progression was monitored and immune responses in TME and lymphoid organs were analyzed using multicolor flow cytometry and NanoString analyzes. RESULTS Mesothelioma-lysate loaded DCs generated cross-reactive tumor-antigen-specific T-cell responses to pancreatic cancer and induced delayed tumor outgrowth when provided as prophylactic vaccine. In established disease, combination with stimulating CD40 antibody was necessary to improve survival, while anti-CD40 alone was ineffective. Extensive analysis of the TME showed that anti-CD40 monotherapy did improve CD8 +T cell infiltration, but these essential effector cells displayed hallmarks of exhaustion, including PD-1, TIM-3 and NKG2A. Combination therapy induced a strong change in tumor transcriptome and mitigated the expression of inhibitory markers on CD8 +T cells. CONCLUSION These results demonstrate the potency of DC therapy in combination with CD40-stimulation for the treatment of pancreatic cancer and provide directions for near future clinical trials.
Collapse
Affiliation(s)
- Sai Ping Lau
- Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Priscilla Kinderman
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Larissa Klaase
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Mandy van Gulijk
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jasper Dumas
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sanne L A Lievense
- Department of Pulmonary Medicine, Amphia Hospital, Breda, The Netherlands
| | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Yunlei Li
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrew Stubbs
- Clinical Bioinformatics Unit, Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Koen A Marijt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Heleen Vroman
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
27
|
Pancreatic Cancer UK Grand Challenge: Developments and challenges for effective CAR T cell therapy for pancreatic ductal adenocarcinoma. Pancreatology 2020; 20:394-408. [PMID: 32173257 DOI: 10.1016/j.pan.2020.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Death from pancreatic ductal adenocarcinoma (PDAC) is rising across the world and PDAC is predicted to be the second most common cause of cancer death in the USA by 2030. Development of effective biotherapies for PDAC are hampered by late presentation, a low number of differentially expressed molecular targets and a tumor-promoting microenvironment that forms both a physical, collagen-rich barrier and is also immunosuppressive. In 2017 Pancreatic Cancer UK awarded its first Grand Challenge Programme award to tackle this problem. The team plan to combine the use of novel CAR T cells with strategies to overcome the barriers presented by the tumor microenvironment. In advance of publication of those data this review seeks to highlight the key problems in effective CAR T cell therapy of PDAC and to describe pre-clinical and clinical progress in CAR T bio-therapeutics.
Collapse
|
28
|
Hegde S, Krisnawan VE, Herzog BH, Zuo C, Breden MA, Knolhoff BL, Hogg GD, Tang JP, Baer JM, Mpoy C, Lee KB, Alexander KA, Rogers BE, Murphy KM, Hawkins WG, Fields RC, DeSelm CJ, Schwarz JK, DeNardo DG. Dendritic Cell Paucity Leads to Dysfunctional Immune Surveillance in Pancreatic Cancer. Cancer Cell 2020; 37:289-307.e9. [PMID: 32183949 PMCID: PMC7181337 DOI: 10.1016/j.ccell.2020.02.008] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/04/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022]
Abstract
Here, we utilized spontaneous models of pancreatic and lung cancer to examine how neoantigenicity shapes tumor immunity and progression. As expected, neoantigen expression during lung adenocarcinoma development leads to T cell-mediated immunity and disease restraint. By contrast, neoantigen expression in pancreatic ductal adenocarcinoma (PDAC) results in exacerbation of a fibro-inflammatory microenvironment that drives disease progression and metastasis. Pathogenic TH17 responses are responsible for this neoantigen-induced tumor progression in PDAC. Underlying these divergent T cell responses in pancreas and lung cancer are differences in infiltrating conventional dendritic cells (cDCs). Overcoming cDC deficiency in early-stage PDAC leads to disease restraint, while restoration of cDC function in advanced PDAC restores tumor-restraining immunity and enhances responsiveness to radiation therapy.
Collapse
Affiliation(s)
- Samarth Hegde
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Varintra E Krisnawan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett H Herzog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chong Zuo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus A Breden
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jack P Tang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyung Bae Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine A Alexander
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Kenneth M Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - William G Hawkins
- Department of Surgery, Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Ryan C Fields
- Department of Surgery, Barnes-Jewish Hospital, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Carl J DeSelm
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - Julie K Schwarz
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Alvin J. Siteman Comprehensive Cancer Center, St. Louis, MO 63110, USA.
| |
Collapse
|
29
|
Han S, Underwood P, Hughes SJ. From tumor microenvironment communicants to biomarker discovery: Selectively packaged extracellular vesicular cargoes in pancreatic cancer. Cytokine Growth Factor Rev 2020; 51:61-68. [PMID: 32005635 PMCID: PMC8711854 DOI: 10.1016/j.cytogfr.2020.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/30/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023]
Abstract
Virtually all cells release various types of vesicles into the extracellular environment. These extracellular vesicles (EVs) transport molecular cargoes, performing as communicants for information exchange both within the tumor microenvironment (TME) and to distant organs. Thus, understanding the selective packaging of EV cargoes and the mechanistic impact of those cargoes - including metabolites, lipids, proteins, and/or nucleic acids - offers an opportunity to increase our knowledge of cancer biology and identify EV cargoes that might serve as cancer biomarkers in blood, saliva, or urine samples. In this review, we collect and organize recent advances in this field with an emphasis on pancreatic cancer (pancreatic adenocarcinoma, PDAC) and the concept that cells selectively package cargo into EVs. These studies demonstrate PDAC EV cargoes signal to reprogram and remodel the TME and impact distant organs. EV cargoes identified as potential PDAC diagnostic and prognostic biomarkers are summarized.
