1
|
Forder RE, Willson NL, Angove JA, McWhorter TJ, McQueen MA, Cadogan DJ. Dietary inclusion of a Saccharomyces cerevisiae metabolite improved reproductive performance but did not affect intestinal permeability in two chicken meat breeder lines. Poult Sci 2024; 103:103595. [PMID: 38471229 PMCID: PMC11067777 DOI: 10.1016/j.psj.2024.103595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Gastrointestinal dysbiosis is a disturbance in mucosal homeostasis, producing low-grade chronic intestinal inflammation and impaired intestinal barrier function. It is induced by several factors, including nutrition and stress, which are both significant factors when considering current broiler breeder practices. A great grandparent (GGP) chicken meat line was identified displaying clinical signs characteristic of potential dysbiosis, including wet droppings and litter, in addition to reduced reproductive performance when compared to a consistently high performing line. This study aimed to determine whether the reduced reproductive performance observed in these hens was a result of dysbiosis and whether dietary supplementation with a Saccharomyces cerevisiae (SC) fermentation product would alleviate clinical signs. Dietary inclusion of SC did not influence intestinal permeability, WBC differentials, or corticosterone concentration in either the wet litter (WL) or high-performing (HP) breeder lines. Compared to hens from the HP line, WL line hens had a significant increase in intestinal permeability at 26 wk (onset of lay). WL hen heterophil counts were increased markedly at week 26 before declining. At weeks 26, 32, and 37 there were also significant increases in monocytes. Higher plasma corticosterone was also observed in WL hens at 37 wk. No significant differences in heterophil to lymphocyte (H:L) ratios or feather corticosterone were observed between lines. Dietary inclusion of SC supplementation to breeder diets had some benefit in regards to reducing hen mortality, improving egg production and hatchability but only in the WL line. Results from this study did not indicate that hens from the wet litter line were experiencing gut dysbiosis. Chronic intestinal inflammation may be a possible reason for the increase in intestinal permeability. These results do indicate that both breeder lines may be exhibiting physiological stress. Future investigation into the physiology and behavior around point of lay is required to find novel strategies to alleviate this stress and in turn, potentially improve welfare and production outcomes.
Collapse
Affiliation(s)
- Rebecca Ea Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia; Feedworks Pty. Ltd. Romsey, Victoria, 3434, Australia.
| | - Nicky-Lee Willson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Joshua A Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Todd J McWhorter
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | - Matthew A McQueen
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia, 5371, Australia
| | | |
Collapse
|
2
|
Veit W, Browning H. Developmental Programming, Evolution, and Animal Welfare: A Case for Evolutionary Veterinary Science. J APPL ANIM WELF SCI 2023; 26:552-564. [PMID: 34913795 DOI: 10.1080/10888705.2021.2014838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The conditions animals experience during the early developmental stages of their lives can have critical ongoing effects on their future health, welfare, and proper development. In this paper we draw on evolutionary theory to improve our understanding of the processes of developmental programming, particularly Predictive Adaptive Responses (PAR) that serve to match offspring phenotype with predicted future environmental conditions. When these predictions fail, a mismatch occurs between offspring phenotype and the environment, which can have long-lasting health and welfare effects. Examples include metabolic diseases resulting from maternal nutrition and behavioral changes from maternal stress. An understanding of these processes and their evolutionary origins will help in identifying and providing appropriate developmental conditions to optimize offspring welfare. This serves as an example of the benefits of using evolutionary thinking within veterinary science and we suggest that in the same way that evolutionary medicine has helped our understanding of human health, the implementation of evolutionary veterinary science (EvoVetSci) could be a useful way forward for research in animal health and welfare.
Collapse
|
3
|
Kadawarage RW, Dunislawska A, Siwek M. Ecological footprint of poultry production and effect of environment on poultry genes. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The growing demand for poultry meat and eggs has forced plenty of changes in poultry production in recent years. According to FAO, the total number of poultry in the world in 2019 was 27.9 billion. About 93% of them are chickens. The number of chickens has doubled in the last 30 years. These animals are the most numerous in Asia and America. Hence, poultry meat is the most frequently obtained type of meat in recent years (it is 40.6% of the obtained meat). Focusing on lowering production costs has led to process optimization, which was possible by improving the use of animal genetics, optimizing feeding programs, and new production technologies. The applied process optimization and production increase practices may also lead to a deterioration of the ecological balance through pollution with chemical substances, water consumption, and natural resources. The aim of this paper was to review the current state of knowledge in the field of the ecological footprint of poultry production and the impact on environmental genes.
