1
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Riegelman E, Xue KS, Wang JS, Tang L. Gut-Brain Axis in Focus: Polyphenols, Microbiota, and Their Influence on α-Synuclein in Parkinson's Disease. Nutrients 2024; 16:2041. [PMID: 38999791 PMCID: PMC11243524 DOI: 10.3390/nu16132041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
With the recognition of the importance of the gut-brain axis in Parkinson's disease (PD) etiology, there is increased interest in developing therapeutic strategies that target α-synuclein, the hallmark abhorrent protein of PD pathogenesis, which may originate in the gut. Research has demonstrated that inhibiting the aggregation, oligomerization, and fibrillation of α-synuclein are key strategies for disease modification. Polyphenols, which are rich in fruits and vegetables, are drawing attention for their potential role in this context. In this paper, we reviewed how polyphenols influence the composition and functional capabilities of the gut microbiota and how the resulting microbial metabolites of polyphenols may potentially enhance the modulation of α-synuclein aggregation. Understanding the interaction between polyphenols and gut microbiota and identifying which specific microbes may enhance the efficacy of polyphenols is crucial for developing therapeutic strategies and precision nutrition based on the microbiome.
Collapse
Affiliation(s)
| | | | | | - Lili Tang
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (E.R.); (K.S.X.); (J.-S.W.)
| |
Collapse
|
4
|
Galkin M, Priss A, Kyriukha Y, Shvadchak V. Navigating α-Synuclein Aggregation Inhibition: Methods, Mechanisms, and Molecular Targets. CHEM REC 2024; 24:e202300282. [PMID: 37919046 DOI: 10.1002/tcr.202300282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Parkinson's disease is a yet incurable, age-related neurodegenerative disorder characterized by the aggregation of small neuronal protein α-synuclein into amyloid fibrils. Inhibition of this process is a prospective strategy for developing a disease-modifying treatment. We overview here small molecule, peptide, and protein inhibitors of α-synuclein fibrillization reported to date. Special attention was paid to the specificity of inhibitors and critical analysis of their action mechanisms. Namely, the importance of oxidation of polyphenols and cross-linking of α-synuclein into inhibitory dimers was highlighted. We also compared strategies of targeting monomeric, oligomeric, and fibrillar α-synuclein species, thoroughly discussed the strong and weak sides of different approaches to testing the inhibitors.
Collapse
Affiliation(s)
- Maksym Galkin
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anastasiia Priss
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Yevhenii Kyriukha
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, Missouri, 63110, United States
| | - Volodymyr Shvadchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Harati M, Tayarani-Najaran Z, Javadi B. Dietary flavonoids: Promising compounds for targeting α-synucleinopathy in Parkinson’s disease. PHARMANUTRITION 2023. [DOI: 10.1016/j.phanu.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
6
|
Mass spectrometric insights into protein aggregation. Essays Biochem 2023; 67:243-253. [PMID: 36636963 PMCID: PMC10070474 DOI: 10.1042/ebc20220103] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/14/2023]
Abstract
Protein aggregation is now recognized as a generic and significant component of the protein energy landscape. Occurring through a complex and dynamic pathway of structural interconversion, the assembly of misfolded proteins to form soluble oligomers and insoluble aggregates remains a challenging topic of study, both in vitro and in vivo. Since the etiology of numerous human diseases has been associated with protein aggregation, and it has become a field of increasing importance in the biopharmaceutical industry, the biophysical characterization of protein misfolded states and their aggregation mechanisms continues to receive increased attention. Mass spectrometry (MS) has firmly established itself as a powerful analytical tool capable of both detection and characterization of proteins at all levels of structure. Given inherent advantages of biological MS, including high sensitivity, rapid timescales of analysis, and the ability to distinguish individual components from complex mixtures with unrivalled specificity, it has found widespread use in the study of protein aggregation, importantly, where traditional structural biology approaches are often not amenable. The present review aims to provide a brief overview of selected MS-based approaches that can provide a range of biophysical descriptors associated with protein conformation and the aggregation pathway. Recent examples highlight where this technology has provided unique structural and mechanistic understanding of protein aggregation.