Collapse
Affiliation(s)
- Song Han
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, United States.
| | - Patrick Underwood
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, United States
| | - Steven J Hughes
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32610, United States
| |
Collapse
|
30
|
Bazzichetto C, Conciatori F, Luchini C, Simionato F, Santoro R, Vaccaro V, Corbo V, Falcone I, Ferretti G, Cognetti F, Melisi D, Scarpa A, Ciuffreda L, Milella M. From Genetic Alterations to Tumor Microenvironment: The Ariadne's String in Pancreatic Cancer. Cells 2020; 9:cells9020309. [PMID: 32012917 PMCID: PMC7072496 DOI: 10.3390/cells9020309] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 02/06/2023] Open
Abstract
The threatening notoriety of pancreatic cancer mainly arises from its negligible early diagnosis, highly aggressive progression, failure of conventional therapeutic options and consequent very poor prognosis. The most important driver genes of pancreatic cancer are the oncogene KRAS and the tumor suppressors TP53, CDKN2A, and SMAD4. Although the presence of few drivers, several signaling pathways are involved in the oncogenesis of this cancer type, some of them with promising targets for precision oncology. Pancreatic cancer is recognized as one of immunosuppressive phenotype cancer: it is characterized by a fibrotic-desmoplastic stroma, in which there is an intensive cross-talk between several cellular (e.g., fibroblasts, myeloid cells, lymphocytes, endothelial, and myeloid cells) and acellular (collagen, fibronectin, and soluble factors) components. In this review; we aim to describe the current knowledge of the genetic/biological landscape of pancreatic cancer and the composition of its tumor microenvironment; in order to better direct in the intrinsic labyrinth of this complex tumor type. Indeed; disentangling the genetic and molecular characteristics of cancer cells and the environment in which they evolve may represent the crucial step towards more effective therapeutic strategies
Collapse
Affiliation(s)
- Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
- Correspondence: ; Tel.: +39-06-52665185
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, 37134 Verona, Italy;
| | - Francesca Simionato
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| | - Raffaela Santoro
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Vanja Vaccaro
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Vincenzo Corbo
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Gianluigi Ferretti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (C.B.); (V.V.); (I.F.); (G.F.); (F.C.)
| | - Davide Melisi
- Medicine-Digestive Molecular Clinical Oncology Research Unit, University of Verona, 37126 Verona, Italy; (R.S.); (D.M.)
| | - Aldo Scarpa
- ARC-Net Research Centre, University and Hospital Trust of Verona, 37126 Verona, Italy; (V.C.); (A.S.)
| | - Ludovica Ciuffreda
- SAFU, Department of Research, Advanced Diagnostics, and Technological Innovation, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Michele Milella
- Division of Oncology, University of Verona, 37126 Verona, Italy; (F.S.); (M.M.)
| |
Collapse
|
31
|
Mu W, Wang Z, Zöller M. Ping-Pong-Tumor and Host in Pancreatic Cancer Progression. Front Oncol 2019; 9:1359. [PMID: 31921628 PMCID: PMC6927459 DOI: 10.3389/fonc.2019.01359] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the main cause of high pancreatic cancer (PaCa) mortality and trials dampening PaCa mortality rates are not satisfying. Tumor progression is driven by the crosstalk between tumor cells, predominantly cancer-initiating cells (CIC), and surrounding cells and tissues as well as distant organs, where tumor-derived extracellular vesicles (TEX) are of major importance. A strong stroma reaction, recruitment of immunosuppressive leukocytes, perineural invasion, and early spread toward the peritoneal cavity, liver, and lung are shared with several epithelial cell-derived cancer, but are most prominent in PaCa. Here, we report on the state of knowledge on the PaCIC markers Tspan8, alpha6beta4, CD44v6, CXCR4, LRP5/6, LRG5, claudin7, EpCAM, and CD133, which all, but at different steps, are engaged in the metastatic cascade, frequently via PaCIC-TEX. This includes the contribution of PaCIC markers to TEX biogenesis, targeting, and uptake. We then discuss PaCa-selective features, where feedback loops between stromal elements and tumor cells, including distorted transcription, signal transduction, and metabolic shifts, establish vicious circles. For the latter particularly pancreatic stellate cells (PSC) are responsible, furnishing PaCa to cope with poor angiogenesis-promoted hypoxia by metabolic shifts and direct nutrient transfer via vesicles. Furthermore, nerves including Schwann cells deliver a large range of tumor cell attracting factors and Schwann cells additionally support PaCa cell survival by signaling receptor binding. PSC, tumor-associated macrophages, and components of the dysplastic stroma contribute to perineural invasion with signaling pathway activation including the cholinergic system. Last, PaCa aggressiveness is strongly assisted by the immune system. Although rich in immune cells, only immunosuppressive cells and factors are recovered in proximity to tumor cells and hamper effector immune cells entering the tumor stroma. Besides a paucity of immunostimulatory factors and receptors, immunosuppressive cytokines, myeloid-derived suppressor cells, regulatory T-cells, and M2 macrophages as well as PSC actively inhibit effector cell activation. This accounts for NK cells of the non-adaptive and cytotoxic T-cells of the adaptive immune system. We anticipate further deciphering the molecular background of these recently unraveled intermingled phenomena may turn most lethal PaCa into a curatively treatable disease.
