1
|
Viktorova VV, Obydennov DL, Kovaleva KS, Yarovaya OI, Khasanov SA, Bormotov NI, Esaulkova IL, Serova OA, Zarubaev VV, Shishkina LN, Salakhutdinov NF, Sosnovskikh VY. The Reaction of Fenchone and Camphor Hydrazones with 5-Acyl-4-Pyrones as a Method for the Synthesis of New Polycarbonyl Conjugates: Tautomeric Equilibrium and Antiviral Activity. Chem Biodivers 2024:e202401461. [PMID: 39233581 DOI: 10.1002/cbdv.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Selective synthesis of polycarbonyl conjugates of (+)-fenchone and (+)-camphor was carried out (44-91 % yields) via the ring-opening transformation of 5-acyl-4-pyrones with hydrazones of the corresponding monoterpenoids. A strong influence of the hydrazone fragment on the observed tautomeric equilibrium of the tricarbonyl system was shown. Although the major tautomer of the conjugates is the acyclic polycarbonyl form, the camphor-based conjugates undergo new type of ring-chain tautomerism, diketoenaminone-dihydropyridone equilibrium, and predominantly exist in the cyclic dihydropyridone form in DMSO-d6. The polyketones can undergo intramolecular cyclization to form N-amino-4-pyridones in high selectivity. In vitro screening for activity against the influenza virus H1 N1 and vaccinia virus was estimated for the obtained conjugates. The (+)-fenchone derivatives demonstrated the higher activity against vaccinia virus than camphor derivatives. The conjugate, which was prepared from diethyl isochelidonate and hydrazone (+)-fenchone, showed the highest activity against vaccinia virus (SI=17).
Collapse
Affiliation(s)
- Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| | - Kseniya S Kovaleva
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | | | - Nikolay I Bormotov
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Iana L Esaulkova
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Olga A Serova
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Vladimir V Zarubaev
- St. Petersburg Pasteur Institute, 197001, St. Petersburg, Russian Federation
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology "VECTOR", Novosibirsk Region, 6300559, Koltsovo, Russian Federation
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, 630090, Novosibirsk, Russian Federation
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620000, Ekaterinburg, Russian Federation
| |
Collapse
|
2
|
Sokolova AS, Baev DS, Mordvinova ED, Yarovaya OI, Volkova NV, Shcherbakov DN, Okhina AA, Rogachev AD, Shnaider TA, Chvileva AS, Nikitina TV, Tolstikova TG, Salakhutdinov NF. (+)-fenchol and (-)-isopinocampheol derivatives targeting the entry process of filoviruses. Eur J Med Chem 2024; 275:116596. [PMID: 38889610 DOI: 10.1016/j.ejmech.2024.116596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
The increasing frequency of filovirus outbreaks in African countries has led to a pressing need for the development of effective antifilovirus agents. In continuation of our previous research on the antifilovirus activity of monoterpenoid derivatives, we synthesized a series of (+)-fenchol and (-)-isopinocampheol derivatives by varying the type of heterocycle and linker length. Derivatives with an N-alkylpiperazine cycle proved to be the most potent antiviral compounds, with half-maximal inhibitory concentration (IC50) 1.4-20 μМ against Lenti-EboV-GP infection and 11.3-47 μМ against Lenti-MarV-GP infection. Mechanism-of-action experiments revealed that the compounds may exert their action by binding to surface glycoproteins (GPs). It was demonstrated that the binding of the synthesized compounds to the Marburg virus GP is less efficient as compared to the Ebola virus GP. Furthermore, it was shown that the compounds possess lysosomotropic properties. Thus, the antiviral activity may be due to dual effects. This study offers new antiviral agents that are worthy of further exploration.
Collapse
Affiliation(s)
- Anastasiya S Sokolova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation.
