1
|
Beylergil SB, Noecker AM, Petersen M, Gupta P, Ozinga S, Walker MF, Kilbane C, McIntyre CC, Shaikh AG. Subthalamic deep brain stimulation affects heading perception in Parkinson's disease. J Neurol 2021; 269:253-268. [PMID: 34003373 DOI: 10.1007/s00415-021-10616-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) presents with visuospatial impairment and falls. It is critical to understand how subthalamic deep brain stimulation (STN DBS) modulates visuospatial perception. We hypothesized that DBS has different effects on visual and vestibular perception of linear motion (heading), a critical aspect of visuospatial navigation; and such effects are specific to modulated STN location. Two-alternative forced-choice experiments were performed in 14 PD patients with bilateral STN DBS and 19 age-matched healthy controls (HC) during passive en bloc linear motion and 3D optic-flow in immersive virtual reality measured vestibular and visual heading. Objective measure of perception with Weibull psychometric function revealed that PD has significantly lower accuracy [L: 60.71 (17.86)%, R: 74.82 (17.44)%] and higher thresholds [L: 16.68 (12.83), R: 10.09 (7.35)] during vestibular task in both directions compared to HC (p < 0.05). DBS significantly improved vestibular discrimination accuracy [81.40 (14.36)%] and threshold [4.12 (5.87), p < 0.05] in the rightward direction. There were no DBS effects on the slopes of vestibular psychometric curves. Visual heading perception was better than vestibular and it was comparable to HC. There was no significant effect of DBS on visual heading response accuracy or discrimination threshold (p > 0.05). Patient-specific DBS models revealed an association between change in vestibular heading perception and the modulation of the dorsal STN. In summary, DBS may have different effects on vestibular and visual heading perception in PD. These effects may manifest via dorsal STN putatively by its effects on the cerebellum.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Angela M Noecker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mikkel Petersen
- Department of Clinical Medicine-Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Palak Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| | - Sarah Ozinga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Mark F Walker
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA
| | - Camilla Kilbane
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.
- Department of Neurology, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH, 44110, USA.
- Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, USA.
| |
Collapse
|
2
|
Warren WH. Information Is Where You Find It: Perception as an Ecologically Well-Posed Problem. Iperception 2021; 12:20416695211000366. [PMID: 33815740 PMCID: PMC7995459 DOI: 10.1177/20416695211000366] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Texts on visual perception typically begin with the following premise: Vision is an ill-posed problem, and perception is underdetermined by the available information. If this were really the case, however, it is hard to see how vision could ever get off the ground. James Gibson's signal contribution was his hypothesis that for every perceivable property of the environment, however subtle, there must be a higher order variable of information, however complex, that specifies it-if only we are clever enough to find them. Such variables are informative about behaviorally relevant properties within the physical and ecological constraints of a species' niche. Sensory ecology is replete with instructive examples, including weakly electric fish, the narwal's tusk, and insect flight control. In particular, I elaborate the case of passing through gaps. Optic flow is sufficient to control locomotion around obstacles and through openings. The affordances of the environment, such as gap passability, are specified by action-scaled information. Logically ill-posed problems may thus, on closer inspection, be ecologically well-posed.
Collapse
|
3
|
Rogers B. Optic Flow: Perceiving and Acting in a 3-D World. Iperception 2021; 12:2041669520987257. [PMID: 33613957 PMCID: PMC7869175 DOI: 10.1177/2041669520987257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 11/15/2022] Open
Abstract
In 1979, James Gibson completed his third and final book "The Ecological Approach to Visual Perception". That book can be seen as the synthesis of the many radical ideas he proposed over the previous 30 years - the concept of information and its sufficiency, the necessary link between perception and action, the need to see perception in relation to an animal's particular ecological niche and the meanings (affordances) offered by the visual world. One of the fundamental concepts that lies beyond all of Gibson's thinking is that of optic flow: the constantly changing patterns of light that reach our eyes and the information it provides. My purpose in writing this paper has been to evaluate the legacy of Gibson's conceptual ideas and to consider how his ideas have influenced and changed the way we study perception.
Collapse
|
4
|
Beylergil SB, Petersen M, Gupta P, Elkasaby M, Kilbane C, Shaikh AG. Severity‐Dependent Effects of Parkinson's Disease on Perception of Visual and Vestibular Heading. Mov Disord 2020; 36:360-369. [DOI: 10.1002/mds.28352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mikkel Petersen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience Aarhus University Aarhus Denmark
| | - Palak Gupta
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
| | - Mohamed Elkasaby
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Camilla Kilbane
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| | - Aasef G. Shaikh
- Department of Biomedical Engineering Case Western Reserve University Cleveland Ohio USA
- National VA Parkinson Consortium Center, Neurology Service, Daroff‐Dell'Osso Ocular Motility and Vestibular Laboratory Louis Stokes Cleveland VA Medical Center Cleveland Ohio USA
- Department of Neurology Case Western Reserve University Cleveland Ohio USA
- Movement Disorders Center, Neurological Institute University Hospitals Cleveland Ohio USA
| |
Collapse
|
5
|
Agopyan H, Griffet J, Poirier T, Bredin J. Modification of knee flexion during walking with use of a real-time personalized avatar. Heliyon 2019; 5:e02797. [PMID: 31844726 PMCID: PMC6895732 DOI: 10.1016/j.heliyon.2019.e02797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 11/16/2022] Open
Abstract
Visual feedback is used in different research areas, including clinical science and neuroscience. In this study, we investigated the influence of the visualization of a real-time personalized avatar on gait parameters, focusing on knee flexion during the swing phase. We also studied the impact of the modification of avatar's knee amplitude on kinematic of the knee of healthy subjects. For this purpose, we used an immersive reality treadmill equipment and developed a 3D avatar, with instantly modifiable parameters for knee flexion and extension (acceleration or deceleration). Fourteen healthy young adults, equipped with motion capture markers, were asked to walk at a self-selected pace on the treadmill. A real-time 3D image of their lower limbs was modelized and projected on the screen ahead of them, as if in a walking motion from left to right. The subjects were instructed to continue walking. When we initiated an increase in the knee flexion of the avatar, we observed a similar increase in the subjects' knee flexion. No significant results were observed when the modification involved a decrease in knee flexion. The results and their significance are discussed using theories encompassing empathy, sympathy and sensory re-calibration. The prospect of using this type of modified avatar for stroke rehabilitation is discussed.