Collapse
Affiliation(s)
- Wei Mu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Mu
| | - Zhe Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| | - Margot Zöller
- Department of Oncology, The First Affiliated Hospital of Guangdong, Pharmaceutical University, Guangzhou, China
| |
Collapse
|
32
|
Wang HC, Hung WC, Chen LT, Pan MR. From Friend to Enemy: Dissecting the Functional Alteration of Immunoregulatory Components during Pancreatic Tumorigenesis. Int J Mol Sci 2018; 19:E3584. [PMID: 30428588 PMCID: PMC6274888 DOI: 10.3390/ijms19113584] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a 5-year survival rate of approximately 8%. More than 80% of patients are diagnosed at an unresectable stage due to metastases or local extension. Immune system reactivation in patients by immunotherapy may eliminate tumor cells and is a new strategy for cancer treatment. The anti-CTLA-4 antibody ipilimumab and anti-PD-1 antibodies pembrolizumab and nivolumab have been approved for cancer therapy in different countries. However, the results of immunotherapy on PDAC are unsatisfactory. The low response rate may be due to poor immunogenicity with low tumor mutational burden in pancreatic cancer cells and desmoplasia that prevents the accumulation of immune cells in tumors. The immunosuppressive tumor microenvironment in PDAC is important in tumor progression and treatment resistance. Switching from an immune tolerance to immune activation status is crucial to overcome the inability of self-defense in cancer. Therefore, thoroughly elucidation of the roles of various immune-related factors, tumor microenvironment, and tumor cells in the development of PDAC may provide appropriate direction to target inflammatory pathway activation as a new therapeutic strategy for preventing and treating this cancer.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
Deicher A, Andersson R, Tingstedt B, Lindell G, Bauden M, Ansari D. Targeting dendritic cells in pancreatic ductal adenocarcinoma. Cancer Cell Int 2018; 18:85. [PMID: 29946224 PMCID: PMC6006559 DOI: 10.1186/s12935-018-0585-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Anton Deicher
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden.,2Faculty of Medicine, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Roland Andersson
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Bobby Tingstedt
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Gert Lindell
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Monika Bauden
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Daniel Ansari
- 1Department of Surgery, Clinical Sciences Lund, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| |
Collapse
|
34
|
Jardim JF, Gondak R, Galvis MM, Pinto CAL, Kowalski LP. A decreased peritumoral CD1a+ cell number predicts a worse prognosis in oral squamous cell carcinoma. Histopathology 2018; 72:905-913. [PMID: 29023924 DOI: 10.1111/his.13415] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 10/08/2017] [Indexed: 12/16/2022]
Abstract
AIMS Dendritic cells (DCs) are known to play a central role in the regulation of both innate and adaptive immunological responses, including antitumour immunity. The aim of this study was to evaluate the prognostic impact of intratumoral and peritumoral DCs in oral squamous cell carcinoma (OSCC) affecting the tongue and floor of the mouth. METHODS AND RESULTS Immunohistochemistry for CD1a and CD83 was performed in 53 patients with OSCC in the tongue and floor of the mouth. The markers were evaluated by automated examination in intratumoral and peritumoral compartments, and the results were expressed as density of cells/mm2 . Correlations between these data and clinicopathological and survival outcomes were investigated. Depletion of peritumoral CD1a+ cells was associated with lymph node metastasis (P = 0.05), whereas depletion of peritumoral CD83+ cells was correlated with smoking history (P = 0.04), lymph node metastasis (P = 0.015), and extracapsular spread of lymph nodes (P = 0.018). Peritumoral CD1a+ was correlated with recurrence (P = 0.007) and overall survival (P = 0.03). The results of the survival analysis with the Cox proportional hazard model showed that depletion of peritumoral CD1a+ cells is an independent factor associated with overall survival and disease-free survival. CONCLUSION Our results suggest that depletion of peritumoral CD1a+ cells is a strong independent prognostic factor, predicting a higher recurrence rates and worse survival outcomes.
