1
|
Carrasco CJ, Montilla F, Villalobo E, Angulo M, Álvarez E, Galindo A. Antimicrobial Activity of Anionic Bis( N-Heterocyclic Carbene) Silver Complexes. Molecules 2024; 29:4608. [PMID: 39407538 PMCID: PMC11478204 DOI: 10.3390/molecules29194608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
The antimicrobial properties of a series of anionic bis(carbene) silver complexes Na3[Ag(NHCR)2] were investigated (2a-2g and 2c', where NHCR is a 2,2'-(imidazol-2-ylidene)dicarboxylate-type N-heterocyclic carbene). The complexes were synthesized by the interaction of imidazolium dicarboxylate compounds with silver oxide in the presence of aqueous sodium hydroxide. Complexes 2f,g were characterized analytically and spectroscopically, and the ligand precursor 1f and complexes 2c and 2g were structurally identified by X-ray diffraction methods. The anions of 2c and 2g, [Ag(NHCR)2]3-, showed a typical linear disposition of Ccarbene-Ag-Ccarbene atoms and an uncommonly eclipsed conformation of carbene ligands. The antimicrobial properties of complexes 2a-g, which contains chiral (2b-2e and 2c') and non-chiral derivatives (2a,f,g), were evaluated against Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, and a Gram-positive bacterium, Staphylococcus aureus. From the observed values of the minimal inhibitory concentration and minimal bactericidal concentration, complexes 2a and 2b showed the best antimicrobial activity against all strains. An interesting chirality-antimicrobial relationship was found, and eutomer 2c' showed better activity than its enantiomer 2c against the three bacteria. Furthermore, these complexes were investigated experimentally and theoretically by 109Ag nuclear magnetic resonance, and the electronic and steric characteristics of the dianionic carbene ligands were also examined.
Collapse
Affiliation(s)
- Carlos J. Carrasco
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Francisco Montilla
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Eduardo Villalobo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Manuel Angulo
- Servicio de Resonancia Magnética Nuclear, CITIUS, Universidad de Sevilla, 41012 Sevilla, Spain;
| | - Eleuterio Álvarez
- Instituto de Investigaciones Químicas, CSIC-Universidad de Sevilla, 41092 Sevilla, Spain;
| | - Agustín Galindo
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Sevilla, 41012 Sevilla, Spain;
| |
Collapse
|
2
|
Wu H, Hemmingsen L, Sauer SPA. On the geometry dependence of the nuclear magnetic resonance chemical shift of mercury in thiolate complexes: A relativistic density functional theory study. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:648-669. [PMID: 38773942 DOI: 10.1002/mrc.5452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024]
Abstract
Thiolate containing mercury(II) complexes of the general formula [Hg(SR)n ]2 - n have been of great interest since the toxicity of mercury was recognized. 199Hg nuclear magnetic resonance spectroscopy (NMR) is a powerful tool for characterization of mercury complexes. In this work, the Hg shielding constants in a series of [Hg(SR)n ]2 - n complexes are therefore investigated computationally with particular emphasis on their geometry dependence. Geometry optimizations and NMR chemical shift calculations are performed at the density functional theory (DFT) level with both the zeroth-order regular approximation (ZORA) and four-component relativistic methods. The four exchange-correlation (XC) functionals PBE0, PBE, B3LYP, and BLYP are used in combination with either Dyall's Gaussian-type (GTO) or Slater-type orbitals (STOs) basis sets. Comparing ZORA and four-component calculations, one observes that the calculated shielding constants for a given molecular geometry have a constant difference of ∼ 1070 ppm. This confirms that ZORA is an acceptable relativistic method to compute NMR chemical shifts. The combinations of four-component/PBE0/v3z and ZORA/PBE0/QZ4P are applied to explore the geometry dependence of the isotropic shielding. For a given coordination number, the distance between mercury and sulfur is the key factor affecting the shielding constant, while changes in bond and dihedral angles and even different side groups have relatively little impact.
