1
|
Parın FN, Parın U. Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect 2022. [DOI: 10.1002/slct.202104148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fatma Nur Parın
- Polymer Materials Engineering Department Faculty of Engineering and Natural Sciences Bursa Technical University Sinan Campus Yıldırım Bursa 16310 Turkey
| | - Uğur Parın
- Microbiology Department Faculty of Veterinary Science Aydın Adnan Menderes University Işıklı Campus Efeler Aydın 09010 Turkey
| |
Collapse
|
2
|
Garry MG, Kren S, Wenger JB, Garry DJ. Biologically Derived, Three-Dimensional, Embryonic Scaffolds for Long-Term Cardiomyocyte Culture. Stem Cells Dev 2021; 30:697-704. [PMID: 33843275 DOI: 10.1089/scd.2021.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to maintain viable cultures of mature, primary cardiomyocytes is challenging. The lack of viable cardiomyocyte cultures severely limits in vitro biochemical assays, toxicology assays, drug screening assays, and other analyses. Here, we describe a novel three-dimensional (3D) embryonic scaffold, which supports the culture of postnatal day 7 murine cardiomyocytes within the embryonic heart for, at least, 28 days. We have observed that these cardiomyocytes display normal differentiation, protein expression, and function after extended culture. This novel culture system will allow for prolonged treatment of cardiomyocytes in a natural 3D orientation and has the potential for providing a superior tool for the screening of therapeutic compounds.
Collapse
Affiliation(s)
- Mary G Garry
- Lillehei Heart Institute (LHI), University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Engineering in Medicine (IEM), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Stefan Kren
- Lillehei Heart Institute (LHI), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Joseph B Wenger
- Lillehei Heart Institute (LHI), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Daniel J Garry
- Lillehei Heart Institute (LHI), University of Minnesota, Minneapolis, Minnesota, USA.,Institute for Engineering in Medicine (IEM), University of Minnesota, Minneapolis, Minnesota, USA.,Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
3
|
Farzan A, Borandeh S, Zanjanizadeh Ezazi N, Lipponen S, Santos HA, Seppälä J. 3D scaffolding of fast photocurable polyurethane for soft tissue engineering by stereolithography: Influence of materials and geometry on growth of fibroblast cells. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109988] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Multiparametric slice culture platform for the investigation of human cardiac tissue physiology. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 144:139-150. [DOI: 10.1016/j.pbiomolbio.2018.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/14/2018] [Accepted: 06/03/2018] [Indexed: 12/23/2022]
|
5
|
Mi HY, Jing X, Yilmaz G, Hagerty BS, Enriquez E, Turng LS. In Situ Synthesis of Polyurethane Scaffolds with Tunable Properties by Controlled Crosslinking of Tri-Block Copolymer and Polycaprolactone Triol for Tissue Regeneration. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 348:786-798. [PMID: 30455583 PMCID: PMC6238968 DOI: 10.1016/j.cej.2018.04.198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mimicking the mechanical properties of native tissues is a critical criterion for an ideal tissue engineering scaffold. However, most biodegradable synthetic materials, including polyester-based polyurethanes (PUs), consist of rigid polyester chains and have high crystallinity. They typically lack the elasticity of most human tissues. In this study, a new type of biodegradable PU with excellent elasticity was synthesized based on the controlled crosslinking of poly(ester ether) triblock copolymer diols and polycaprolactone (PCL) triols using urethane linkages. Three-dimensional (3D) porous scaffolds with a defined geometry, tunable microstructures, and adjustable mechanical properties were synthesized in situ using an isocyanate-ended copolymer, a tri-armed PCL, and a chain extender. The mechanical properties of the scaffolds can be easily tuned by changing the ratio of reactants, varying the solution concentration, or using a porogen. Notably, all of these scaffolds, although mostly made of rigid PCL chains, showed remarkable elasticity and cyclical properties. With an optimized molecular design, a maximum recovery rate of 99.8% was achieved. This was because the copolymer provided molecular flexibility while the long chain crosslinking of PCL triol hindered crystallization, thus making the PU behave like an amorphous elastic material. Moreover, the in vitro cell culture of 3T3 fibroblasts and MG63 osteoblast-like cells confirmed the biocompatibility of these PU scaffolds and revealed that scaffolds with different stiffnesses can stimulate the proliferation of different types of cells. All of these attributes make PU scaffolds extremely suitable for the regeneration of tissues that experience dynamic loading.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Mechanical Engineering University of Wisconsin–Madison, Madison, WI, 53706, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery University of Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Xin Jing