| | - Dmitriy S Baev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation; SRF SKIF, Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Ekaterina D Mordvinova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Olga I Yarovaya
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Natalia V Volkova
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Dmitriy N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR (Rospotrebnadzor), Koltsovo, Novosibirsk Oblast, 630559, Russian Federation
| | - Alina A Okhina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Artem D Rogachev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Tatiana A Shnaider
- Institute of Cytology and Genetics (ICG), SB RAS, Novosibirsk, 630090, Russian Federation
| | | | - Tatiana V Nikitina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634050, Russian Federation
| | - Tatyana G Tolstikova
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, 630090, Russian Federation
| |
Collapse
|
3
|
Hu X, Yan Y, Liu W, Liu J, Fan T, Deng H, Cai Y. Advances and perspectives on pharmacological activities and mechanisms of the monoterpene borneol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155848. [PMID: 38964157 DOI: 10.1016/j.phymed.2024.155848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Borneol, a highly lipid-soluble bicyclic terpene mainly extracted from plants, is representative of monoterpenoids. Modern medicine has established that borneol exhibits a range of pharmacological activities and used in the treatment of many diseases, particularly Cardio-cerebrovascular diseases (CVDs). The crucial role in enhancing drug delivery and improving bioavailability has attracted much attention. In addition, borneol is also widely utilized in food, daily chemicals, fragrances, and flavors industries. PURPOSE This review systematically summarized the sources, pharmacological activities and mechanisms, clinical trial, pharmacokinetics, toxicity, and application of borneol. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. This review will provide a valuable resource for those pursuing researches on borneol inspiring the pharmacological applications in the medicine, food and daily chemical products, and developing of new drugs containing borneol or its derivatives. METHODS This review searched the keywords ("borneol" or "bornyl esters") and ("pharmacology" or "Traditional Chinese medicine" or "Cardio-cerebrovascular diseases" or "blood-brain barrier" or "ischemic stroke" or "nanomaterials" or "neurodegenerative diseases" or "diabetes" or "toxicity") in Web of Science, PubMed, Google Scholar and China National Knowledge Infrastructure (CNKI) from January 1990 to May 2024. The search was limited to articles published in English and Chinese. RESULTS Borneol exhibits extensive pharmacological activities including anti-inflammatory effects, analgesia, antioxidation, and has the property of crossing biological barriers and treating CVDs. The intrinsic molecular mechanisms are involved in multiple components, such as regulation of various key factors (including Tumor necrosis factor-α, Nuclear factor kappa-B, Interleukin-1β, Malondialdehyde), inhibiting transporter protein function, regulating biochemical levels, and altering physical structural changes. In addition, this review describes the pharmacological effects of borneol ester and the combination of borneol with nanomaterial. CONCLUSION The pharmacological properties and applications of borneol are promising, including anti-inflammatory, analgesic, antimicrobial, and antioxidant properties, as well as enhancing drug delivery and treating CVDs. However, its clinical application is hindered by the limited research on safety, efficacy, and pharmacokinetics. Therefore, this review systemically summarized the advances on pharmacological activities and mechanisms of the borneol. Standardized clinical trials and exploration of synergistic effects with other drugs were also are outlined.
Collapse
Affiliation(s)
- Xiaoxiang Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Yi Yan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Wenjing Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Jie Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China
| | - Taipin Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, UK
| | - Huaxiang Deng
- College of Food Science and Engineering, Jilin University, Changchun, Jilin, 130062, PR China.
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Yarovaya OI, Filimonov AS, Baev DS, Borisevich SS, Zaykovskaya AV, Chirkova VY, Marenina MK, Meshkova YV, Belenkaya SV, Shcherbakov DN, Gureev MA, Luzina OA, Pyankov OV, Salakhutdinov NF, Khvostov MV. The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses. Viruses 2024; 16:215. [PMID: 38399993 PMCID: PMC10893357 DOI: 10.3390/v16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.
Collapse
Affiliation(s)
- Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Dmitriy S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
| | - Sophia S. Borisevich
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Centre, 450078 Ufa, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Varvara Yu. Chirkova
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Mariya K. Marenina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Yulia V. Meshkova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Svetlana V. Belenkaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Dmitriy N. Shcherbakov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Maxim A. Gureev
- Laboratory of Bio- and Cheminformatics, St. Petersburg School of Physics, Mathematics and Computer Science, HSE University, 194100 St. Peterburg, Russia;
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Mikhail V. Khvostov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| |
Collapse
|
5
|
Borisevich SS, Zarubaev VV, Shcherbakov DN, Yarovaya OI, Salakhutdinov NF. Molecular Modeling of Viral Type I Fusion Proteins: Inhibitors of Influenza Virus Hemagglutinin and the Spike Protein of Coronavirus. Viruses 2023; 15:902. [PMID: 37112882 PMCID: PMC10142020 DOI: 10.3390/v15040902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
The fusion of viral and cell membranes is one of the basic processes in the life cycles of viruses. A number of enveloped viruses confer fusion of the viral envelope and the cell membrane using surface viral fusion proteins. Their conformational rearrangements lead to the unification of lipid bilayers of cell membranes and viral envelopes and the formation of fusion pores through which the viral genome enters the cytoplasm of the cell. A deep understanding of all the stages of conformational transitions preceding the fusion of viral and cell membranes is necessary for the development of specific inhibitors of viral reproduction. This review systematizes knowledge about the results of molecular modeling aimed at finding and explaining the mechanisms of antiviral activity of entry inhibitors. The first section of this review describes types of viral fusion proteins and is followed by a comparison of the structural features of class I fusion proteins, namely influenza virus hemagglutinin and the S-protein of the human coronavirus.