Collapse
Affiliation(s)
- H Agopyan
- Université côte d'azur, LAMHESS, Nice, France
| | - J Griffet
- Chirurgie Orthopédique Pédiatrique, Hôpital Couple Enfant, Centre Hospitalier Universitaire de Grenoble, BP 217, 38043 Grenoble cedex 9, France
| | | | - J Bredin
- Université côte d'azur, LAMHESS, Nice, France.,Centre de Santé Institut Rossetti-PEP06, Unité Clinique d'Analyse du Mouvement, 400, bld de la Madeleine, 06000 Nice, France
| |
Collapse
|
6
|
Beylergil SB, Ozinga S, Walker MF, McIntyre CC, Shaikh AG. Vestibular heading perception in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2019; 249:307-319. [PMID: 31325990 DOI: 10.1016/bs.pbr.2019.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Postural instability and falls are common causes of morbidity and mortality in the second most prevalent neurodegenerative condition, Parkinson's disease (PD). Poor understanding of balance dysfunction in PD has hampered the development of novel therapeutic measures for postural instability and balance dysfunction. We aimed to determine how the ability to perceive one's own linear motion in the absence of visual cues, i.e., vestibular heading, is affected in PD. We examined vestibular heading function using a two-alternative forced choice task performed on a six-degree-of-freedom motion platform. Sensitivity of the vestibular system to subtle variations in heading direction and systematic errors in accuracy of responses were assessed for each subject using a Gaussian cumulative distribution psychometric function. Compared to healthy subjects, PD presented with higher angular thresholds to detect vestibular heading direction. These results confirm the potential of our study to provide valuable insight to the vestibular system's role in spatial navigation deficits in PD.
Collapse
Affiliation(s)
- Sinem Balta Beylergil
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States
| | - Sarah Ozinga
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Mark F Walker
- National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States; Department of Neurology, Case Western Reserve University, Cleveland, OH, United States
| | - Cameron C McIntyre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Aasef G Shaikh
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; National VA Parkinson Consortium Center, Neurology Service, Daroff-Dell'Osso Ocular Motility and Vestibular Laboratory, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, United States; Department of Neurology, Case Western Reserve University, Cleveland, OH, United States; Movement Disorders Center, Neurological Institute, University Hospitals, Cleveland, OH, United States.
| |
Collapse
|
7
|
Dunn MJ, Rushton SK. Lateral visual occlusion does not change walking trajectories. J Vis 2018; 18:11. [PMID: 30208430 PMCID: PMC6141229 DOI: 10.1167/18.9.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Difficulties with walking are often reported following brain damage that causes a lateralized loss of awareness on one side. Whether lateralized loss of awareness has a direct causal impact on walking is unknown. A review of the literature on visually guided walking suggests several reasons why a lateralized loss of visual awareness might be expected to lead to difficulties walking. Here, we isolated and examined the effect of lateralized vision loss on walking behavior in real and virtual environments. Healthy young participants walked to a target placed within a real room, in a virtual corridor, or on a virtual ground plane. In the ground-plane condition, the scene either was empty or contained three obstacles. We reduced vision on one side by occluding one eye (Experiment 1 and 2) or removing one hemifield, defined relative to either the head or trunk (Experiment 2), through use of eye patching (Experiment 1) and a virtual-reality system (Experiment 2). Visual-field restrictions did not induce significant deviations in walking paths in any of the occlusion conditions or any of the environments. The results provide further insight into the visual information that guides walking in humans, and suggest that lateralized vision loss on its own is not the primary cause of walking difficulties.
Collapse
Affiliation(s)
- Matt J Dunn
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
8
|
Qiu C, Jung JH, Tuccar-Burak M, Spano L, Goldstein R, Peli E. Measuring Pedestrian Collision Detection With Peripheral Field Loss and the Impact of Peripheral Prisms. Transl Vis Sci Technol 2018; 7:1. [PMID: 30197833 PMCID: PMC6126965 DOI: 10.1167/tvst.7.5.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/26/2018] [Indexed: 11/24/2022] Open
Abstract
Purpose Peripheral field loss (PFL) due to retinitis pigmentosa, choroideremia, or glaucoma often results in a highly constricted residual central field, which makes it difficult for patients to avoid collision with approaching pedestrians. We developed a virtual environment to evaluate the ability of patients to detect pedestrians and judge potential collisions. We validated the system with both PFL patients and normally sighted subjects with simulated PFL. We also tested whether properly placed high-power prisms may improve pedestrian detection. Methods A virtual park-like open space was rendered using a driving simulator (configured for walking speeds), and pedestrians in testing scenarios appeared within and outside the residual central field. Nine normally sighted subjects and eight PFL patients performed the pedestrian detection and collision judgment tasks. The performance of the subjects with simulated PFL was further evaluated with field of view expanding prisms. Results The virtual system for testing pedestrian detection and collision judgment was validated. The performance of PFL patients and normally sighted subjects with simulated PFL were similar. The prisms for simulated PFL improved detection rates, reduced detection response times, and supported reasonable collision judgments in the prism-expanded field; detections and collision judgments in the residual central field were not influenced negatively by the prisms. Conclusions The scenarios in a virtual environment are suitable for evaluating PFL and the impact of field of view expanding devices. Translational Relevance This study validated an objective means to evaluate field expansion devices in reproducible near-real-life settings.