Collapse
Affiliation(s)
- Ramesha Wishna Kadawarage
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Aleksandra Dunislawska
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| | - Maria Siwek
- Department of Animal Biotechnology and Genetics , Bydgoszcz University of Science and Technology , Mazowiecka 28, 85-796 Bydgoszcz , Poland
| |
Collapse
|
4
|
Willson NL, Hughes RJ, Hynd PI, Forder REA. Layers, broiler chickens and their F1 cross develop distinctly different caecal microbial communities when hatched and reared together. J Appl Microbiol 2022; 133:448-457. [PMID: 35362651 PMCID: PMC9546199 DOI: 10.1111/jam.15558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/29/2022] [Indexed: 12/03/2022]
Abstract
Aim To compare the caecal microbiota of layer, broiler, and intermediate F1 layer × broiler cross birds with the hypothesis that significant differences in caecal microbial composition would persist between the three groups when host and environmental interactions were minimized. Methods and Results Caecal contents were characterized using 16S rRNA for males of broiler (n = 12), layer (n = 12) and F1 layer × broiler cross (n = 9) birds that were hatched and reared under the same conditions. The microbial community structure differed significantly between the three groups of birds at phylum, genus and OTU levels, with clear separation of the groups observed. Firmicutes was the phylum most represented across samples; however, the high abundance of Proteobacteria in the layer birds at d28 post‐hatch was unexpected, and driven by a higher abundance of E. coli. Conclusions The microbiota phylotype between broilers, layers and their F1 cross significantly differed in community structure, diversity and relative abundance in the absence of environmental confounding, which is generally difficult to avoid in microbial studies. Significance and Impact of Study The results provide a unique comparison and evidence that there is a strong genetic component driving microbial composition within poultry strains, despite the embryonic development occurring in ovo.
Collapse
Affiliation(s)
- Nicky-Lee Willson
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Robert J Hughes
- Formerly with the South Australian Research and Development Institute (SARDI), Pig and Poultry Production Institute (PPPI), Roseworthy, South Australia, Australia
| | - Philip I Hynd
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Rebecca E A Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| |
Collapse
|
5
|
Li F, Yang C, Xie Y, Gao X, Zhang Y, Ning H, Liu G, Chen Z, Shan A. Maternal nutrition altered embryonic <i>MYOD1</i>, <i>MYF5</i> and <i>MYF6</i> gene expression in genetically fat and lean lines of chickens. Anim Biosci 2022; 35:1223-1234. [PMID: 35240030 PMCID: PMC9262732 DOI: 10.5713/ab.21.0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/29/2022] [Indexed: 11/27/2022] Open
|
6
|
Andrieux C, Petit A, Collin A, Houssier M, Métayer-Coustard S, Panserat S, Pitel F, Coustham V. Early Phenotype Programming in Birds by Temperature and Nutrition: A Mini-Review. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2021.755842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.
Collapse
|
7
|
Effects of Nutritional Restriction during Laying Period of Fat and Lean Line Broiler Breeder Hens on Meat Quality Traits of Offspring. Animals (Basel) 2021; 11:ani11082434. [PMID: 34438890 PMCID: PMC8388661 DOI: 10.3390/ani11082434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/15/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary The meat quality of livestock products is widely appreciated. Maternal nutrition can affect the deposition of nutrients in eggs, and then change the apparent metabolism, development process, and performance of offspring. Our research indicated that meat quality traits are also affected by maternal nutritional level and are related to the nutritional requirements of different genotypes. Some of the effects disappeared at the end of the growth stage. These situations remind poultry producers to consider the impact of feed restrictions on the quality of meat for future generations. Abstract The offspring meat quality of hens undergoing a 25% dietary restriction treatment during the laying period were evaluated in fat and lean line breeder. A total of 768 female birds (384/line) were randomly assigned to four groups (12 replicates/group, 16 birds/replicates). Maternal feed restriction (MFR) and normal started at 27 weeks of age. Offspring broilers were fed ad libitum. The offspring meat quality traits and muscle fiber morphology in different periods were measured. At birth, significant interactions were found on breast muscle fiber morphology (p < 0.05). At 28 days, MFR decreased breast water content and increased thigh crude fat content, and significant interactions were observed on breast crude fat and protein contents (p < 0.05). At 56 days, MFR affected morphology of peroneus longus muscle tissue, and significant interactions were found on thigh redness at 48 h and amino acid contents in breast and thigh muscle (p < 0.05). Overall, MRF may lead to offspring birth sarcopenia. Such offspring grow more easily to deposit fat in a nutritious environment, but they will self-regulate adverse symptoms during growth and development. The two lines respond differently to maternal nutritional disturbance due to different nutritional requirements and metabolic patterns.