Collapse
Affiliation(s)
- Juscelino F Jardim
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Rogério Gondak
- Department of Pathology, Federal University of Santa Catarina, Florianopólis, Santa Catarina, Brazil
| | - Marisol M Galvis
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Piracicaba, São Paulo, Brazil
| | - Clovis A L Pinto
- Department of Pathology, AC Camargo Cancer Centre, São Paulo, São Paulo, Brazil
| | - Luiz P Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, AC Camargo Cancer Centre, São Paulo, São Paulo, Brazil
| |
Collapse
|
35
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with a devastating 5-year overall survival of only approximately 7%. Although just 4% of all malignant diseases are accounted to PDAC, it will become the second leading cause of cancer-related deaths before 2030. Immunotherapy has proven to be a promising therapeutic option in various malignancies such as melanoma, non-small cell lung cancer (NSCLC), microsatellite instability-high gastrointestinal cancer, urinary tract cancer, kidney cancer, and others. In this review, we summarize recent findings about immunological aspects of PDAC with the focus on the proposed model of the "cancer immunity cycle". By this model, a deeper understanding of the underlying mechanism in achieving a T-cell response against cancer cells is provided. There is currently great interest in the field around designing novel immunotherapy combination studies for PDAC based on a sound understanding of the underlying immunobiology.
Collapse
|
36
|
Lundgren S, Karnevi E, Elebro J, Nodin B, Karlsson MCI, Eberhard J, Leandersson K, Jirström K. The clinical importance of tumour-infiltrating macrophages and dendritic cells in periampullary adenocarcinoma differs by morphological subtype. J Transl Med 2017; 15:152. [PMID: 28673320 PMCID: PMC5496326 DOI: 10.1186/s12967-017-1256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Dendritic cells (DC) and tumour-associated macrophages (TAM) are essential in linking the innate and adaptive immune response against tumour cells and tumour progression. These cells are also potential target for immunotherapy as well as providing a handle to investigate immune status in the tumour microenvironment. The aim of the present study was to examine their impact on prognosis and chemotherapy response in periampullary adenocarcinoma, including pancreatic cancer, with particular reference to morphological subtype. Methods The density of tolerogenic immature CD1a+ dendritic cells (DC), and MARCO+, CD68+ and CD163+ tissue-associated macrophages (TAM) was analysed by immunohistochemistry in tissue micro arrays with tumours from 175 consecutive cases of periampullary adenocarcinoma who had undergone pancreaticoduodenectomy, 110 with pancreatobiliary type (PB-type) and 65 with intestinal type (I-type) morphology. Kaplan–Meier and Cox regression analyses were applied to determine the impact of immune cell infiltration on 5-year overall survival (OS). Results High density of CD1a+ DCs was an independent prognostic factor for a reduced OS in PB-type but not in I-type tumours (adjusted HR = 2.35; 95% CI 1.13–4.87). High density of CD68+ and CD163+ TAM was significantly associated with poor OS in the whole cohort, however only in unadjusted analysis (HR = 1.67; 95% CI 1.06–2.63, and HR = 1.84; 95% CI 1.09–3.09, respectively) and not in strata according to morphological subtype. High density of MARCO+ macrophages was significantly associated with poor prognosis in I-type but not in PB-type tumours (HR = 2.14 95% CI 1.03–4.44), and this association was only evident in patients treated with adjuvant chemotherapy. The prognostic value of the other investigated immune cells did not differ significantly in strata according to adjuvant chemotherapy. Conclusions The results from this study demonstrate that high infiltration of tolerogenic immature DCs independently predicts a shorter survival in patients with PB-type periampullary adenocarcinoma, and that high density of the MARCO+ subtype of TAMs predicts a shorter survival in patients with I-type tumours. These results emphasise the importance of taking morphological subtype into account in biomarker studies related to periampullary cancer, and indicate that therapies targeting dendritic cells may be of value in the treatment of PB-type tumours, which are associated with the worst prognosis. Electronic supplementary material The online version of this article (doi:10.1186/s12967-017-1256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastian Lundgren
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden.