Collapse
Affiliation(s)
- Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Vladimir V. Zarubaev
- Laboratory of Experimental Virology, Saint-Petersburg Pasteur Institute, 197101 Saint Petersburg, Russia;
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia;
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
6
|
Shchegravina ES, Usova SD, Baev DS, Mozhaitsev ES, Shcherbakov DN, Belenkaya SV, Volosnikova EA, Chirkova VY, Sharlaeva EA, Svirshchevskaya EV, Fonareva IP, Sitdikova AR, Salakhutdinov NF, Yarovaya OI, Fedorov AY. Synthesis of conjugates of (a R,7 S)-colchicine with monoterpenoids and investigation of their biological activity. Russ Chem Bull 2023; 72:248-262. [PMID: 36817557 PMCID: PMC9926439 DOI: 10.1007/s11172-023-3730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/25/2022] [Indexed: 02/16/2023]
Abstract
Conjugates of the natural alkaloid (aR,7S)-colchicine with bicyclic monoterpenoids and their derivatives were synthesized for the first time. Molecular docking of the synthesized agents in the active site of the main viral protease of the SARS-CoV-2 virus was carried out. The cytotoxic properties of the agents against different cell lines and the ability to inhibit the main viral protease 3CLPro were studied.
Collapse
Affiliation(s)
- E. S. Shchegravina
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - S. D. Usova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - D. S. Baev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - E. S. Mozhaitsev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - D. N. Shcherbakov
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - S. V. Belenkaya
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
- Novosibirsk State University, 1 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - E. A. Volosnikova
- State Scientific Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russian Federation
| | - V. Yu. Chirkova
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. A. Sharlaeva
- Altai State University, 61 Leninsky prosp., 656049 Barnaul, Russian Federation
| | - E. V. Svirshchevskaya
- Department of Immunology, M. M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 ul. Miklukho-Maklaya, 117997 Moscow, Russian Federation
| | - I. P. Fonareva
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - A. R. Sitdikova
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akad. Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. Yu. Fedorov
- Lobachevsky State University of Nizhny Novgorod, k. 2, 23 prosp. Gagarina, 603950 Nizhny Novgorod, Russian Federation
| |
Collapse
|
7
|
Yarovaya OI, Baranova DV, Sokolova AS, Nemolochnova AG, Sal’nikova OP, Fat’anova AV, Rogachev AD, Volobueva AS, Zarubaev VV, Pokrovsky AG, Salakhutdinov NF. Synthesis of N-heterocyclic amides based on (+)-camphoric acid and study of their antiviral activity and pharmacokinetics. Russ Chem Bull 2023; 72:807-818. [PMID: 37089866 PMCID: PMC10105540 DOI: 10.1007/s11172-023-3845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 04/25/2023]
Abstract
Efficient conditions for the synthesis of nitrogen-containing heterocyclic derivatives of (1R,3S)(+)-camphoric acid were selected. A series of heterocyclic compounds based on (+)-camphoric acid bearing pharmacophoric fragments was synthesized using the developed methodology. The compounds were tested for their antiviral activity against SARS-CoV-2 and H1N1 influenza viruses, and efficient inhibitors were identified that are of significant interest for further studies. The stability of the compounds and pharmaco-kinetics of the leader compound were studied when administered intragastrically and intramuscularly to mice at a dose of 200 mg kg-1 using the HPLC-MS/MS method.