Collapse
Affiliation(s)
- Cheng Qiu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jae-Hyun Jung
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Merve Tuccar-Burak
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lauren Spano
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Robert Goldstein
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eli Peli
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
When flow is not enough: evidence from a lane changing task. PSYCHOLOGICAL RESEARCH 2018; 84:834-849. [PMID: 30088078 DOI: 10.1007/s00426-018-1070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
Abstract
Humans are able to estimate their heading on the basis of optic flow information and it has been argued that we use flow in this way to guide navigation. Consistent with this idea, several studies have reported good navigation performance in flow fields. However, one criticism of these studies is that they have generally focused on the task of walking or steering towards a target, offering an additional, salient directional cue. Hence, it remains a matter of debate as to whether humans are truly able to control steering in the presence of optic flow alone. In this study, we report a set of maneuvers carried out in flow fields in the absence of a physical target. To do this, we studied the everyday task of lane changing, a commonplace multiphase steering maneuver which can be conceptualized without the need for a target. What is more (and here is the crucial quirk), previous literature has found that in the absence of visual feedback, drivers show a systematic, asymmetric steering response, resulting in a systematic final heading error. If optic flow is sufficient for controlling navigation through our environment, we would expect this asymmetry to disappear whenever optic flow is provided. However, our results show that this asymmetry persisted, even in the presence of a flow field, implying that drivers are unable to use flow to guide normal steering responses in this task.
Collapse
|
10
|
Rushton SK, Chen R, Li L. Ability to identify scene-relative object movement is not limited by, or yoked to, ability to perceive heading. J Vis 2018; 18:11. [PMID: 30029224 DOI: 10.1167/18.6.11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
During locomotion humans can judge where they are heading relative to the scene and the movement of objects within the scene. Both judgments rely on identifying global components of optic flow. What is the relationship between the perception of heading, and the identification of object movement during self-movement? Do they rely on a shared mechanism? One way to address these questions is to compare performance on the two tasks. We designed stimuli that allowed direct comparison of the precision of heading and object movement judgments. Across a series of experiments, we found the precision was typically higher when judging scene-relative object movement than when judging heading. We also found that manipulations of the content of the visual scene can change the relative precision of the two judgments. These results demonstrate that the ability to judge scene-relative object movement during self-movement is not limited by, or yoked to, the ability to judge the direction of self-movement.
Collapse
Affiliation(s)
- Simon K Rushton
- School of Psychology, Cardiff University, Cardiff, Wales, UK
| | - Rongrong Chen
- Department of Psychology, The University of Hong Kong, Hong Kong SAR
| | - Li Li
- Department of Psychology, The University of Hong Kong, Hong Kong SAR.,Neural Science Program, NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai, PRC
| |
Collapse
|
11
|
Ludwig CJH, Alexander N, Howard KL, Jedrzejewska AA, Mundkur I, Redmill D. The influence of visual flow and perceptual load on locomotion speed. Atten Percept Psychophys 2018; 80:69-81. [PMID: 28929440 PMCID: PMC5735212 DOI: 10.3758/s13414-017-1417-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Visual flow is used to perceive and regulate movement speed during locomotion. We assessed the extent to which variation in flow from the ground plane, arising from static visual textures, influences locomotion speed under conditions of concurrent perceptual load. In two experiments, participants walked over a 12-m projected walkway that consisted of stripes that were oriented orthogonal to the walking direction. In the critical conditions, the frequency of the stripes increased or decreased. We observed small, but consistent effects on walking speed, so that participants were walking slower when the frequency increased compared to when the frequency decreased. This basic effect suggests that participants interpreted the change in visual flow in these conditions as at least partly due to a change in their own movement speed, and counteracted such a change by speeding up or slowing down. Critically, these effects were magnified under conditions of low perceptual load and a locus of attention near the ground plane. Our findings suggest that the contribution of vision in the control of ongoing locomotion is relatively fluid and dependent on ongoing perceptual (and perhaps more generally cognitive) task demands.
Collapse
Affiliation(s)
- Casimir J H Ludwig
- School of Experimental Psychology, University of Bristol, Bristol, UK.
- Bristol Vision Institute, Bristol, UK.
| | - Nicholas Alexander
- School of Experimental Psychology, University of Bristol, Bristol, UK
- School of Life and Health Sciences, Aston University, Aston, UK
| | - Kate L Howard
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | | | - Isha Mundkur
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - David Redmill
- School of Experimental Psychology, University of Bristol, Bristol, UK
- Bristol Vision Institute, Bristol, UK
| |
Collapse
|
12
|
Zhao H, Warren WH. On-line and model-based approaches to the visual control of action. Vision Res 2014; 110:190-202. [PMID: 25454700 DOI: 10.1016/j.visres.2014.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 10/08/2014] [Accepted: 10/09/2014] [Indexed: 10/24/2022]
Abstract
Two general approaches to the visual control of action have emerged in last few decades, known as the on-line and model-based approaches. The key difference between them is whether action is controlled by current visual information or on the basis of an internal world model. In this paper, we evaluate three hypotheses: strong on-line control, strong model-based control, and a hybrid solution that combines on-line control with weak off-line strategies. We review experimental research on the control of locomotion and manual actions, which indicates that (a) an internal world model is neither sufficient nor necessary to control action at normal levels of performance; (b) current visual information is necessary and sufficient to control action at normal levels; and (c) under certain conditions (e.g. occlusion) action is controlled by less accurate, simple strategies such as heuristics, visual-motor mappings, or spatial memory. We conclude that the strong model-based hypothesis is not sustainable. Action is normally controlled on-line when current information is available, consistent with the strong on-line control hypothesis. In exceptional circumstances, action is controlled by weak, context-specific, off-line strategies. This hybrid solution is comprehensive, parsimonious, and able to account for a variety of tasks under a range of visual conditions.
