1
|
McPhee MJ. Predicting fat cover in beef cattle to make on-farm management decisions: a review of assessing fat and of modeling fat deposition. Transl Anim Sci 2024; 8:txae058. [PMID: 38800101 PMCID: PMC11125392 DOI: 10.1093/tas/txae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024] Open
Abstract
Demands of domestic and foreign market specifications of carcass weight and fat cover, of beef cattle, have led to the development of cattle growth models that predict fat cover to assist on-farm managers make management decisions. The objectives of this paper are 4-fold: 1) conduct a brief review of the biological basis of adipose tissue accretion, 2) briefly review live and carcass assessments of beef cattle, and carcass grading systems used to develop quantitative compositional and quality indices, 3) review fat deposition models: Davis growth model (DGM), French National Institute for Agricultural Research growth model (IGM), Cornell Value Discovery System (CVDS), and BeefSpecs drafting tool (BeefSpecsDT), and 4) appraise the process of translating science and practical skills into research/decision support tools that assist the Beef industry improve profitability. The r2 for live and carcass animal assessments, using several techniques across a range of species and traits, ranged from 0.61 to 0.99 and from 0.52 to 0.99, respectively. Model evaluations of DGM and IGM were conducted using Salers heifers (n = 24) and Angus-Hereford steers (n = 15) from an existing publication and model evaluations of CVDS and BeefSpecsDT were conducted using Angus steers (n = 33) from a research trial where steers were grain finished for 101 d in a commercial feedlot. Evaluating the observed and predicted fat mass (FM) is the focus of this review. The FM mean bias for Salers heifers were 7.5 and 1.3 kg and the root mean square error of prediction (RMSEP) were 31.2 and 27.8 kg and for Angus-Hereford steers the mean bias were -4.0 and -10.5 kg and the RMSEP were 9.14 and 21.5 kg for DGM and IGM, respectively. The FM mean bias for Angus steers were -5.61 and -2.93 kg and the RMSEP were 12.3 and 13.4 kg for CVDS and BeefSpecsDT, respectively. The decomposition for bias, slope, and deviance were 21%, 12%, and 68% and 5%, 4%, and 91% for CVDS and BeefSpecsDT, respectively. The modeling efficiencies were 0.38 and 0.27 and the models were within a 20 kg level of tolerance 91% and 88% for CVDS and BeefSpecsDT, respectively. Fat deposition models reported in this review have the potential to assist the beef industry make on-farm management decisions on live cattle before slaughter and improve profitability. Modelers need to continually assess and improve their models but with a caveat of 1) striving to minimize inputs, and 2) choosing on-farm inputs that are readily available.
Collapse
Affiliation(s)
- Malcolm J McPhee
- NSW Department of Primary Industries, Livestock Industries Centre, University of New England, Armidale, New South Wales, Australia
| |
Collapse
|
2
|
Keogh TP, McGrath SR, Allworth MB, Oddy VH. Estimating body composition using CT scans of cross-bred lambs fed at 2 feeding levels and 2 stages of maturity to inform predictive growth models. J Anim Sci 2024; 102:skae216. [PMID: 39078937 PMCID: PMC11347783 DOI: 10.1093/jas/skae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/28/2024] [Indexed: 08/28/2024] Open
Abstract
Livestock producers would benefit from more precise predictions of the growth response from nutrients consumed. Previously published models are often limited by the realities of data collection and are unable to account for alterations to body composition, due in part to the response of visceral organs to an alternate diet. The computerized tomography (CT) scanning of lambs enables the analysis of changes in body composition of individual animals over time, potentially supporting better model development and testing. The aim of this experiment was to develop a repeatable method for the analysis of live lamb body composition using CT scans. A secondary aim was to compare the data collected from CT scanning during a feeding trial to 2 predictive lamb growth models. Cross-bred lambs were fed 2 feeding levels at 2 stages of maturity, with CT scans at the beginning and end of each 8-wk feeding period. The CT scan-derived values for body composition taken at the beginning of feeding periods were used as inputs for 2 existing lamb growth models. Predictions of body composition were compared with CT scan-derived values at the end of feeding periods. The CT scan analysis method used a proportion of images from each lamb to reduce manual image editing. The method was developed by comparing the estimated mass and volume of empty body components using all available CT scans to estimated values using a reduced number of scans from 12 lambs. The CT scan-derived lean tissue mass aligned with model predictions at the end of each feeding period, however, CT scan-derived fat mass was greater than predictions by both models especially for the high feeding level at the later stage of maturity. These results highlight that the analysis of body composition using CT scans requires further validation, particularly for the viscera, and that models likely require refinement to better predict the efficiency of energy utilization by different tissues. The use of live animal CT scans can provide more accurate predictions of the growth of saleable products than measuring liveweight alone and will enable ruminant growth models to better adapt to different genetics and changing diets than comparative slaughter. To replicate the current data using comparative slaughter would require 4 times the animals, as individual lambs were CT scanned 4 times in this study, demonstrating the potential value of CT scanning in live animal research.