Collapse
Affiliation(s)
- O. I. Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - D. V. Baranova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. S. Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| | - A. G. Nemolochnova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - O. P. Sal’nikova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. V. Fat’anova
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. D. Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - A. S. Volobueva
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - V. V. Zarubaev
- Pasteur Institute of Epidemiology and Microbiology, 14 ul. Mira, 197101 St. Petersburg, Russian Federation
| | - A. G. Pokrovsky
- Novosibirsk State University, 2 ul. Pirogova, 630090 Novosibirsk, Russian Federation
| | - N. F. Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 9 prosp. Akademika Lavrent’eva, 630090 Novosibirsk, Russian Federation
| |
Collapse
|
8
|
Gur’eva YA, Zalevskaya OA, Nikolaeva NS, Aleksandrova YR, Yandulova EY, Neganova ME, Slepukhin PA, Kutchin AV. Chiral zinc complexes with terpene derivatives of ethylenediamine: synthesis and biological activity. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
9
|
Ivakhnov AD, Selivanova NV, Krasikova AA, Stavrianidi AN, Gusakova MA, Bogolitsyn KG. Extraction of Terpenes of Common Juniper Greenery Under Sub- and Supercritical Conditions. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2022. [DOI: 10.1134/s1990793122080097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Il’ina IV, Korchagina DV, Morozova EA, Tolstikova TG, Volcho KP, Salakhutdinov NF. Synthesis and analgesic activity of alkyl-substituted octahydro-2H-chromenols. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Silva-Trujillo L, Quintero-Rueda E, Stashenko EE, Conde-Ocazionez S, Rondón-Villarreal P, Ocazionez RE. Essential Oils from Colombian Plants: Antiviral Potential against Dengue Virus Based on Chemical Composition, In Vitro and In Silico Analyses. Molecules 2022; 27:6844. [PMID: 36296437 PMCID: PMC9607004 DOI: 10.3390/molecules27206844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Currently, there are no therapies to prevent severe dengue disease. Essential oils (EOs) can serve as primary sources for research and the discovery of phytomedicines for alternative therapy. Fourteen EOs samples were obtained by distillation from six plants used in Colombian folk medicine. GC/MS analysis identified 125 terpenes. Cytopathic effect (CPE) reduction assays revealed differences in antiviral activity. EOs of Lippia alba, citral chemotype and carvone-rich fraction; Lippia origanoides, phellandrene chemotype; and Turnera diffusa, exhibited strong antiviral activity (IC50: 29 to 82 µg/mL; SI: 5.5 to 14.3). EOs of Piper aduncum, Ocimum basilicum, and L. origanoides, carvacrol, and thymol chemotypes, exhibited weak antiviral activity (32 to 53% DENV-CPE reduction at 100 µg/mL; SI > 5.0). Cluster and one-way ANOVA analyses suggest that the strong antiviral activity of EOs could be attributed to increased amounts of non-phenolic oxygenated monoterpenes and sesquiterpene hydrocarbons. Docking analyses (AutoDock Vina) predicted binding affinity between the DENV-2 E protein and terpenes: twenty sesquiterpene hydrocarbons (−8.73 to −6.91 kcal/mol), eight oxygenated monoterpenes (−7.52 to −6.98 kcal/mol), and seven monoterpene hydrocarbons (−7.60 to −6.99 kcal/mol). This study reports for the first time differences in the antiviral activity of EOs against DENV, corresponding to their composition of monoterpenes and sesquiterpenes.
Collapse
Affiliation(s)
- Lina Silva-Trujillo
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elizabeth Quintero-Rueda
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Elena E. Stashenko
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| | - Sergio Conde-Ocazionez
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Paola Rondón-Villarreal
- Instituto de Investigación Masira, Facultad de Ciencias de la Salud, Universidad de Santander, Bucaramanga 680003, Santander, Colombia
| | - Raquel E. Ocazionez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Universidad Industrial de Santander, Bucaramanga 680002, Santander, Colombia
| |
Collapse
|
12
|
Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:2154. [PMID: 36298709 PMCID: PMC9611092 DOI: 10.3390/v14102154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2023] Open
Abstract
In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.
Collapse
Affiliation(s)
- Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Dmitry S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Nitrogen-Containing Heterocyclic Compounds Obtained from Monoterpenes or Their Derivatives: Synthesis and Properties. Top Curr Chem (Cham) 2022; 380:42. [PMID: 35951263 DOI: 10.1007/s41061-022-00399-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 10/15/2022]
Abstract
Directed transformation of available natural compounds with native biological activity is a promising area of research in organic and medicinal chemistry aimed at finding effective drug substances. The number of scientific publications devoted to the transformation of natural compounds and investigations of their pharmacological properties, in particular, monoterpenes and their nearest derivatives, increases every year. At the same time, the chemistry of nitrogen-containing heterocyclic compounds has been actively developed since the 1950s after the news that the benzimidazole core is an integral part of the structure of vitamin B12. At the time of writing this review, the data on chemical modifications of monoterpenes and their nearest derivatives leading to formation of compounds with a nitrogen-containing heterocycle core have not been summarized and systematized in terms of chemical transformations. In this review, we tried to summarize the literature data on the preparation and properties of nitrogen-containing heterocyclic compounds synthesized from monoterpenes/monoterpenoids and their nearest derivatives for the period from 2000 to 2021.