Collapse
Affiliation(s)
- Huaiyong Zhao
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, United States
| | - William H Warren
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, United States
| |
Collapse
|
13
|
Li L, Niehorster DC. Influence of optic flow on the control of heading and target egocentric direction during steering toward a goal. J Neurophysiol 2014; 112:766-77. [PMID: 25128559 DOI: 10.1152/jn.00697.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although previous studies have shown that people use both optic flow and target egocentric direction to walk or steer toward a goal, it remains in question how enriching the optic flow field affects the control of heading specified by optic flow and the control of target egocentric direction during goal-oriented locomotion. In the current study, we used a control-theoretic approach to separate the control response specific to these two cues in the visual control of steering toward a goal. The results showed that the addition of optic flow information (such as foreground motion and global flow) in the display improved the overall control precision, the amplitude, and the response delay of the control of heading. The amplitude and the response delay of the control of target egocentric direction were, however, not affected. The improvement in the control of heading with enriched optic flow displays was mirrored by an increase in the accuracy of heading perception. The findings provide direct support for the claim that people use the heading specified by optic flow as well as target egocentric direction to walk or steer toward a goal and suggest that the visual system does not internally weigh these two cues for goal-oriented locomotion control.
Collapse
Affiliation(s)
- Li Li
- Department of Psychology, The University of Hong Kong, Hong Kong, Special Administrative Region of the People's Republic of China
| | - Diederick C Niehorster
- Department of Psychology, The University of Hong Kong, Hong Kong, Special Administrative Region of the People's Republic of China
| |
Collapse
|
14
|
Saunders JA. Reliability and relative weighting of visual and nonvisual information for perceiving direction of self-motion during walking. J Vis 2014; 14:24. [PMID: 24648194 DOI: 10.1167/14.3.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Direction of self-motion during walking is indicated by multiple cues, including optic flow, nonvisual sensory cues, and motor prediction. I measured the reliability of perceived heading from visual and nonvisual cues during walking, and whether cues are weighted in an optimal manner. I used a heading alignment task to measure perceived heading during walking. Observers walked toward a target in a virtual environment with and without global optic flow. The target was simulated to be infinitely far away, so that it did not provide direct feedback about direction of self-motion. Variability in heading direction was low even without optic flow, with average RMS error of 2.4°. Global optic flow reduced variability to 1.9°-2.1°, depending on the structure of the environment. The small amount of variance reduction was consistent with optimal use of visual information. The relative contribution of visual and nonvisual information was also measured using cue conflict conditions. Optic flow specified a conflicting heading direction (±5°), and bias in walking direction was used to infer relative weighting. Visual feedback influenced heading direction by 16%-34% depending on scene structure, with more effect with dense motion parallax. The weighting of visual feedback was close to the predictions of an optimal integration model given the observed variability measures.
Collapse
Affiliation(s)
- Jeffrey A Saunders
- Department of Psychology, University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
15
|
Higuchi T. Visuomotor control of human adaptive locomotion: understanding the anticipatory nature. Front Psychol 2013; 4:277. [PMID: 23720647 PMCID: PMC3655271 DOI: 10.3389/fpsyg.2013.00277] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 04/29/2013] [Indexed: 12/02/2022] Open
Abstract
To maintain balance during locomotion, the central nervous system (CNS) accommodates changes in the constraints of spatial environment (e.g., existence of an obstacle or changes in the surface properties). Locomotion while modifying the basic movement patterns in response to such constraints is referred to as adaptive locomotion. The most powerful means of ensuring balance during adaptive locomotion is to visually perceive the environmental properties at a distance and modify the movement patterns in an anticipatory manner to avoid perturbation altogether. For this reason, visuomotor control of adaptive locomotion is characterized, at least in part, by its anticipatory nature. The purpose of the present article is to review the relevant studies which revealed the anticipatory nature of the visuomotor control of adaptive locomotion. The anticipatory locomotor adjustments for stationary and changeable environment, as well as the spatio-temporal patterns of gaze behavior to support the anticipatory locomotor adjustments are described. Such description will clearly show that anticipatory locomotor adjustments are initiated when an object of interest (e.g., a goal or obstacle) still exists in far space. This review also show that, as a prerequisite of anticipatory locomotor adjustments, environmental properties are accurately perceived from a distance in relation to individual’s action capabilities.
Collapse
Affiliation(s)
- Takahiro Higuchi
- Department of Health Promotion Science, Tokyo Metropolitan University Tokyo, Japan
| |
Collapse
|
16
|
Kadar EE, Rogers SD, Costall A. Gaze Patterns in a Steering-Into-Lane Task on a Straight Road: The Effect of Driving Speed, Lane, and Expertise. ECOLOGICAL PSYCHOLOGY 2011. [DOI: 10.1080/10407413.2011.566034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Iorizzo DB, Riley ME, Hayhoe M, Huxlin KR. Differential impact of partial cortical blindness on gaze strategies when sitting and walking - an immersive virtual reality study. Vision Res 2011; 51:1173-84. [PMID: 21414339 DOI: 10.1016/j.visres.2011.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/12/2011] [Accepted: 03/10/2011] [Indexed: 11/18/2022]
Abstract
The present experiments aimed to characterize the visual performance of subjects with long-standing, unilateral cortical blindness when walking in a naturalistic, virtual environment. Under static, seated testing conditions, cortically blind subjects are known to exhibit compensatory eye movement strategies. However, they still complain of significant impairment in visual detection during navigation. To assess whether this is due to a change in compensatory eye movement strategy between sitting and walking, we measured eye and head movements in subjects asked to detect peripherally-presented, moving basketballs. When seated, cortically blind subjects detected ∼80% of balls, while controls detected almost all balls. Seated blind subjects did not make larger head movements than controls, but they consistently biased their fixation distribution towards their blind hemifield. When walking, head movements were similar in the two groups, but the fixation bias decreased to the point that fixation distribution in cortically blind subjects became similar to that in controls - with one major exception: at the time of basketball appearance, walking controls looked primarily at the far ground, in upper quadrants of the virtual field of view; cortically blind subjects looked significantly more at the near ground, in lower quadrants of the virtual field. Cortically blind subjects detected only 58% of the balls when walking while controls detected ∼90%. Thus, the adaptive gaze strategies adopted by cortically blind individuals as a compensation for their visual loss are strongest and most effective when seated and stationary. Walking significantly alters these gaze strategies in a way that seems to favor walking performance, but impairs peripheral target detection. It is possible that this impairment underlies the experienced difficulty of those with cortical blindness when navigating in real life.