Collapse
Affiliation(s)
- Haide Wu
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Lars Hemmingsen
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Saielli G. Computational NMR spectroscopy of 205 Tl. J Comput Chem 2023; 44:2016-2029. [PMID: 37367222 DOI: 10.1002/jcc.27176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
We have investigated the NMR chemical shift of 205 Tl in several thallium compounds, ranging from small covalent Tl(I) and Tl(III) molecules to supramolecular complexes with large organic ligands and some thallium halides. NMR calculations were run at the ZORA relativistic level, with and without spin-orbit coupling using few selected GGA and hybrid functionals, namely BP86, PBE, B3LYP, and PBE0. We also tested solvent effects both at the optimization level and at the NMR calculation step. At the ZORA-SO-PBE0 (COSMO) level of theory we find a very good performance of the computational protocol that allows to discard or retain possible structures/conformations based on the agreement between the calculated chemical shift and the experimental value.
Collapse
Affiliation(s)
- Giacomo Saielli
- CNR Institute on Membrane Technology, Unit of Padova, Padova, Italy
- Department of Chemical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
4
|
Krivdin LB. 17 O nuclear magnetic resonance: Recent advances and applications. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:507-529. [PMID: 37449419 DOI: 10.1002/mrc.5378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
The present review is focused on the most recent achievements in the application of liquid phase 17 O nuclear magnetic resonance (NMR) to inorganic, organic, and biochemical molecules focusing on their structure, conformations, and (bio)chemical behavior. The review is composed of four basic parts, namely, (1) simple molecules; (2) water and hydrogen bonding; (3) metal oxides, clusters, and complexes; and (4) biological molecules. Experimental 17 O NMR chemical shifts are thoroughly tabulated. They span a range of as much as almost 650 ppm (from -35.6 to +610.0 ppm) for inorganic and organic molecules, whereas this range is much wider for biological species being of about 1350 ppm (from -12 to +1332 ppm), and in the case of hemoproteins and heme-model compounds, isotropic chemical shifts of up to 2500 ppm were observed. The general prospects and caveats in the modern development of the liquid phase 17 O NMR in chemistry and biochemistry are critically discussed and briefly outlined in view of their future applications.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
5
|
Krivdin LB. Tritium NMR: A compilation of data and a practical guide. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2023; 61:195-247. [PMID: 36593685 DOI: 10.1002/mrc.5329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The present review is focused on experimental methods and structural applications of tritium NMR. It consists of five parts covering accordingly, introduction, brief overview, early (based on the papers appearing before 2000), more recent (based on the papers appeared in the interim of 2000 to 2015), and recent (based on the papers that appeared after 2015) reports. A special interest in this review is focused on practical aspects of tritium NMR spectroscopy, which is thoroughly illustrated by its numerous applications in chemistry and biochemistry.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
6
|
Rzepiela K, Kaminský J, Buczek A, Broda MA, Kupka T. Electron Correlation or Basis Set Quality: How to Obtain Converged and Accurate NMR Shieldings for the Third-Row Elements? Molecules 2022; 27:8230. [PMID: 36500321 PMCID: PMC9737175 DOI: 10.3390/molecules27238230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The quality of theoretical NMR shieldings calculated at the quantum-chemical level depends on various theoretical aspects, of which the basis set type and size are among the most important factors. Nevertheless, not much information is available on the basis set effect on theoretical shieldings of the NMR-active nuclei of the third row. Here, we report on the importance of proper basis set selection to obtain accurate and reliable NMR shielding parameters for nuclei from the third row of the periodic table. All calculations were performed on a set of eleven compounds containing the elements Na, Mg, Al, Si, P, S, or Cl. NMR shielding tensors were calculated using the SCF-HF, DFT-B3LYP, and CCSD(T) methods, combined with the Dunning valence aug-cc-pVXZ, core-valence aug-cc-pCVXZ, Jensen polarized-convergent aug-pcSseg-n and Karlsruhe x2c-Def2 basis set families. We also estimated the complete basis set limit (CBS) values of the NMR parameters. Widely scattered nuclear shieldings were observed for the Dunning polarized-valence basis set, which provides irregular convergence. We show that the use of Dunning core-valence or Jensen basis sets effectively reduces the scatter of theoretical NMR results and leads to their exponential-like convergence to CBS. We also assessed the effect of vibrational, temperature, and relativistic corrections on the predicted shieldings. For systems with single bonds, all corrections are relatively small, amounting to less than 4% of the CCSD(T)/CBS value. Vibrational and temperature corrections were less reliable for H3PO and HSiCH due to the high anharmonicity of the molecules. An abnormally high relativistic correction was observed for phosphorus in PN, reaching ~20% of the CCSD(T)/CBS value, while the correction was less than 7% for other tested molecules.