Collapse
|
14
|
Pestova SV, Petukhov DV, Izmest’ev ES, Rubtsova SA. Synthesis of Dehydroabietane-derived Sulfonamides with a Lysine Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022080139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Oreshko VV, Kovaleva KS, Mordvinova ED, Yarovaya OI, Gatilov YV, Shcherbakov DN, Bormotov NI, Serova OA, Shishkina LN, Salakhutdinov NF. Synthesis and Antiviral Properties of Camphor-Derived Iminothiazolidine-4-Ones and 2,3-Dihydrothiazoles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154761. [PMID: 35897931 PMCID: PMC9331314 DOI: 10.3390/molecules27154761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
A set of heterocyclic products was synthesized from natural (+)-camphor and semi-synthetic (−)-camphor. Then, 2-Imino-4-thiazolidinones and 2,3-dihydrothiazoles were obtained using a three-step procedure. For the synthesized compounds, their antiviral activity against the vaccinia virus and Marburg virus was studied. New promising agents active against both viruses were found among the tested compounds.
Collapse
Affiliation(s)
- Vladislav V. Oreshko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
| | - Kseniya S. Kovaleva
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Ekaterina D. Mordvinova
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogova St., 1, 630090 Novosibirsk, Russia;
- Correspondence: ; Tel.: +7-383-330-88-70
| | - Yuri V. Gatilov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nikolai I. Bormotov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Olga A. Serova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Larisa N. Shishkina
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (D.N.S.); (N.I.B.); (O.A.S.); (L.N.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.O.); (K.S.K.); (Y.V.G.); (N.F.S.)
| |
Collapse
|
16
|
Li-Zhulanov NS, Il'ina IV, Yu. Sidorenko A, Korchagina DV, Volcho KP, Agabekov VE, Salakhutdinov NF. Cascade transformation of 4-hydroxymethyl-2-carene into novel cage methanopyrano[4,3-b]thieno[3,2-g]benzofuran derivative. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Sokolova A, Kovaleva KS, Kuranov SO, Bormotov NI, Borisevich SS, Yarovaya OI, Zhukovets A, Serova OA, Nawrozkij MB, Vernigora AA, Davidenko AV, Khamitov EM, Peshkov RY, Shishkina LN, Maksuytov RA, Salakhutdinov NF. Design, synthesis and biological evaluation of novel (+)-сamphor and (-)-fenchone based derivatives as potent orthopoxviruses inhibitors. ChemMedChem 2022; 17:e202100771. [PMID: 35388614 DOI: 10.1002/cmdc.202100771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In this work, a library of (+)-camphor and (-)-fenchone based N-acylhydrazones, amides, and esters, including para-substituted aromatic/hetaromatic/cyclohexane ring was synthesized, with potent orthopoxvirus inhibitors identified among them. Investigations of the structure-activity relationship revealed the significance of the substituent at the para-position of the aromatic ring. Also, the nature of the linker between a hydrophobic moiety and aromatic ring was clarified. Derivatives with p-Cl, p-Br, p-CF3, and p-NO2 substituted aromatic ring and derivatives with cyclohexane ring showed the highest antiviral activity against vaccinia virus, cowpox, and ectromelia virus. The hydrazone and the amide group were more favourable as a linker for antiviral activity than the ester group. Compounds 3b and 7e with high antiviral activity were examined using the time-of-addition assay and molecular docking study. The results revealed the tested compounds to inhibit the late processes of the orthopoxvirus replication cycle and the p37 viral protein to be a possible biological target.