Collapse
Affiliation(s)
- Thomas P Keogh
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- CSIRO Agriculture and Food, Black Mountain, ACT 2600, Australia
| | - Shawn R McGrath
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Maxwell B Allworth
- Fred Morley Centre, School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
- Gulbali Institute, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Victor H Oddy
- NSW Department of Primary Industries, Livestock Industries Centre, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
3
|
Tedeschi LO. Review: Harnessing extant energy and protein requirement modeling for sustainable beef production. Animal 2023; 17 Suppl 3:100835. [PMID: 37210232 DOI: 10.1016/j.animal.2023.100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 05/22/2023] Open
Abstract
Numerous mathematical nutrition models have been developed in the last sixty years to predict the dietary supply and requirement of farm animals' energy and protein. Although these models, usually developed by different groups, share similar concepts and data, their calculation routines (i.e., submodels) have rarely been combined into generalized models. This lack of mixing submodels is partly because different models have different attributes, including paradigms, structural decisions, inputs/outputs, and parameterization processes that could render them incompatible for merging. Another reason is that predictability might increase due to offsetting errors that cannot be thoroughly studied. Alternatively, combining concepts might be more accessible and safer than combining models' calculation routines because concepts can be incorporated into existing models without changing the modeling structure and calculation logic, though additional inputs might be needed. Instead of developing new models, improving the merging of extant models' concepts might curtail the time and effort needed to develop models capable of evaluating aspects of sustainability. Two areas of beef production research that are needed to ensure adequate diet formulation include accurate energy requirements of grazing animals (decrease methane emissions) and efficiency of energy use (reduce carcass waste and resource use) by growing cattle. A revised model for energy expenditure of grazing animals was proposed to incorporate the energy needed for physical activity, as the British feeding system recommended, and eating and rumination (HjEer) into the total energy requirement. Unfortunately, the proposed equation can only be solved iteratively through optimization because HjEer requires metabolizable energy (ME) intake. The other revised model expanded an existing model to estimate the partial efficiency of using ME for growth (kg) from protein proportion in the retained energy by including an animal degree of maturity and average daily gain (ADG) as used in the Australian feeding system. The revised kg model uses carcass composition, and it is less dependent on dietary ME content, but still requires an accurate assessment of the degree of maturity and ADG, which in turn depends on the kg. Therefore, it needs to be solved iteratively or using one-step delayed continuous calculation (i.e., use the previous day's ADG to compute the current day's kg). We believe that generalized models developed by merging different models' concepts might improve our understanding of the relationships of existing variables that were known for their importance but not included in extant models because of the lack of proper information or confidence at that time.