Collapse
|
8
|
Nolan JV. Recent Advances in Animal Nutrition – Australia: people and circumstances shaping this symposium. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Angove JL, Forder REA. The avian maternal environment: exploring the physiological mechanisms driving progeny performance. WORLD POULTRY SCI J 2020. [DOI: 10.1080/00439339.2020.1729675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- J. L. Angove
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| | - R. E. A. Forder
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, Australia
| |
Collapse
|
10
|
Rubio LA. Possibilities of early life programming in broiler chickens via intestinal microbiota modulation. Poult Sci 2019; 98:695-706. [PMID: 30247675 DOI: 10.3382/ps/pey416] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/29/2018] [Indexed: 01/03/2023] Open
Abstract
The strong selection in search for a higher growth rate in broilers has resulted in adverse effects such as metabolic disorders, low responsiveness of the immune system, and decreased resistance to pathogens. On the other hand, newly hatched chicks rely mostly on innate immune responses until their gut gets colonized with microbiota. In consequence, early access to active substances or bacteria (pre- and post-hatch) is particularly relevant here because in broilers much of the immune system development occurs early in life. Therefore, early stimulation of beneficial microflora is critical, as it affects, to a great extent, the entire life-span of an individual, and also because the nutritional manipulations of the gastrointestinal tract (GIT) microbiome to enhance productivity and health are rather limited by the resilience of the ecosystem once established in the chicken´s gut. Early life or developmental programming is based on the assumption that the development of diseases later in life can be modulated by perturbations or environmental exposures during critical pre- or early post-natal life. Substances such as plant derivatives, Na butyrate, pre- and probiotics, and β-glucans have been shown to induce beneficial microbiological and immunological changes within the GIT, and therefore are potential candidates to be used as tools to manipulate GIT functionality in the young chicken. Accordingly, substances as these might represent promising candidates to study intestinal microbiota/immune system modulation in broilers´ early stages of breeding. In ovo-delivered prebiotics and synbiotics have been shown to have no adverse effect on the development of the immune system in exposed chickens, while being able to affect lymphoid-organs' morphology in chickens. In ovo procedures have also been proposed as means of promoting a healthy microflora in embryonic guts and stimulating maturation of the cellular and humoral immune responses in central and peripheral immune organs, including those in the GIT. The purpose of this presentation is to discuss the potential usefulness of the instruments currently available to induce early life programming in broilers.
Collapse
Affiliation(s)
- Luis A Rubio
- Physiology and Biochemistry of Animal Nutrition (EEZ, CSIC), Granada 18008, Spain
| |
Collapse
|
11
|
Gatford KL, Roberts CT, Kind KL, Hynd PI. Off to the right start: how pregnancy and early life can determine future animal health and production. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an17014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Animal producers are well aware that a low-birthweight animal is more likely to die in the first few days of life, and, if it survives, it is likely to perform poorly. We are now coming to appreciate that early life events can permanently change an animal’s developmental trajectory, also often referred to as developmental programming. This is an area of current interest in biomedicine, where the concept is known as the ‘developmental origins of health and disease’ (DOHaD). Current gaps in understanding include many of the underlying mechanisms, and whether and how we might intervene and restore the potential for healthy and productive development. This review introduces the biomedical perspective of developmental programming, reviews some of the evidence for long-term effects of early life exposures on welfare and productivity in animal production, with a focus on prenatal growth and maternal stress in pig production, and discusses options for intervening to improve long-term outcomes.
Collapse
|