Collapse
Affiliation(s)
- Anastasiya Sokolova
- Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Medicinal Chemistry, 9, Lavrent'ev avenue, 630090, Novosibirsk, RUSSIAN FEDERATION
| | - Kseniya S Kovaleva
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Sergey O Kuranov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, SAINT KITTS AND NEVIS
| | - Nikolay I Bormotov
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Tretment of Highly Dangerous Infection, RUSSIAN FEDERATION
| | - Sophia S Borisevich
- Ufa Institute of Chemistry RAS: FGBUN Ufimskij Institut himii Rossijskoj akademii nauk, RAS, RUSSIAN FEDERATION
| | - Olga I Yarovaya
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Anastasiya Zhukovets
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, SB RAS, RUSSIAN FEDERATION
| | - Olga A Serova
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Treatment of Highly Dengerous Infection, RUSSIAN FEDERATION
| | - Maxim B Nawrozkij
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Andrey A Vernigora
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Andrey V Davidenko
- Volgograd State Technical University: Volgogradskij gosudarstvennyj tehniceskij universitet, Chemistry, RUSSIAN FEDERATION
| | - Eduard M Khamitov
- Ufa Institute of Chemistry RAS: FGBUN Ufimskij Institut himii Rossijskoj akademii nauk, Chemistry, RUSSIAN FEDERATION
| | - Roman Yu Peshkov
- Novosibirsk National Research State University: Novosibirskij gosudarstvennyj universitet, Natural Science, RUSSIAN FEDERATION
| | - Larisa N Shishkina
- VECTOR: State Research Center of Virology and Biotechnology, Prevention and Tretment of Highly Dangerous Infections, RUSSIAN FEDERATION
| | - Rinat A Maksuytov
- VECTOR: State Research Center of Virology and Biotechnology, Rospotrebnadzor, RUSSIAN FEDERATION
| | - Nariman F Salakhutdinov
- Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS: Novosibirskij institut organiceskoj himii imeni N N Vorozcova SO RAN, Medicinal Chemistry, RUSSIAN FEDERATION
| |
Collapse
|
18
|
Synthesis of new chiral cis-myrtanyl sulfonamides. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3393-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Simulation of Molecular Dynamics of SARS-CoV-2 S-Protein in the Presence of Multiple Arbidol Molecules: Interactions and Binding Mode Insights. Viruses 2022; 14:v14010119. [PMID: 35062323 PMCID: PMC8781717 DOI: 10.3390/v14010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, we evaluated the antiviral activity of Arbidol (Umifenovir) against SARS-CoV-2 using a pseudoviral system with the glycoprotein S of the SARS-CoV-2 virus on its surface. In order to search for binding sites to protein S of the virus, we described alternative binding sites of Arbidol in RBD and in the ACE-2-RBD complex. As a result of our molecular dynamics simulations combined with molecular docking data, we note the following fact: wherever the molecules of Arbidol bind, the interaction of the latter affects the structural flexibility of the protein. This interaction may result both in a change in the shape of the domain-enzyme binding interface and simply in a change in the structural flexibility of the domain, which can subsequently affect its affinity to the enzyme. In addition, we examined the possibility of Arbidol binding in the stem part of the surface protein. The possibility of Arbidol binding in different parts of the protein is not excluded. This may explain the antiviral activity of Arbidol. Our results could be useful for researchers searching for effective SARS-CoV-2 virus inhibitors targeting the viral entry stage.
Collapse
|
20
|
Fomenko VV, Rudometova NB, Yarovaya OI, Rogachev AD, Fando AA, Zaykovskaya AV, Komarova NI, Shcherbakov DN, Pyankov OV, Pokrovsky AG, Karpenko LI, Maksyutov RA, Salakhutdinov NF. Synthesis and In Vitro Study of Antiviral Activity of Glycyrrhizin Nicotinate Derivatives against HIV-1 Pseudoviruses and SARS-CoV-2 Viruses. Molecules 2022; 27:295. [PMID: 35011529 PMCID: PMC8746574 DOI: 10.3390/molecules27010295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance. Glycyrrhizinic acid (Glyc) and its derivatives are promising biologically active compounds for the development of such broad-spectrum antiviral agents. In this work, derivatives of Glyc obtained by acylation with nicotinic acid were investigated. The resulting preparation, Glycyvir, is a multi-component mixture containing mainly mono-, di-, tri- and tetranicotinates. The composition of Glycyvir was characterized by HPLC-MS/MS and its toxicity assessed in cell culture. Antiviral activity against three strains of SARS-CoV-2 was tested in vitro on Vero E6 cells by MTT assay. Glycyvir was shown to inhibit SARS-CoV-2 replication in vitro (IC502-8 μM) with an antiviral activity comparable to the control drug Remdesivir. In addition, Glycyvir exhibited marked inhibitory activity against HIV pseudoviruses of subtypes B, A6 and the recombinant form CRF63_02A (IC50 range 3.9-27.5 µM). The time-dependence of Glycyvir inhibitory activity on HIV pseudovirus infection of TZM-bl cells suggested that the compound interfered with virus entry into the target cell. Glycyvir is a promising candidate as an agent with low toxicity and a broad spectrum of antiviral action.