Collapse
Affiliation(s)
- Dana B Iorizzo
- Flaum Eye Institute, University of Rochester, 601 Elmwood Ave., Box 314, Rochester, NY 14642, USA.
| | | | | | | |
Collapse
|
18
|
Bruggeman H, Warren WH. The direction of walking--but not throwing or kicking--is adapted by optic flow. Psychol Sci 2010; 21:1006-13. [PMID: 20511390 DOI: 10.1177/0956797610372635] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Optic flow is known to adapt the direction of walking, but the locus of adaptation remains unknown. The effect could be due to realignment of anatomical eye, head, trunk, and leg coordinate frames or to recalibration of a functional mapping from the visual direction of the target to the direction of locomotion. We tested whether adaptation of walking to a target, with optic flow displaced by 10 degrees , transfers to facing, throwing, and kicking a ball to the target. A negative aftereffect for initial walking direction failed to transfer to head orientation or throwing or kicking direction. Thus, participants effectively threw or kicked the ball to the target, and then walked in another direction to retrieve it. These findings are consistent with recalibration of a task-specific visuo-locomotor mapping, revealing a functional level of organization in perception and action.
Collapse
Affiliation(s)
- Hugo Bruggeman
- Department of Cognitive and Linguistic Sciences, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
19
|
Cronin-Golomb A. Parkinson's disease as a disconnection syndrome. Neuropsychol Rev 2010; 20:191-208. [PMID: 20383586 DOI: 10.1007/s11065-010-9128-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/18/2010] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder that is usually considered in terms of midbrain and basal ganglia dysfunction. Regarding PD instead as a disconnection syndrome may prove beneficial to understanding aspects of cognition, perception, and other neuropsychological domains in the disease. PD is usually of unilateral onset, providing evidence of intrahemispheric dissociations and an imbalance in the usual relative strengths of the right and left hemispheres. Hence, in order to appreciate the neuropsychology of PD, it is important to apply to this disease our understanding of hemispheric lateralization effects and within-hemisphere circuitry from brainstem to higher-order association cortex. The focus of this review is on the relevance of PD-related disconnections among subcortical and cortical structures to cognition, perception, emotion, and associated brainstem-based domains such as sleep and mood disturbance. Besides providing information on disease characteristics, regarding PD as a disconnection syndrome allows us to more completely understand normal brain-behavior relations in general.
Collapse
Affiliation(s)
- Alice Cronin-Golomb
- Department of Psychology, Boston University, 648 Beacon Street, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Davidsdottir S, Wagenaar R, Young D, Cronin-Golomb A. Impact of optic flow perception and egocentric coordinates on veering in Parkinson's disease. Brain 2008; 131:2882-93. [PMID: 18957454 DOI: 10.1093/brain/awn237] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spatial navigation is a complex process requiring integration of visuoperceptual information. The present study examined how visuospatial function relates to navigational veering in Parkinson's disease, a movement disorder in which visuospatial cognition is affected by the degeneration of the basal ganglia and resulting dysfunction of the parietal lobes. We hypothesized that patients whose initial motor symptoms start on the left versus right side of the body (LPD, predominant right-hemisphere dysfunction; RPD, predominant left-hemisphere dysfunction) would display distinct patterns of navigational veering associated with the groups' dissimilar visuospatial profiles. Of particular interest was to examine the association of navigational veering (lateral deviation along the medio-lateral axis) with perception of egocentric coordinates and of radial optic flow patterns, both of which are mediated by the parietal lobes. Thirty-one non-demented Parkinson's disease patients (16 LPD, 15 RPD) and 18 healthy control (HC) adults received visuospatial tests, of whom 23 Parkinson's disease patients and 17 HC also underwent veering assessment. The participants were examined on three visual-feedback navigation conditions: none (eyes closed), natural, and optic flow supplied by a virtual-reality headset. All groups veered to the left when walking with eyes closed, women with Parkinson's disease more so than the other participants. On the navigation assessments with visual feedback, only LPD patients deviated right of centre. On tests of visuospatial function, the perceived midline was shifted rightward in LPD (men and women), increasingly so with the addition of visual input. In contrast, men with RPD showed leftward deviation. RPD patients and HC perceived optic flow in the left hemifield as faster than in the right hemifield, with a trend for the opposite pattern for LPD. Navigational veering in LPD was associated with deviation of the perceived egocentric midline and not with perception of optic flow speed asymmetries, and in RPD it was also associated with visual dependence, though in fact LPD subjects were more visually dependent than those with RPD. Our results indicate that (i) parietal-mediated perception of visual space is affected in Parkinson's disease, with both side of motor symptom onset and gender affecting spatial performance, and (ii) visual input affects veering.