| | - Emelie Karnevi
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Jacob Elebro
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Mikael C I Karlsson
- Department of Microbiology, Tumor and Cellbiology, Karolinska Institute, 171 76, Stockholm, Sweden
| | - Jakob Eberhard
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| | - Karin Leandersson
- Department of Translational Medicine, Center for Molecular Pathology, Lund University, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences Lund, Oncology and Pathology, Lund University, 221 85, Lund, Sweden
| |
Collapse
|
37
|
D’Onofrio M, Crosara S, De Robertis R, Butturini G, Salvia R, Paiella S, Bassi C, Mucelli RP. Percutaneous Radiofrequency Ablation of Unresectable Locally Advanced Pancreatic Cancer: Preliminary Results. Technol Cancer Res Treat 2017; 16:285-294. [PMID: 27193941 PMCID: PMC5616042 DOI: 10.1177/1533034616649292] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/19/2022] Open
Abstract
AIM The objective of this study was to evaluate the efficacy of percutaneous radiofrequency ablation of locally advanced pancreatic cancer located in the pancreatic body. MATERIALS AND METHODS Patients with biopsy-proven locally advanced pancreatic adenocarcinoma were considered for percutaneous radiofrequency ablation. Postprocedural computed tomography studies and Ca19.9 tumor marker evaluation were performed at 24 hours and 1 month. At computed tomography, treatment effect was evaluated by excluding the presence of complications. The technical success of the procedure is defined at computed tomography as the achievement of tumoral ablated area. RESULTS Twenty-three patients have been included in the study. Five of the 23 patients were excluded. At computed tomography, the mean size of the intralesional postablation necrotic area was 32 mm (range: 15-65 mm). Technical success of the procedure has been obtained in 16 (93%) of the 18 cases. None of the patients developed postprocedural complications. Mean Ca19.9 serum levels 1 day before, 1 day after, and 1 month after the procedure were 285.8 U/mL (range: 16.6-942.0 U/mL), 635.2 U/mL (range: 17.9-3368.0 U/mL), and 336.0 U/mL (range: 7.0-1400.0 U/mL), respectively. Follow-up duration was less than 6 months for 11 patients and more than 6 months for 7 patients. At the time of the draft of this article, the mean survival of the patients included in the study was 185 days (range: 62-398 days). CONCLUSION Percutaneous radiofrequency ablation of locally advanced adenocarcinoma has a high technical success rate and is effective in cytoreduction both at imaging and laboratory controls.
Collapse
Affiliation(s)
- Mirko D’Onofrio
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Stefano Crosara
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Riccardo De Robertis
- Department of Radiology, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Giovanni Butturini
- Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Roberto Salvia
- Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Salvatore Paiella
- Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | - Claudio Bassi
- Department of Surgery, G.B. Rossi Hospital, University of Verona, Verona, Italy
| | | |
Collapse
|
38
|
Seo YD, Pillarisetty VG. T-cell programming in pancreatic adenocarcinoma: a review. Cancer Gene Ther 2017; 24:106-113. [PMID: 27910859 DOI: 10.1038/cgt.2016.66] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/17/2016] [Indexed: 12/14/2022]
Abstract
Despite recent advancements in multimodal therapy, pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. In the era of burgeoning immune therapies against previously difficult-to-treat malignancies, there has been growing interest in activating the immune system against PDA; however, unlike in other cancers such as melanoma and lymphoma, immunotherapy has not yielded many clinically significant results. To harness these mechanisms for therapeutic use, an in-depth understanding of T-cell programming in the immune microenvironment of PDA must be achieved. The outcome of T-cell programming against pathogens or cancer depends on the uptake and presentation of foreign antigens by dendritic cells and macrophages to T cells, and the expression of various co-stimulatory molecules and cytokines. Subsequent immune responses are kept in check via regulatory mechanisms such as immune checkpoints (for example, programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4)), as well as other immunosuppressive cell types such as regulatory T cells (Treg) and M2 macrophages. PDA presents a challenge from the perspective of immune therapy because of many immunosuppressive mechanisms at play in its microenvironment. The tumor itself produces IL-10 and transforming growth factor beta (TGF-β) that downregulate T-cell activation as well as the activity of antigen-presenting cells. At the same time, PDA also appears to recruit more regulatory elements into its milieu; higher infiltration of Treg, for instance, has been associated with poorer prognosis in PDA patients. M2 macrophages and myeloid-derived suppressive cells are also highly prevalent in the tumor microenvironment. T cells in PDA have high expression of PD-1, whereas the tumor has high expression of PD-L1, which likely inhibits activation of tumor antigen-specific T cells. Many of these immunosuppressive mechanisms have been targeted as potential immune therapies of PDA. Immune checkpoint inhibitors, which target PD-1 and CTLA-4, have been shown to be effective in other cancers such as melanoma; however, they have not demonstrated outcome benefits in PDA so far. Other novel investigational approaches under study currently include inhibiting the homing of immunosuppressive cell types to the tumor milieu, as well as vaccines designed to boost the adaptive response to PDA antigens. As our understanding of the nuanced and complex interactions of the immune microenvironment expands, more targeted approaches can be taken toward achieving therapeutic success in immune therapy against PDA.