Collapse
Affiliation(s)
- Kacper Rzepiela
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Aneta Buczek
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Małgorzata A. Broda
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| | - Teobald Kupka
- Faculty of Chemistry, University of Opole, 48 Oleska Street, 46-052 Opole, Poland
| |
Collapse
|
7
|
Rusakova IL, Rusakov YY, Krivdin LB. Computational 199 Hg NMR. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:929-953. [PMID: 35737297 DOI: 10.1002/mrc.5296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Theoretical background and fundamental results dealing with the computation of mercury chemical shifts and spin-spin coupling constants are reviewed with a special emphasis on their stereochemical behavior and applications.
Collapse
Affiliation(s)
- Irina L Rusakova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Yuriy Yu Rusakov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
8
|
Jakubowska K, Pecul M, Ruud K. Vibrational Corrections to NMR Spin-Spin Coupling Constants from Relativistic Four-Component DFT Calculations. J Phys Chem A 2022; 126:7013-7020. [PMID: 36135807 PMCID: PMC9549459 DOI: 10.1021/acs.jpca.2c05019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Zero-point vibrational
(ZPV) corrections to the nuclear spin–spin
coupling constants have been calculated using four-component Dirac–Kohn–Sham
DFT for H2X (where X = O, S, Se, Te, Po), XH3 (where X = N, P, As, Sb, Bi), and XH4 (where X = C, Si,
Ge, Sn, and Pb) molecules and for HC≡CPbH3. The
main goal was to study the influence of relativistic effects on the
ZPV corrections and thus results calculated at relativistic and nonrelativistic
approaches have been compared. The effects of relativity become notable
for the ZPV corrections to the spin–spin coupling constants
for compounds with lighter elements (selenium and germanium) than
for the spin–spin coupling constants themselves. In the case
of molecules containing heavier atoms, for instance BiH3 and PbH4, relativistic effects play a crucial role on
the results and approximating ZPV corrections by the nonrelativistic
results may lead to larger errors than omitting ZPV corrections altogether.
Collapse
Affiliation(s)
| | - Magdalena Pecul
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, UiT─The Arctic University of Norway, N-9037 Tromsø, Norway.,Norwegian Defence Research Establishment, P.O. Box 25, 2027 Kjeller, Norway
| |
Collapse
|
9
|
Krivdin LB. Computational 1 H and 13 C NMR in structural and stereochemical studies. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:733-828. [PMID: 35182410 DOI: 10.1002/mrc.5260] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Present review outlines the advances and perspectives of computational 1 H and 13 C NMR applied to the stereochemical studies of inorganic, organic, and bioorganic compounds, involving in particular natural products, carbohydrates, and carbonium ions. The first part of the review briefly outlines theoretical background of the modern computational methods applied to the calculation of chemical shifts and spin-spin coupling constants at the DFT and the non-empirical levels. The second part of the review deals with the achievements of the computational 1 H and 13 C NMR in the stereochemical investigation of a variety of inorganic, organic, and bioorganic compounds, providing in an abridged form the material partly discussed by the author in a series of parent reviews. Major attention is focused herewith on the publications of the recent years, which were not reviewed elsewhere.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
10
|
Quantum Chemical Approaches to the Calculation of NMR Parameters: From Fundamentals to Recent Advances. MAGNETOCHEMISTRY 2022. [DOI: 10.3390/magnetochemistry8050050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Quantum chemical methods for the calculation of indirect NMR spin–spin coupling constants and chemical shifts are always in progress. They never stay the same due to permanently developing computational facilities, which open new perspectives and create new challenges every now and then. This review starts from the fundamentals of the nonrelativistic and relativistic theory of nuclear magnetic resonance parameters, and gradually moves towards the discussion of the most popular common and newly developed methodologies for quantum chemical modeling of NMR spectra.