Collapse
|
21
|
Sarre G, Berard J, Fung J, Lamontagne A. Steering behaviour can be modulated by different optic flows during walking. Neurosci Lett 2008; 436:96-101. [PMID: 18400392 DOI: 10.1016/j.neulet.2008.02.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 12/21/2007] [Accepted: 02/19/2008] [Indexed: 11/28/2022]
Abstract
Optic flow is a typical pattern of visual motion that can be used to control locomotion. While the ability to discriminate translational or rotational optic flows have been extensively studied, how these flows control steering during locomotion is not known. The goal of this study was to compare the steering behaviour of subjects subjected to rotational, translational, or combined (rotational added to translational) optic flows with a focus of expansion (FOE) located to the right, left, or straight ahead. Ten healthy young subjects were instructed to walk straight in a virtual room viewed through a helmet mounted display while the location of the FOE was randomly offset. Horizontal trajectory of the body's centre of mass (CoM), as well as rotations of the head, trunk and foot were recorded in coordinates of both the physical and virtual worlds. Results show that subjects experienced a mediolateral shift in CoM opposite to the FOE location, with larger corrections being observed at more eccentric FOE locations. Head and body segment reorientations were only observed for optic flows containing a rotational component. CoM trajectory corrections in the physical world were also of small magnitude, leading to deviation errors in the virtual world. Altogether, these results suggest a profound influence of vision, especially due to the pattern of visual motion, on steering behaviours during locomotion.
Collapse
Affiliation(s)
- Guillaume Sarre
- Jewish Rehabilitation Hospital Research Site of CRIR, School of Physical & Occupational Therapy, McGill University, Montréal, Quebec, Canada
| | | | | | | |
Collapse
|
22
|
Quek F, Ehrich R, Lockhart T. As Go the Feet … : On the Estimation of Attentional Focus from Stance. ACM TRANSACTIONS ON COMPUTER-HUMAN INTERACTION : A PUBLICATION OF THE ASSOCIATION FOR COMPUTING MACHINERY 2008; 2008:97-104. [PMID: 20830212 PMCID: PMC2935654 DOI: 10.1145/1452392.1452412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The estimation of the direction of visual attention is critical to a large number of interactive systems. This paper investigates the cross-modal relation of the position of one's feet (or standing stance) to the focus of gaze. The intuition is that while one CAN have a range of attentional foci from a particular stance, one may be MORE LIKELY to look in specific directions given an approach vector and stance. We posit that the cross-modal relationship is constrained by biomechanics and personal style. We define a stance vector that models the approach direction before stopping and the pose of a subject's feet. We present a study where the subjects' feet and approach vector are tracked. The subjects read aloud contents of note cards in 4 locations. The order of `visits' to the cards were randomized. Ten subjects read 40 lines of text each, yielding 400 stance vectors and gaze directions. We divided our data into 4 sets of 300 training and 100 test vectors and trained a neural net to estimate the gaze direction given the stance vector. Our results show that 31% our gaze orientation estimates were within 5°, 51% of our estimates were within 10°, and 60% were within 15°. Given the ability to track foot position, the procedure is minimally invasive.
Collapse
Affiliation(s)
- Francis Quek
- Center for Human-Computer Interaction Virginia Tech
| | | | | |
Collapse
|
23
|
Bruggeman H, Zosh W, Warren WH. Optic flow drives human visuo-locomotor adaptation. Curr Biol 2007; 17:2035-40. [PMID: 18023350 DOI: 10.1016/j.cub.2007.10.059] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/12/2007] [Accepted: 10/15/2007] [Indexed: 11/30/2022]
Abstract
Two strategies can guide walking to a stationary goal: (1) the optic-flow strategy, in which one aligns the direction of locomotion or "heading" specified by optic flow with the visual goal; and (2) the egocentric-direction strategy, in which one aligns the locomotor axis with the perceived egocentric direction of the goal and in which error results in optical target drift. Optic flow appears to dominate steering control in richly structured visual environments, whereas the egocentric- direction strategy prevails in visually sparse environments. Here we determine whether optic flow also drives visuo-locomotor adaptation in visually structured environments. Participants adapted to walking with the virtual-heading direction displaced 10 degrees to the right of the actual walking direction and were then tested with a normally aligned heading. Two environments, one visually structured and one visually sparse, were crossed in adaptation and test phases. Adaptation of the walking path was more rapid and complete in the structured environment; the negative aftereffect on path deviation was twice that in the sparse environment, indicating that optic flow contributes over and above target drift alone. Optic flow thus plays a central role in both online control of walking and adaptation of the visuo-locomotor mapping.
Collapse
Affiliation(s)
- Hugo Bruggeman
- Department of Cognitive and Linguistic Sciences, Brown University, Providence, Rhode Island 02912, USA.
| | | | | |
Collapse
|
24
|
Fajen BR, Warren WH. Behavioral dynamics of intercepting a moving target. Exp Brain Res 2007; 180:303-19. [PMID: 17273872 DOI: 10.1007/s00221-007-0859-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 01/05/2007] [Indexed: 11/26/2022]
Abstract
From matters of survival like chasing prey, to games like football, the problem of intercepting a target that moves in the horizontal plane is ubiquitous in human and animal locomotion. Recent data show that walking humans turn onto a straight path that leads a moving target by a constant angle, with some transients in the target-heading angle. We test four control strategies against the human data: (1) pursuit, or nulling the target-heading angle beta, (2) computing the required interception angle beta (3) constant target-heading angle, or nulling change in the target-heading angle beta and (4) constant bearing, or nulling change in the bearing direction of the target psi which is equivalent to nulling change in the target-heading angle while factoring out the turning rate (beta - phi) We show that human interception behavior is best accounted for by the constant bearing model, and that it is robust to noise in its input and parameters. The models are also evaluated for their performance with stationary targets, and implications for the informational basis and neural substrate of steering control are considered. The results extend a dynamical systems model of human locomotor behavior from static to changing environments.
Collapse
Affiliation(s)
- Brett R Fajen
- Department of Cognitive Science, Rensselaer Polytechnic Institute, Carnegie Building 308, 110 8th Street, Troy, NY 12180-3590, USA.
| | | |
Collapse
|
25
|
Abstract
How might one account for the organization in behavior without attributing it to an internal control structure? The present article develops a theoretical framework called behavioral dynamics that integrates an information-based approach to perception with a dynamical systems approach to action. For a given task, the agent and its environment are treated as a pair of dynamical systems that are coupled mechanically and informationally. Their interactions give rise to the behavioral dynamics, a vector field with attractors that correspond to stable task solutions, repellers that correspond to avoided states, and bifurcations that correspond to behavioral transitions. The framework is used to develop theories of several tasks in which a human agent interacts with the physical environment, including bouncing a ball on a racquet, balancing an object, braking a vehicle, and guiding locomotion. Stable, adaptive behavior emerges from the dynamics of the interaction between a structured environment and an agent with simple control laws, under physical and informational constraints.