- Department of Mechanical Engineering University of Wisconsin–Madison, Madison, WI, 53706, USA
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Galip Yilmaz
- Department of Mechanical Engineering University of Wisconsin–Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery University of Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Breanna S. Hagerty
- Wisconsin Institute for Discovery University of Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Eduardo Enriquez
- Wisconsin Institute for Discovery University of Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering University of Wisconsin–Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery University of Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| |
Collapse
|
6
|
Mi HY, Jing X, Napiwocki BN, Hagerty BS, Chen G, Turng LS. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering. J Mater Chem B 2017; 5:4137-4151. [PMID: 29170715 PMCID: PMC5695921 DOI: 10.1039/c7tb00419b] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biodegradable synthetic polymers have been widely used as tissue engineering scaffold materials. Even though they have shown excellent biocompatibility, they have failed to resemble the low stiffness and high elasticity of soft tissues because of the presence of massive rigid ester bonds. Herein, we synthesized a new thermoplastic polyurethane elastomer (CTC-PU(BET)) using poly ester ether triblock copolymer (polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone triblock copolymer, PCTC) as the soft segment, aliphatic diisocyanate (hexamethylene diisocyanate, HDI) as the hard segment, and degradable diol (bis(2-hydroxyethyl) terephthalate, BET) as the chain extender. PCTC inhibited crystallization and reduced the melting temperature of CTC-PU(BET), and BET dramatically enhanced the thermal decomposition and hydrolytic degradation rate when compared with conventional polyester-based biodegradable TPUs. The CTC-PU(BET) synthesized in this study possessed a low tensile modulus and tensile strength of 2.2 MPa and 1.3 MPa, respectively, and an elongation-at-break over 700%. Meanwhile, it maintained a 95.3% recovery rate and 90% resilience over ten cycles of loading and unloading. In addition, the TPU could be electrospun into both random and aligned fibrous scaffolds consisting of major microfibers and nanobranches. 3T3 fibroblast cell culture confirmed that these scaffolds outperformed the conventional biodegradable TPU scaffolds in terms of substrate-cellular interactions and cell proliferation. Considering the advantages of this TPU, such as ease of synthesis, low cost, low stiffness, high elasticity, controllable degradation rate, ease of processability, and excellent biocompatibility, it has great prospects to be used as a tissue engineering scaffold material for soft tissue regeneration.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South
China University of Technology, Guangzhou, 510640, China
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Brett N. Napiwocki
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
- Department of Biomedical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
| | - Breanna S. Hagerty
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Guojun Chen
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of
Wisconsin–Madison, Madison, WI, 53706, USA
- Wisconsin Institute for Discovery, University of
Wisconsin–Madison, Madison, Wisconsin, 53715, USA
| |
Collapse
|
7
|
Garric X, Nottelet B, Pinese C, Leroy A, Coudane J. [Biodegradable synthetic polymers for the design of implantable medical devices: the ligamentoplasty case]. Med Sci (Paris) 2017; 33:39-45. [PMID: 28120754 DOI: 10.1051/medsci/20173301007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The sector of implantable medical devices is a growing sector of health products especially dynamic in the field of research. To improve the management of patients and to meet clinical requirements, researchers are developing new types of medical devices. They use different families of biomaterials presenting various chemical and physical characteristics in order for providing clinicians with health products optimized for biomedical applications. In this article, we aim to show how, starting from a family of biomaterials (degradable polymers), it is possible to design an implantable medical device for the therapeutic management of the failure of anterior cruciate ligament. The main steps leading to the design of a total ligament reinforcement are detailed. They range from the synthesis and characterization of degradable polymer to the shaping of the knitted implant, through the assessment of the study of the impact of sterilization on mechanical properties and checking cytocompatibility.