Collapse
Affiliation(s)
- L O Tedeschi
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, United States.
| |
Collapse
|
4
|
de Castro VCG, Budel JCDC, Rodrigues TCGDC, Silva BA, de Lima ACS, de Souza SM, da Silva JAR, Joele MRSP, Silva AGME, Lourenço-Junior JDB. Nutrient intake, digestibility, performance, carcass traits and sensory analysis of meat from lambs fed with co-products of Amazon oilseeds. Front Vet Sci 2023; 10:1181765. [PMID: 37303719 PMCID: PMC10249503 DOI: 10.3389/fvets.2023.1181765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction The increase in availability and nutritional composition of oilseed co-products has made it essential to study the use of this biomass. Methods The objective of this work was to investigate the effects of including oilseed cakes on intake and digestibility, performance, carcass characteristics and meat sensory in feedlot lambs. Twenty-four crossbred Dorper × Santa Inês lambs, with initial body weight of 30 ± 1.3 kg, male, castrated, aged 4-5 months, were distributed in a completely randomized experimental design with four treatments (diets) and six replications (animals), confined in individual stalls for 70 days. Results The inclusion of tucuma cake (Tuc) reduced dry matter intake (p < 0.01) and diets with cupuassu cake (Cup) and palm kernel cake (Palm) reduced dry matter digestibility (p < 0.05). The Tuc diet also provided the lowest final body weight (p = 0.02); lower average daily gain (p = 0.03); lower feed efficiency (p = 0.03) and lower carcass weight (p < 0.01). However, diets did not influence carcass yield (%), fat thickness (mm) and loin eye area (cm2; p > 0.05). Meat from lambs on the control diet was rated as less fibrous and more tender (p < 0.05). Conclusion The inclusion of tucuma cake does not influence digestibility, but reduces intake, performance and influences carcass characteristics and meat texture. Diets with cupuassu cake or palmiste cake reduced digestibility, however, intake, performance and carcass characteristics were similar to the control diet.
Collapse
Affiliation(s)
- Vinicius Costa Gomes de Castro
- Postgraduate Program in Animal Health and Production in the Amazon, Federal Rural University of the Amazon, Pará, Brazil
| | | | | | | | | | - Shirley Motta de Souza
- Department of Animal Science, Federal Institute of the South of Minas Gerais, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
5
|
Dougherty HC, Evered M, Oltjen JW, Hegarty RS, Neutze SA, Oddy VH. Effects of dietary energy density and supplemental rumen undegradable protein on intake, viscera, and carcass composition of lambs recovering from nutritional restriction. J Anim Sci 2022; 100:6577172. [PMID: 35511607 PMCID: PMC9261503 DOI: 10.1093/jas/skac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/28/2022] [Indexed: 11/24/2022] Open
Abstract
Variation in nutrition is a key determinant of growth, body composition, and the ability of animals to perform to their genetic potential. Depending on the quality of feed available, animals may be able to overcome negative effects of prior nutritional restriction, increasing intake and rates of tissue gain, but full compensation may not occur. A 2 × 3 × 4 factorial serial slaughter study was conducted to examine the effects of prior nutritional restriction, dietary energy density, and supplemental rumen undegradable protein (RUP) on intake, growth, and body composition of lambs. After an initial slaughter (n = 8), 124 4-mo-old Merino cross wethers (28.4 ± 1.8 kg) were assigned to either restricted (LO, 500 g/d) or unrestricted (HI, 1500 g/d) intake of lucerne and oat pellets. After 8 wk, eight lambs/group were slaughtered and tissue weights and chemical composition were measured. Remaining lambs were randomly assigned to a factorial combination of dietary energy density (7.8, 9.2, and 10.7 MJ/kg DM) and supplemental RUP (0, 30, 60, and 90 g/d) and fed ad libitum for a 12- to 13-wk experimental period before slaughter and analysis. By week 3 of the experimental period, lambs fed the same level of energy had similar DMI (g/d) and MEI (MJ/d) (P > 0.05), regardless of prior level of nutrition. Restricted-refed (LO) lambs had higher rates of fat and protein gain than HI lambs (P < 0.05) but had similar visceral masses (P > 0.05). However, LO lambs were lighter and leaner at slaughter, with proportionally larger rumens and livers (P < 0.05). Tissue masses increased with increasing dietary energy density, as did DMI, energy and nitrogen (N) retention (% intake), and rates of protein and fat gain (P < 0.05). The liver increased proportionally with increasing dietary energy density and RUP (P < 0.05), but rumen size decreased relative to the empty body as dietary energy density increased (P < 0.05) and did not respond to RUP (P > 0.05). Fat deposition was greatest in lambs fed 60 g/d supplemental RUP (P < 0.05). However, lambs fed 90 g/d were as lean as lambs that did not receive supplement (P0, P > 0.05), with poorer nitrogen retention and proportionally heavier livers than P0 lambs (P < 0.05). In general, visceral protein was the first tissue to respond to increased intake during refeeding, followed by non-visceral protein and fat, highlighting the influence of differences in tissue response over time on animal performance and body composition.