Collapse
Affiliation(s)
- William H Warren
- Department of Cognitive and Linguistic Sciences, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
26
|
Huitema RB, Brouwer WH, Hof AL, Dekker R, Mulder T, Postema K. Walking trajectory in neglect patients. Gait Posture 2006; 23:200-5. [PMID: 16399516 DOI: 10.1016/j.gaitpost.2005.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 12/04/2004] [Accepted: 02/12/2005] [Indexed: 02/02/2023]
Abstract
A lateral deviation of the walking trajectory is often observed in stroke patients with unilateral spatial neglect. However, existing research appears to be contradictory regarding the direction of this deviation. The aim of the present study was to gain more insight into the walking trajectory of neglect patients. Twelve right hemisphere stroke patients (six neglect, six no neglect), eight left hemisphere stroke patients (none neglect) and 10 healthy control subjects were instructed to walk towards a target while a two-dimensional ultrasonic positioning system recorded their walking trajectory. Patients' recovery of walking ability was assessed and they were tested for the presence of neglect. Neglect patients showed a larger lateral deviation in their walking trajectory compared to stroke patients without neglect or controls. Neglect patients with good walking ability showed a deviation to the contralesional side. Neglect patients with limited walking ability showed a deviation to the ipsilesional side. Within the neglect group we found no relation between the severity of neglect and lateral deviation. Differences in walking ability may account for the contradictory results between studies regarding the lateral deviation in neglect patients' walking trajectory. We suggest that when a neglect patient's walking ability is limited, walking towards a target becomes a dual task: heading control and walking. A limited walking ability will cause a higher task priority of walking compared to heading control. This shift in task priority may be causing the change in walking trajectory deviation.
Collapse
Affiliation(s)
- Rients B Huitema
- Centre for Rehabilitation, University Hospital Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
27
|
Turano KA, Yu D, Hao L, Hicks JC. Optic-flow and egocentric-direction strategies in walking: Central vs peripheral visual field. Vision Res 2005; 45:3117-32. [PMID: 16084556 DOI: 10.1016/j.visres.2005.06.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 06/09/2005] [Accepted: 06/14/2005] [Indexed: 10/25/2022]
Abstract
The impact of a central or peripheral visual field loss on the vision strategy used to guide walking was determined by measuring walking paths of visually impaired participants. An immersive virtual environment was used to dissociate the expected paths of the optic-flow and egocentric-direction strategies by offsetting the walker's point of view from the actual direction of walking. Environments consisted of a goal within a forest, the goal alone, or the forest alone following a brief presentation of the goal. The first two environments allowed an evaluation of the visual information used in a goal-directed task whereas the third environment investigated the information used in a memory-guided task. Participants had either a central (CFL) or peripheral visual field loss (PFL) or were fully sighted (FS). Results showed that, for the goal-directed task, the CFL group was less influenced by optic flow than was an age-matched FS group. Optic flow decreased heading error by only 1.3 degrees (16%) in the CFL group compared to 3.6 degrees (42%) in the FS group. The PFL group showed an optic-flow influence (2.4 degrees or 26%) comparable to an older, age-matched FS group (2.9 degrees or 31%). For the memory-guided task, all but the PFL group had heading errors comparable to those obtained in the goal-alone scene, demonstrating the ability to use an egocentric-direction strategy with a stored representation of either the goal's position or an offset relative to a landmark instead of a visible goal. The paths of the PFL group veered significantly from the predicted paths of both the optic-flow and egocentric-direction strategies. The findings of this study suggest that central vision is important for using optic flow to guide walking, whereas peripheral vision is important for establishing and/or updating an accurate representation of spatial structure for navigation.
Collapse
Affiliation(s)
- Kathleen A Turano
- The Johns Hopkins University School of Medicine, Wilmer Eye Institute, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
28
|
Huitema RB, Brouwer WH, Mulder T, Dekker R, Hof AL, Postema K. Effect of ageing on the ability to adapt to a visual distortion during walking. Gait Posture 2005; 21:440-6. [PMID: 15886134 DOI: 10.1016/j.gaitpost.2004.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Accepted: 05/28/2004] [Indexed: 02/02/2023]
Abstract
Degradation of major sensory systems such as proprioception, the vestibular system and vision may be a factor that contributes to the decline in walking stability in older people. In the present study this was examined by introducing a visual distortion by means of prism glasses shifting subject's view 10 degrees to the right while subjects walked towards a target (exposure condition). Shifting the view while walking towards a target will cause subjects to alter their heading in such a way that their walking trajectory describes a curvilinear path. It was expected that older people, when compared to young people, would have greater difficulty adjusting their heading and would show a greater decrease in heading stability, quantified by means of the standard deviation of the lateral position (SDLP). This was indeed the case. When performance in a pre- and post-exposure condition, in which subjects walked without prism glasses, were compared to each other, older people (O group) showed a greater decrease in heading stability than young people (Y group) and middle aged people (M group). Furthermore, it appeared that during the exposure condition adaptation effects were present in the Y and M group, which were absent in the O group. It is discussed that this adaptation is a form of realignment of the proprioceptive and visual system. The absence of realignment in the O group is argued to be caused by degradation of the proprioceptive system, which results in a lowering of the proprioceptive bias of vision.