Collapse
Affiliation(s)
- Xavier Garric
- Département Biopolymères Artificiels : Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Bâtiment I, 15, avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France
| | - Benjamin Nottelet
- Département Biopolymères Artificiels : Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Bâtiment I, 15, avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France
| | - Coline Pinese
- Département Biopolymères Artificiels : Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Bâtiment I, 15, avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France
| | - Adrien Leroy
- Département Biopolymères Artificiels : Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Bâtiment I, 15, avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France
| | - Jean Coudane
- Département Biopolymères Artificiels : Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Faculté de Pharmacie, Bâtiment I, 15, avenue Charles Flahault, BP14491, 34093 Montpellier Cedex 5, France
| |
Collapse
|
8
|
Liu SJ. Characterization of functional capacity of adult ventricular myocytes in long-term culture. Int J Cardiol 2013; 168:1923-36. [PMID: 23375882 DOI: 10.1016/j.ijcard.2012.12.100] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 11/15/2012] [Accepted: 12/27/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Functional properties of freshly isolated adult ventricular myocytes (AVMs) or those of AVMs during first few weeks in culture were well described. However, the functional capacity of these AVMs such as regenerative potential remains unknown, in part, due to the short lifespan of AVMs in culture. This study modified culture conditions that extended the lifespan of AVMs, isolated from adult rat hearts, longer than 6 months. METHODS Temporal changes in the morphology of individual AVMs, cell-cell interaction, formation of myofibers, self-repair capacity after injury, expression of senescence biomarkers, and contractile function of AVMs over 5 weeks (defined as long-term culture) were chronologically characterized and quantified with live-cell video and fluorescence microscopy, and immunocytochemistry. RESULTS Cell growth in size reached a plateau after 4 weeks in culture concomitantly with continuous increase in structural remodeling in long-term culture. Dynamic remodeling of AVMs promoted self-contact of filopodia and cell-cell contact where these contained abundant myofilaments, connexin 43 proteins, and high density and high integrity of mitochondria. Such high capacity also enabled self-repair of AVMs after injury, cytokinesis, and formation of myofibers. AVMs in long-term culture displayed spontaneous contraction and importantly were responsive to electrical stimulation. Moreover, AVMs expressed senescence-associated β-galactosidase, p16, and stress-associated atrial natriuretic peptides that resulted likely from cellular modeling. CONCLUSIONS Prolonged longevity of AVMs in culture with characteristics of high functional capacity of organelle regeneration and contraction makes them invaluable for further longitudinal mechanistic studies in cardiac (patho)physiology (e.g., hypertrophy and aging), single-cell analysis (e.g., function of hetero-phenotypes) and drug discovery.
Collapse
Affiliation(s)
- Shi J Liu
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
9
|
Leroy A, Pinese C, Bony C, Garric X, Noël D, Nottelet B, Coudane J. Investigation on the properties of linear PLA-poloxamer and star PLA-poloxamine copolymers for temporary biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:4133-9. [DOI: 10.1016/j.msec.2013.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 11/30/2022]
|
10
|
Abstract
Mortalities resulting from cardiovascular disorders remain high, with an urgent need to develop novel treatment modalities. Tissue-engineering therapies aim to provide cell-based alternatives to conventional options. Significant technological advancements have occurred during the last decade towards the fabrication of functional 3D heart muscle in vitro. More recent research has focused on the development of cell-based cardiac pumps and tissue-engineered ventricles. The global objective of this collective work is to simulate the functional performance of the left ventricle, utilizing completely cell-based options. Current prototypes have shown several physiological performance metrics, including the ability of these devices to generate intraluminal pressure upon electrical stimulation. This review will highlight the transition from tissue engineering 3D heart muscle to cell-based cardiac pumps/ventricles.