Collapse
Affiliation(s)
- H C Dougherty
- University of New England Department of Animal Science, Armidale, NSW, Australia.,NSW Department of Primary Industries, Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| | - M Evered
- NSW Department of Primary Industries, Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| | - J W Oltjen
- University of California Davis Department of Animal Science, Davis, CA, USA
| | - R S Hegarty
- University of New England Department of Animal Science, Armidale, NSW, Australia
| | | | - V H Oddy
- NSW Department of Primary Industries, Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| |
Collapse
|
6
|
Does the Effect of Replacing Cottonseed Meal with Dried Distiller's Grains on Nellore Bulls Finishing Phase Vary between Pasture and Feedlot? Animals (Basel) 2021; 11:ani11010085. [PMID: 33466432 PMCID: PMC7824892 DOI: 10.3390/ani11010085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Simple Summary The use of less costly products that are not consumed by humans in animal feed has gained increasing attention in the context of sustainable production. Dried distiller’s grains (DDG), a co-product of the production of ethanol from corn, stands out for being efficient in the nutrition of ruminants, meeting both the energy and protein demands of the diets, when the cattle are kept in the pasture or feedlot. The study aimed to evaluate the effect of replacing cottonseed meal (CM) by DDG in two levels (50% (50DDG) and 100% (100DDG)), in terms of efficiency in the productive aspects of cattle finishing phase comparing pasture versus feedlot. The effect of replacing CM by DDG on dry matter, nutrients intake and nutrients digestibility depends on finishing system. While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture. Animal performance and final body weight were higher in the feedlot. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment. Abstract The study aimed to evaluate the effect of replacing cottonseed meal by dried distiller’s grains (DDG) in terms of efficiency in the productive aspects of beef cattle finishing in pasture versus feedlot. The experiment was conducted in a completely randomized design in a 2 × 3 factorial arrangement, with two production systems (pasture versus feedlot) and three supplements: CM, conventional supplement with cottonseed meal (CM) as a protein source; 50DDG: supplement with 50% replacement of CM by DDG; and 100DDG: 100% replacement. The effect of replacing CM by DDG on dry matter and nutrients intake and nutrients digestibility depends on the finishing system (p < 0.05). While in the pasture system animal consumed more nutrients in the CM, a greater intake was observed in the 100DDG in feedlot. The nutrients digestibility was lower in the pasture (p < 0.05). Animal performance and final body weight were higher in the feedlot (p < 0.0001), with averages of 1.57 kg/d and 566 kg of final body weight (FBW) for feedlot, and 0.99 kg/d and 504 kg FBW for pasture. The use of DDG does not change the animal performance finished in pasture or feedlot, and it is a viable alternative to replace conventional supplements in finishing phase in both systems in tropical environment.
Collapse
|
7
|
Nolan JV. Recent Advances in Animal Nutrition – Australia: people and circumstances shaping this symposium. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an21219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|