Collapse
Affiliation(s)
- Rients B Huitema
- Centre for Rehabilitation, University Hospital Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
How do people walk to a moving target, and what visual information do they use to do so? Under a pursuit strategy, one would head toward the target's current position, whereas under an interception strategy, one would lead the target, ideally by maintaining a constant target-heading angle (or constant bearing angle). Either strategy may be guided by the egocentric direction of the target, local optic flow from the target, or global optic flow from the background. In four experiments, participants walked through a virtual environment to reach a target moving at a constant velocity. Regardless of the initial conditions, they walked ahead of the target for most of a trial at a fairly constant speed, consistent with an interception strategy (experiment 1). This behavior can be explained by trying to maintain a constant target-heading angle while trying to walk a straight path, with transient steering dynamics. In contrast to previous results for stationary targets, manipulation of the local optic flow from the target (experiment 2) and the global optic flow of the background (experiments 3 and 4) failed to influence interception behavior. Relative motion between the target and the background did affect the path slightly, presumably owing to its effect on perceived target motion. We conclude that humans use an interception strategy based on the egocentric direction of a moving target.
Collapse
Affiliation(s)
- Brett R Fajen
- Department of Cognitive Science, Carnegie Building 305, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180-3590, USA.
| | | |
Collapse
|
30
|
Morton SM, Bastian AJ. Prism adaptation during walking generalizes to reaching and requires the cerebellum. J Neurophysiol 2004; 92:2497-509. [PMID: 15190088 DOI: 10.1152/jn.00129.2004] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adaptation of arm movements to laterally displacing prism glasses is usually highly specific to body part and movement type and is known to require the cerebellum. Here, we show that prism adaptation of walking trajectory generalizes to reaching (a different behavior involving a different body part) and that this adaptation requires the cerebellum. In experiment 1, healthy control subjects adapted to prisms during either reaching or walking and were tested for generalization to the other movement type. We recorded lateral deviations in finger endpoint position and walking direction to measure negative aftereffects and generalization. Results showed that generalization of prism adaptation is asymmetric: walking generalizes extensively to reaching, but reaching does not generalize to walking. In experiment 2, we compared the performance of cerebellar subjects versus healthy controls during the prism walking adaptation. We measured rates of adaptation, aftereffects, and generalization. Cerebellar subjects had reduced adaptation magnitudes, slowed adaptation rates, decreased negative aftereffects, and poor generalization. Based on these experiments, we propose that prism adaptation during whole body movements through space invokes a more general system for visuomotor remapping, involving recalibration of higher-order, effector-independent brain regions. In contrast, prism adaptation during isolated movements of the limbs is probably recalibrated by effector-specific mechanisms. The cerebellum is an essential component in the network for both types of prism adaptation.
Collapse
Affiliation(s)
- Susanne M Morton
- Kennedy Krieger Institute Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
31
|
Abstract
In principle, information for 3-D motion perception is provided by the differences in position and motion between left- and right-eye images of the world. It is known that observers can precisely judge between different 3-D motion trajectories, but the accuracy of binocular 3-D motion perception has not been studied. The authors measured the accuracy of 3-D motion perception. In 4 different tasks, observers were inaccurate, overestimating trajectory angle, despite consistently choosing similar angles (high precision). Errors did not vary consistently with target distance, as would be expected had inaccuracy been due to misestimates of viewing distance. Observers appeared to rely strongly on the lateral position of the target, almost to the exclusion of the use of depth information. For the present tasks, these data suggest that neither an accurate estimate of 3-D motion direction nor one of passing distance can be obtained using only binocular cues to motion in depth. ((c) 2003 APA, all rights reserved)
Collapse
Affiliation(s)
- Julie M Harris
- U Newcastle upon Tyne, School of Biology (Psychology), Newcastle, United Kingdom.
| | | |
Collapse
|
32
|
|
33
|
Abstract
How do people control locomotion while their eyes are simultaneously rotating? A previous study found that during simulated rotation, they can perceive a straight path of self-motion from the retinal flow pattern, despite conflicting extraretinal information, on the basis of dense motion parallax and reference objects. Here we report that the same information is sufficient for active control ofjoystick steering. Participants steered toward a target in displays that simulated a pursuit eye movement. Steering was highly inaccurate with a textured ground plane (motion parallax alone), but quite accurate when an array of posts was added (motion parallax plus reference objects). This result is consistent with the theory that instantaneous heading is determined from motion parallax, and the path of self-motion is determined by updating heading relative to environmental objects. Retinal flow is thus sufficient for both perceiving self-motion and controlling self-motion with a joystick; extraretinal and positional information can also contribute, but are not necessary.
Collapse
Affiliation(s)
- Li Li
- Department of Cognitive and Linguistic Sciences, Brown University, Providence, RI 02912, USA.
| | | |
Collapse
|
34
|
Harris JM, Bonas W. Optic flow and scene structure do not always contribute to the control of human walking. Vision Res 2002; 42:1619-26. [PMID: 12079790 DOI: 10.1016/s0042-6989(02)00066-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using displacing prisms to dissociate the influence of optic flow and egocentric direction, previous research (Current Biology 8 (1998) 1191) showed that people primarily use egocentric direction to control their locomotion on foot, rather than optic flow. When wearing displacing prisms, participants followed the curved path predicted by the use of simple egocentric direction, rather than a straight path, as predicted by the use of optic flow. It has previously been suggested that, in rich visual environments, other visual information including optic flow and static scene structure may influence locomotion in addition to direction. Here we report a study where neither scene structure nor optic flow have any influence on the control of walking. Participants wearing displacing prisms walked along a well-lit corridor (containing rich scene structure and flow) and along the same corridor in darkness (no scene structure or flow). Heading errors were not significantly different between the dark and light conditions. Thus, even under conditions of rich scene structure and high flow when walking in a well-lit corridor, participants follow the same curved paths as when these cues are not available. These results demonstrate that there are conditions under which visual direction is the only useful source of visual information for the control of locomotion.
Collapse
Affiliation(s)
- Julie M Harris
- Department of Psychology, University of Newcastle Upon Tyne, Medical School, Framlington Place, NE2 4HH, Newcastle, UK.
| | | |
Collapse
|