Collapse
Affiliation(s)
- Y D Seo
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - V G Pillarisetty
- Department of Surgery, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application: An updated review. Medicine (Baltimore) 2016; 95:e5541. [PMID: 27930550 PMCID: PMC5266022 DOI: 10.1097/md.0000000000005541] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains difficult to treat, despite the recent advances in various anticancer therapies. Immuno-inflammatory response is considered to be a major risk factor for the development of PC in addition to a combination of genetic background and environmental factors. Although patients with PC exhibit evidence of systemic immune dysfunction, the PC microenvironment is replete with immune cells. METHODS We searched PubMed for all relevant English language articles published up to March 2016. They included clinical trials, experimental studies, observational studies, and reviews. Trials enrolled at Clinical trial.gov were also searched. RESULTS PC induces an immunosuppressive microenvironment, and intratumoral activation of immunity in PC is attenuated by inhibitory signals that limit immune effector function. Multiple types of immune responses can promote an immunosuppressive microenvironment; key regulators of the host tumor immune response are dendritic cells, natural killer cells, macrophages, myeloid derived suppressor cells, and T cells. The function of these immune cells in PC is also influenced by chemotherapeutic agents and the components in tumor microenvironment such as pancreatic stellate cells. Immunotherapy of PC employs monoclonal antibodies/effector cells generated in vitro or vaccination to stimulate antitumor response. Immune therapy in PC has failed to improve overall survival; however, combination therapies comprising immune checkpoint inhibitors and vaccines have been attempted to increase the response. CONCLUSION A number of studies have begun to elucidate the roles of immune cell subtypes and their capacity to function or dysfunction in the tumor microenvironment of PC. It will not be long before immune therapy for PC becomes a clinical reality.
Collapse
Affiliation(s)
- Jae Hyuck Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington Medical Center, Seattle, University of Washington, Seattle, WA
| |
Collapse
|
40
|
Paiella S, Salvia R, Girelli R, Frigerio I, Giardino A, D’Onofrio M, De Marchi G, Bassi C. Role of local ablative techniques (Radiofrequency ablation and Irreversible Electroporation) in the treatment of pancreatic cancer. Updates Surg 2016; 68:307-311. [PMID: 27535401 DOI: 10.1007/s13304-016-0385-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023]
|
41
|
Gomes JO, de Vasconcelos Carvalho M, Fonseca FP, Gondak RO, Lopes MA, Vargas PA. CD1a+ and CD83+ Langerhans cells are reduced in lower lip squamous cell carcinoma. J Oral Pathol Med 2016; 45:433-9. [PMID: 26661374 DOI: 10.1111/jop.12389] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Actinic cheilitis (AC) is a potentially malignant lesion diagnosed in the lip of patients chronically exposed to the sun that may give rise to a fully invasive lower lip squamous cell carcinoma (LLSCC). It is known that ultraviolet radiation causes dendritic cells (DCs) depletion in the epidermis, but the role of this cellular population in lip cancer progression remains uncertain. Therefore, this study investigated the distribution of DCs in normal, dysplastic and neoplastic tissues of the lower lip. METHODS Thirteen cases of lower lip mucocele, 42 of ACs and 21 of LLSCC were retrieved and original diagnoses confirmed by two oral pathologists, who further classified ACs as low- and high-risk lesions. Immunoreactions against CD1a and CD83 identified immature and mature DCs, respectively. RESULTS Immature CD1a+ Langerhans cells (LCs) were significantly decreased in LLSCC when compared to morphologically normal (P < 0.009) and dysplastic epitheliums (P < 0.003), whereas mature CD83+ LCs were significantly decreased in LLSCC when compared to normal epithelium (P = 0.038). There was no significant difference between low- and high-risk ACs regarding CD1a+ and CD83+ LCs (P > 0.05), but ACs demonstrated a lower concentration of CD1a+ LCs than normal epithelium (P < 0.009). There was no significant difference in the distribution of CD1a+ and CD83+ interstitial dendritic cells (IDCs) in the connective tissue among the studied groups (P > 0.05). CONCLUSION These results suggest that depletion of epithelial LCs, but not IDCs in the connective tissue, would represent an important step for lip cancer development.
Collapse
Affiliation(s)
| | | | | | | | | | - Pablo Agustin Vargas
- Department of Oral Diagnosis, University of Campinas, Piracicaba, Brazil
- Department of Oral Pathology and Oral Biology, Faculty of Health Sciences, School of Dentistry, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
42
|
Sensitivity of Dendritic Cells to Microenvironment Signals. J Immunol Res 2016; 2016:4753607. [PMID: 27088097 PMCID: PMC4819111 DOI: 10.1155/2016/4753607] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/03/2016] [Accepted: 03/06/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.
Collapse
|
43
|
Wachsmann MB, Pop LM, Vitetta ES. Pancreatic ductal adenocarcinoma: a review of immunologic aspects. J Investig Med 2014. [PMID: 22406516 DOI: 10.231/jim.0b013e31824a4d79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the continued failures of both early diagnosis and treatment options for pancreatic cancer, it is now time to comprehensively evaluate the role of the immune system on the development and progression of pancreatic cancer. It is important to develop strategies that harness the molecules and cells of the immune system to treat this disease. This review will focus primarily on the role of immune cells in the development and progression of pancreatic ductal adenocarcinoma and to evaluate what is known about the interaction of immune cells with the tumor microenvironment and their role in tumor growth and metastasis. We will conclude with a brief discussion of therapy for pancreatic cancer and the potential role for immunotherapy. We hypothesize that the role of the immune system in tumor development and progression is tissue specific. Our hope is that better understanding of this process will lead to better treatments for this devastating disease.