Collapse
Affiliation(s)
- Vladislav V. Fomenko
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.F.); (A.D.R.); (N.I.K.); (N.F.S.)
| | - Nadezhda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.F.); (A.D.R.); (N.I.K.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, 630090 Novosibirsk, Russia; (A.A.F.); (A.G.P.)
| | - Artem D. Rogachev
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.F.); (A.D.R.); (N.I.K.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, 630090 Novosibirsk, Russia; (A.A.F.); (A.G.P.)
| | - Anastasia A. Fando
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, 630090 Novosibirsk, Russia; (A.A.F.); (A.G.P.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Nina I. Komarova
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.F.); (A.D.R.); (N.I.K.); (N.F.S.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Andrey G. Pokrovsky
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, 630090 Novosibirsk, Russia; (A.A.F.); (A.G.P.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (N.B.R.); (A.V.Z.); (D.N.S.); (O.V.P.); (L.I.K.); (R.A.M.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (V.V.F.); (A.D.R.); (N.I.K.); (N.F.S.)
- Zelman Institute for Medicine and Psychology, Novosibirsk State University, Pirogov Str. 1, 630090 Novosibirsk, Russia; (A.A.F.); (A.G.P.)
| |
Collapse
|
21
|
Novel O-acylated amidoximes and substituted 1,2,4-oxadiazoles synthesised from (+)-ketopinic acid possessing potent virus-inhibiting activity against phylogenetically distinct influenza A viruses. Bioorg Med Chem Lett 2022; 55:128465. [PMID: 34808389 DOI: 10.1016/j.bmcl.2021.128465] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/02/2021] [Accepted: 11/12/2021] [Indexed: 11/02/2022]
Abstract
This article describes the synthesis and antiviral activity evaluation of new substituted 1,2,4-oxadiazoles containing a bicyclic substituent at position 5 of the heterocycle and O-acylated amidoximes as precursors for their synthesis. New compounds were obtained from the (+)-camphor derivative (+)-ketopinic acid. The chemical library was tested in vitro for cytotoxicity against the MDCK cell line and for antiviral activity against influenza viruses of H1N1 and H7N9 subtypes. The synthesised compounds exhibited high virus-inhibiting activity against the H1N1 influenza virus. Some synthesised compounds were also active against the influenza virus of a different antigenic subtype: H7N9. The mechanism of the virus-inhibiting activity of these compounds is based on their interference with the fusion activity of viral hemagglutinin (HA). No interference with the receptor-binding activity of HA has been demonstrated. According to molecular docking results, the selective antiviral activity of O-acylated amidoximes and 1,2,4-oxadiazoles is associated with their structural features. O-Acylated amidoximes are likely more complementary to the binding site located at the site of the fusion peptide, and 1,2,4-oxadiazoles are more complimentary to the site located at the site of proteolysis. Significant differences in the amino acid residues of the binding sites of HA's of different types allow us to explain the selective antiviral activity of the compounds under study.
Collapse
|
22
|
Khomenko TM, Shtro AA, Galochkina AV, Nikolaeva YV, Petukhova GD, Borisevich SS, Korchagina DV, Volcho KP, Salakhutdinov NF. Monoterpene-Containing Substituted Coumarins as Inhibitors of Respiratory Syncytial Virus (RSV) Replication. Molecules 2021; 26:7493. [PMID: 34946573 PMCID: PMC8708370 DOI: 10.3390/molecules26247493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a critical cause of infant mortality. However, there are no vaccines and adequate drugs for its treatment. We showed, for the first time, that O-linked coumarin-monoterpene conjugates are effective RSV inhibitors. The most potent compounds are active against both RSV serotypes, A and B. According to the results of the time-of-addition experiment, the conjugates act at the early stages of virus cycle. Based on molecular modelling data, RSV F protein may be considered as a possible target.
Collapse
Affiliation(s)
- Tatyana M. Khomenko
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Anna A. Shtro
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Anastasia V. Galochkina
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Yulia V. Nikolaeva
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Galina D. Petukhova
- Laboratory of Chemotherapy for Viral Infections, Smorodintsev Research Intitute of Influenza, Professor Popova Str., 15/17, 197376 St. Petersburg, Russia; (A.A.S.); (A.V.G.); (Y.V.N.); (G.D.P.)
| | - Sophia S. Borisevich
- Laboratory of Physical Chemistry, Ufa Chemistry Institute of the Ufa Federal Research Center, 71 Octyabrya pr., 450054 Ufa, Russia;
| | - Dina V. Korchagina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Konstantin P. Volcho
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia; (T.M.K.); (D.V.K.); (N.F.S.)
| |
Collapse
|
23
|
Discovery of New Ginsenol-Like Compounds with High Antiviral Activity. Molecules 2021; 26:molecules26226794. [PMID: 34833886 PMCID: PMC8619001 DOI: 10.3390/molecules26226794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
A number of framework amides with a ginsenol backbone have been synthesized using the Ritter reaction. We named the acetamide as Ginsamide. A method was developed for the synthesis of the corresponding amine and thioacetamide. The new compounds revealed a high activity against H1N1 influenza, which was confirmed using an animal model. Biological experiments were performed to determine the mechanism of action of the new agents, a ginsamide-resistant strain of influenza virus was obtained, and the pathogenicity of the resistant strain and the control strain was studied. It was shown that the emergence of resistance to Ginsamide was accompanied by a reduction in the pathogenicity of the influenza virus.