Collapse
|
11
|
Samultsev DO, Semenov VA, Krivdin LB. Four-component relativistic calculations of NMR shielding constants of the transition metal complexes. Part 1: Pentaammines of cobalt, rhodium, and iridium. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2022; 60:463-468. [PMID: 34978105 DOI: 10.1002/mrc.5245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The nonrelativistic and four-component fully relativistic calculations of 1 H, 15 N, 59 Co, 103 Rh, and 193 Ir shielding constants of pentaammineaquacomplexes of cobalt(III), rhodium(III), and iridium(III) were carried out at the density functional theory (DFT) level of theory. The noticeable deshielding relativistic corrections were observed for nitrogen shielding constants (chemical shifts), whereas those corrections were found to be negligible for protons. For the transition metals cobalt, rhodium, and iridium, relativistic corrections to their nuclear magnetic resonance (NMR) shielding constants were found to be rather small for cobalt and rhodium (some 5-10%), whereas they are essentially larger for iridium (up to 70%).
Collapse
Affiliation(s)
- Dmitry O Samultsev
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Valentin A Semenov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| | - Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Irkutsk, Russia
| |
Collapse
|
12
|
Pau J, Choi JW, Silverthorne K, Ranne M, Wylie RS, Gossage RA, Lough AJ, Foucher DA. New Hypercoordinating Organostannanes for the Modular Functionalization of Mono‐ and Polystannanes: Synthetic and Computational Studies. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jeffrey Pau
- Ryerson University Chemistry and Biology 350 Victoria Street M5B2K3 Toronto CANADA
| | - Jung-Won Choi
- Ryerson University Chemistry and Biology 350 Victoria Street M5B2K3 Toronto CANADA
| | - Kaitlyn Silverthorne
- Ryerson University Chemistry and Biology 350 Victoria Street M5B 2K3 Toronto CANADA
| | - Mokhamed Ranne
- Ryerson University Chemistry and Biology 350 Victoria Street M5B2K3 Toronto CANADA
| | - R. Stephen Wylie
- Ryerson University Chemistry and Biology 350 Victoria Street M5B2K3 Toronto CANADA
| | - Robert A. Gossage
- Ryerson University Chemistry and Biology 350 Victoria Street M5B2K3 Toronto CANADA
| | - Alan J. Lough
- University of Toronto Chemistry 80 St. George Street M5H 3H6 Toronto CANADA
| | - Daniel Alain Foucher
- Ryerson University Dept of Chemistry and Biology 350 Victoria St M5B 2K3 Toronto CANADA
| |
Collapse
|
13
|
Krivdin LB. Computational NMR of Carbohydrates: Theoretical Background, Applications, and Perspectives. Molecules 2021; 26:molecules26092450. [PMID: 33922318 PMCID: PMC8122784 DOI: 10.3390/molecules26092450] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022] Open
Abstract
This review is written amid a marked progress in the calculation of NMR parameters of carbohydrates substantiated by a vast amount of experimental data coming from several laboratories worldwide. By no means are we trying to cover in the present compilation a huge amount of all available data. The main idea of the present review was only to outline general trends and perspectives in this dynamically developing area on the background of a marked progress in theoretical and computational NMR. Presented material is arranged in three basic sections: (1)-a brief theoretical introduction; (2)-applications and perspectives in computational NMR of monosaccharides; and (3)-calculation of NMR chemical shifts and spin-spin coupling constants of di- and polysaccharides.
Collapse
Affiliation(s)
- Leonid B Krivdin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky St. 1, 664033 Irkutsk, Russia
| |
Collapse
|