Collapse
Affiliation(s)
- Megan B Wachsmann
- Masters Program in Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
44
|
Vogt A, Sievers E, Lukacs-Kornek V, Decker G, Raskopf E, Meumann N, Büning H, Sauerbruch T, Strassburg CP, Schmidt-Wolf IGH, Gonzalez-Carmona MA. Improving immunotherapy of hepatocellular carcinoma (HCC) using dendritic cells (DC) engineered to express IL-12 in vivo. Liver Int 2014; 34:447-61. [PMID: 23998316 DOI: 10.1111/liv.12284] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/24/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND Interleukin 12 (IL-12), one of the most potent Th1-cytokines, has been used to improve dendritic cells (DC)-based immunotherapy of cancer. However, it failed to achieve clinical response in patients with hepatocellular carcinoma (HCC). In this study, improved conditions of immunotherapy with DC engineered to express IL-12 were studied in murine subcutaneous HCC. METHODS Tumour-lysate pulsed DC were transduced with IL-12-encoding adenoviruses or cultivated with recombinant (r)IL-12. DC were injected intratumourally, subcutaneously or intravenously at different stages of tumour-development. RESULTS Dendritic cell overexpressing IL-12 by adenoviruses showed enhanced expression of costimulatory molecules and stronger priming of HCC-specific effector cells than DC cultured with rIL-12. Intratumoural but not systemic injections of IL-12-DC induced the strongest antitumoural effects reaching complete regressions in 75% of early-staged tumours and in 33% of advanced tumours. Importantly, antitumoural effects could be further enhanced through combination with sorafenib. Analysing the tumour-environment, IL-12-DC increased the levels of Th1-cytokines/chemokines and of CD4(+) -, CD8(+) -T- and NK-cells. Induced immunity was tumour-specific and sustained since all tumour-free animals were protected towards hepatic tumour-cell rechallenge. However, IL-12-DC also enhanced immunosuppressive cytokines, regulatory T cells and even myeloid-derived suppressor cells within the tumours. CONCLUSIONS Induced IL-12-overexpression by adenoviral vectors can effectively immunostimulate DC. Intratumoural but not systemic injection of activated IL-12-DC was crucial for effective tumour regression. The mechanism of this approach seems to be the induction of a sufficient Th1 tumour-environment allowing the recruitment of effector cells rather than the inhibition of tumour immunosuppression. Thus, improved immunotherapy with IL-12-DC represents a promising approach towards HCC.
Collapse
Affiliation(s)
- Annabelle Vogt
- Department of Medicine I, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Clinical evaluation of systemic and local immune responses in cancer: time for integration. Cancer Immunol Immunother 2013; 63:45-57. [PMID: 24100804 DOI: 10.1007/s00262-013-1480-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Abstract
The immune system has a dual role in cancer development and progression. On the one hand, it can eradicate emerging malignant cells, but on the other hand, it can actively promote growth of malignant cells, their invasive capacities and their ability to metastasize. Immune cells with predominantly anti-tumor functionality include cells of the innate immune system, such as natural killer cells, and cells of adaptive immunity, such as conventional dendritic cells and cytotoxic T lymphocytes. Immune cells with predominantly pro-tumor functionality include a broad spectrum of cells of the innate and adaptive immune system, such as type 2 neutrophils and macrophages, plasmacytoid DC, myeloid-derived suppressor cells and regulatory T lymphocytes. The presence of immune cells with tumor-suppressive and tumor-promoting activity in the cancer microenvironment and in peripheral blood is usually associated with good clinical outcomes and poor clinical outcomes, respectively. Significant advances in experimental and clinical oncoimmunology achieved in the last decade open an opportunity for the use of modern morphologic, flow cytometric and functional tests in clinical practice. In this review, we describe an integrated approach to clinical evaluation of the immune status of cancer patients for diagnostic purposes, prognostic/predictive purposes (evaluation of patient prognosis and response to treatment) and for therapeutic purposes.
Collapse
|
46
|
Frigerio I, Girelli R, Giardino A, Regi P, Salvia R, Bassi C. Short term chemotherapy followed by radiofrequency ablation in stage III pancreatic cancer: results from a single center. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2013; 20:574-7. [PMID: 23591744 DOI: 10.1007/s00534-013-0613-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neo-adjuvant chemotherapy (CHT) has gained increasing importance in resectable and borderline resectable pancreatic cancer leading to a better performing surgery when we look at negative resection margins and selection of patients with less aggressive disease. We apply this principle to patients with Stage III (LAC) pancreatic cancer undergoing RFA and try to select patients who may benefit from a local treatment. METHODS All patients affected by LAC were treated with RFA for a stable disease after a short CHT. Postoperative morbidity and mortality were evaluated together with overall survival (OS) and disease specific survival (DSS). RESULTS We consecutively treated 57 patients affected by LAC. Median duration of CHT before RFA was 5 months. The postoperative mortality rate was zero. Overall morbidity was 14 % with RFA-related morbidity of 3.5 %. The OS and DSS were 19 months and when compared to a similar population who received RFA as up front treatment, there was no difference. CONCLUSIONS Our results do not support the adoption of a short CHT as a way to identify patients to treat with RFA with the most benefit. Based on this and by knowing the role of immune modulation after RFA and its specific involvement in pancreatic carcinoma, we can propose RFA as upfront treatment.