Collapse
|
24
|
Okhina AA, Rogachev AD, Yarovaya OI, Pokrovsky AG, Salakhutdinov NF. Stability study of the antiviral agent camphecene in dried blood spots at different temperatures. Drug Test Anal 2021; 13:1797-1802. [PMID: 34448348 DOI: 10.1002/dta.3148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In this study, an optimized procedure of sample preparation for quantitative determination of the antiviral agent camphecene in dried rat blood spots was developed. It has been shown that when using methanol containing 0.1% HCOOH as an extractant, the recovery of the substance increases in comparison with the previously developed method. In addition to this, there is no need to dilute the obtained solutions with water for the analysis of the sample by high-performance liquid chromatography (HPLC) on a column with a reversed-phase sorbent. By using the developed method, the stability of samples of dried rat blood spots containing camphecene in different concentrations at different temperatures was studied. It was found that while the samples were stored at room temperature, apparently, desorption of the substance occurs leading to a loss of more than 15% of its initial amount after 5-10 days. Lowering the temperature increases the stability of samples and their storage at -70°C is possible for 4 weeks.
Collapse
Affiliation(s)
- Alina A Okhina
- Department of Medicinal chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Artem D Rogachev
- Department of Medicinal chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Olga I Yarovaya
- Department of Medicinal chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Andrey G Pokrovsky
- V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal chemistry, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia.,V. Zelman Institute for Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
25
|
Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021; 13:v13071257. [PMID: 34203182 PMCID: PMC8310077 DOI: 10.3390/v13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.
Collapse
|
26
|
|
27
|
Rogachev AD, Putilova VP, Zaykovskaya AV, Yarovaya OI, Sokolova AS, Fomenko VV, Pyankov OV, Maksyutov RA, Pokrovsky AG, Salakhutdinov NF. Biostability study, quantitation method and preliminary pharmacokinetics of a new antifilovirus agent based on borneol and 3-(piperidin-1-yl)propanoic acid. J Pharm Biomed Anal 2021; 199:114062. [PMID: 33862506 DOI: 10.1016/j.jpba.2021.114062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
The stability of the new antifiloviral agent AS-358, which is a derivative of borneol and 3-(piperidin-1-yl)propanoic acid, was studied in the blood and blood plasma of rats in vitro. It was found that both in the blood and in the plasma stabilized by EDTA or heparin, the compound is rapidly hydrolyzed at the ester bond. When sodium fluoride was added to the whole blood, the decomposition of the compound was significantly slowed down, which made it possible to develop and validate a method for the quantitative determination of the agent in this matrix. The method was validated in terms of selectivity, calibration dependence, LLOQ, accuracy and precision, stability in an autosampler, recovery, and carry-over. A 8:2 v/v mixture of methanol containing 2-adamantylamine hydrochloride (internal standard, IS) with 0.2 M aqueous zinc sulfate was used for blood sample treatment and protein precipitation. Analysis was performed by HPLC-MS/MS using reversed phase chromatography. MS/MS detection was performed on a triple quadrupole mass spectrometer 6500 QTRAP (SCIEX) in multiple reaction monitoring (MRM) mode. The transitions 294.5→158.2/98.1 and 152.2→107.2/93.1 were monitored for AS-358 and the IS, respectively. The calibration curve was built in the concentration range of 1-500 ng/mL, the intra-day and inter-day accuracy and precision, carry-over and recovery were within the acceptable limits. The developed method was used for a preliminary study of the pharmacokinetics of the agent AS-358 after its oral administration to rats. It was shown that when the substance was administered at a dose of 200 mg/kg, its concentration in the blood of animals reached 550 ng/mL after 1 h, despite its instability in blood.
Collapse
Affiliation(s)
- Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia.
| | - Valentina P Putilova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Anna V Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Anastasiya S Sokolova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia
| | - Vladislav V Fomenko
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Rinat A Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, 630559, Koltsovo, Novosibirsk region, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, acad. Lavrentiev ave., 9, Novosibirsk, 630090, Russia; Novosibirsk State University, Pirogov str., 2, Novosibirsk, 630090, Russia
| |
Collapse
|