Collapse
Affiliation(s)
- L Khait
- The University of Michigan, Section of Cardiac Surgery, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
11
|
Pêgo AP, Siebum B, Van Luyn MJA, Gallego y Van Seijen XJ, Poot AA, Grijpma DW, Feijen J. Preparation of degradable porous structures based on 1,3-trimethylene carbonate and D,L-lactide (co)polymers for heart tissue engineering. ACTA ACUST UNITED AC 2004; 9:981-94. [PMID: 14633382 DOI: 10.1089/107632703322495628] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Biodegradable porous scaffolds for heart tissue engineering were prepared from amorphous elastomeric (co)polymers of 1,3-trimethylene carbonate (TMC) and D,L-lactide (DLLA). Leaching of salt from compression-molded polymer-salt composites allowed the preparation of highly porous structures in a reproducible fashion. By adjusting the salt particle size and the polymer-to-particle weight ratio in the polymer-salt composite preparation the pore size and porosity of the scaffolds could be precisely controlled. The thermal properties of the polymers used for scaffold preparation had a strong effect on the morphology, mechanical properties and dimensional stability of the scaffolds under physiological conditions. Interconnected highly porous structures (porosity, 94%; average pore size, 100 microm) based on a TMC-DLLA copolymer (19:81, mol%) had suitable mechanical properties and displayed adequate cell-material interactions to serve as scaffolds for cardiac cells. This copolymer is noncytotoxic and allows the adhesion and proliferation of cardiomyocytes. During incubation in phosphate-buffered saline at 37 degrees C, these scaffolds were dimensionally stable and the number average molecular weight (Mn) of the polymer decreased gradually from 2.0 x 10(5) to 0.3 x 10(5) in a period up to 4 months. The first signs of mass loss (5%) were detected after 4 months of incubation. The degradation behavior of the porous structures was similar to that of nonporous films with similar composition and can be described by autocatalyzed bulk hydrolysis.
Collapse
Affiliation(s)
- A P Pêgo
- Institute for Biomedical Technology and Department of Polymer Chemistry and Biomaterials, Faculty of Chemical Technology, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Pêgo AP, Poot AA, Grijpma DW, Feijen J. Biodegradable elastomeric scaffolds for soft tissue engineering. J Control Release 2003; 87:69-79. [PMID: 12618024 DOI: 10.1016/s0168-3659(02)00351-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elastomeric copolymers of 1,3-trimethylene carbonate (TMC) and epsilon-caprolactone (CL) and copolymers of TMC and D,L-lactide (DLLA) have been evaluated as candidate materials for the preparation of biodegradable scaffolds for soft tissue engineering. TMC-DLLA copolymers are amorphous and degrade more rapidly in phosphate-buffered saline (PBS) of pH 7.4 at 37 degrees C than (semi-crystalline) TMC-CL copolymers. TMC-DLLA with 20 or 50 mol% TMC loose their tensile strength in less than 5 months and are totally resorbed in 11 months. In PBS, TMC-CL copolymers retain suitable mechanical properties for more than a year. Cell seeding studies show that rat cardiomyocytes and human Schwann cells attach and proliferate well on the TMC-based copolymers. TMC-DLLA copolymers with either 20 or 50 mol% of TMC are totally amorphous and very flexible, making them excellent polymers for the preparation of porous scaffolds for heart tissue engineering. Porous structures of TMC-DLLA copolymers were prepared by compression molding and particulate leaching techniques. TMC-CL (co)polymers were processed into porous two-ply tubes by means of salt leaching (inner layer) and fiber winding (outer layer) techniques. These grafts, seeded with Schwann cells, will be used as nerve guides for the bridging of large peripheral nerve defects.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- Institute for Biomedical Technology and Department of Polymer Chemistry and Biomaterials, Faculty of Chemical Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | |
Collapse
|