Collapse
Affiliation(s)
- Isabella Frigerio
- Hepato-Pancreato-Biliary Unit, Casa di Cura Pederzoli, Via Monte Baldo 24, Peschiera del Garda, 37019, Verona, Italy; Department of Surgery B, Pancreas Institute, GB Rossi Hospital, University of Verona, Verona, Italy.
| | | | | | | | | | | |
Collapse
|
47
|
Wörmann SM, Diakopoulos KN, Lesina M, Algül H. The immune network in pancreatic cancer development and progression. Oncogene 2013; 33:2956-67. [PMID: 23851493 DOI: 10.1038/onc.2013.257] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
The presence of stromal desmoplasia is a hallmark of spontaneous pancreatic ductal adenocarcinoma, forming a unique microenvironment that comprises many cell types. Only recently, the immune system has entered the pathophysiology of pancreatic ductal adenocarcinoma development. Tumor cells in the pancreas seem to dysbalance the immune system, thus facilitating spontaneous cancer development. This review will try to assemble all relevant data to demonstrate the implications of the immune network on spontaneous cancer development.
Collapse
Affiliation(s)
- S M Wörmann
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - K N Diakopoulos
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - M Lesina
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - H Algül
- Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
48
|
Gutkin DW. Tumor Infiltration by Immune Cells: Pathologic Evaluation and a Clinical Significance. THE TUMOR IMMUNOENVIRONMENT 2013:39-82. [DOI: 10.1007/978-94-007-6217-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
Girelli R, Frigerio I, Giardino A, Regi P, Gobbo S, Malleo G, Salvia R, Bassi C. Results of 100 pancreatic radiofrequency ablations in the context of a multimodal strategy for stage III ductal adenocarcinoma. Langenbecks Arch Surg 2012; 398:63-9. [DOI: 10.1007/s00423-012-1011-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 09/18/2012] [Indexed: 02/07/2023]
|
50
|
Wang L, Liu H, Chen X, Zhang M, Xie K, Ma Q. Immune sculpting of norepinephrine on MHC-I, B7-1, IDO and B7-H1 expression and regulation of proliferation and invasion in pancreatic carcinoma cells. PLoS One 2012; 7:e45491. [PMID: 23029049 PMCID: PMC3446877 DOI: 10.1371/journal.pone.0045491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 08/23/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The sympathetic neurotransmitter Norepinephrine (NE) contributes to tumorigenesis and cancer progression. This study aims to investigate the role of NE in modulating the immune phenotype and allowing pancreatic carcinoma (PC) cells to escape the immune response. METHODS Varied concentrations of NE and interferon-gamma (IFN-γ) were administrated to MIA PaCa-2 and BxPC-3 cell lines for 48 hours. Proliferation and invasion were then investigated using an MTT assay and a membrane invasion culture system respectively. MHC-I, B7-1, IDO and B7-H1 expression were measured using real-time quantitative RT-PCR, western blotting and immunocytochemistry. The synergistic and time-dependent effects of NE/IFN-γ were also investigated. Adrenergic antagonists were used to identify the relevant target receptor of NE. RESULTS The results showed that NE had dose-dependent and time-dependent effects on cell biological processes as well as on the expression of MHC-I, B7-1, IDO and B7-H1. These effects occurred mainly via the β(2)-adrenergic receptor. Long-term NE treatment was able to antagonize some of the effects of IFN-γ (after 2 weeks of treatment), but NE and IFN-γ had significant synergistic stimulatory effects on IDO and B7-H1 expression. The residual effects on biological activities lasted for 2 weeks, while the immunophenotypic changes decreased at early time points after treatment. CONCLUSIONS NE plays important roles in modulating PC cell biological activities and affecting MHC-I, B7-1, IDO and B7-H1 expression in vitro, mainly via the β2-adrenergic receptor (β2-AR) in a time- and dose-dependent fashion. Only at extended treatment durations could NE affect PC cell progression and immune evasion.
Collapse
Affiliation(s)
- Liancai Wang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
- Henan Province People’s Hospital, Zhengzhou, Henan Province, China
| | - Han Liu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Xiangli Chen
- Henan Province People’s Hospital, Zhengzhou, Henan Province, China
| | - Min Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | - Keping Xie
- Department of Gastrointestinal Medical Oncology, the University of Texas, MD Anderson Cancer Centre, Houston, Texas
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|