Collapse
|
7
|
The Extracellular Molecular Chaperone Clusterin Inhibits Amyloid Fibril Formation and Suppresses Cytotoxicity Associated with Semen-Derived Enhancer of Virus Infection (SEVI). Cells 2022; 11:cells11203259. [PMID: 36291126 PMCID: PMC9600718 DOI: 10.3390/cells11203259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Clusterin is a glycoprotein present at high concentrations in many extracellular fluids, including semen. Its increased expression accompanies disorders associated with extracellular amyloid fibril accumulation such as Alzheimer’s disease. Clusterin is an extracellular molecular chaperone which prevents the misfolding and amorphous and amyloid fibrillar aggregation of a wide variety of unfolding proteins. In semen, amyloid fibrils formed from a 39-amino acid fragment of prostatic acid phosphatase, termed Semen-derived Enhancer of Virus Infection (SEVI), potentiate HIV infectivity. In this study, clusterin potently inhibited the in vitro formation of SEVI fibrils, along with dissociating them. Furthermore, clusterin reduced the toxicity of SEVI to pheochromocytoma-12 cells. In semen, clusterin may play an important role in preventing SEVI amyloid fibril formation, in dissociating SEVI fibrils and in mitigating their enhancement of HIV infection.
Collapse
|
8
|
Bennett JL, Nguyen GTH, Donald WA. Protein-Small Molecule Interactions in Native Mass Spectrometry. Chem Rev 2021; 122:7327-7385. [PMID: 34449207 DOI: 10.1021/acs.chemrev.1c00293] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Small molecule drug discovery has been propelled by the continual development of novel scientific methodologies to occasion therapeutic advances. Although established biophysical methods can be used to obtain information regarding the molecular mechanisms underlying drug action, these approaches are often inefficient, low throughput, and ineffective in the analysis of heterogeneous systems including dynamic oligomeric assemblies and proteins that have undergone extensive post-translational modification. Native mass spectrometry can be used to probe protein-small molecule interactions with unprecedented speed and sensitivity, providing unique insights into polydisperse biomolecular systems that are commonly encountered during the drug discovery process. In this review, we describe potential and proven applications of native MS in the study of interactions between small, drug-like molecules and proteins, including large multiprotein complexes and membrane proteins. Approaches to quantify the thermodynamic and kinetic properties of ligand binding are discussed, alongside a summary of gas-phase ion activation techniques that have been used to interrogate the structure of protein-small molecule complexes. We additionally highlight some of the key areas in modern drug design for which native mass spectrometry has elicited significant advances. Future developments and applications of native mass spectrometry in drug discovery workflows are identified, including potential pathways toward studying protein-small molecule interactions on a whole-proteome scale.
Collapse
Affiliation(s)
- Jack L Bennett
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Giang T H Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Jin L, Gao W, Liu C, Zhang N, Mukherjee S, Zhang R, Dong H, Bhunia A, Bednarikova Z, Gazova Z, Liu M, Han J, Siebert HC. Investigating the inhibitory effects of entacapone on amyloid fibril formation of human lysozyme. Int J Biol Macromol 2020; 161:1393-1404. [DOI: 10.1016/j.ijbiomac.2020.07.296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/01/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
10
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
11
|
Liu Y, Jovcevski B, Pukala TL. C-Phycocyanin from Spirulina Inhibits α-Synuclein and Amyloid-β Fibril Formation but Not Amorphous Aggregation. JOURNAL OF NATURAL PRODUCTS 2019; 82:66-73. [PMID: 30620188 DOI: 10.1021/acs.jnatprod.8b00610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Proteinopathies including cataracts and neurodegenerative diseases, such as Alzheimer's and Parkinson's disease, are characterized by a series of aberrant protein folding events, resulting in amorphous aggregate or amyloid fibril formation. In the latter case, research has heavily focused on the development of small-molecule inhibitors with limited success during clinical trials. However, very few studies have focused on utilizing exogenous proteins as potential aggregation inhibitors. C-Phycocyanin, derived from Spirulina sp., has been known to exert anti-inflammatory properties; however, the ability of C-phycocyanin to inhibit protein aggregation has yet to be investigated. We have demonstrated that C-phycocyanin is an effective inhibitor of A53Tα-synuclein at extremely low substoichiometric ratios (200-fold excess of α-synuclein) and Aβ40/42 fibril formation. However, C-phycocyanin is relatively ineffective in inhibiting the reduction-induced amorphous aggregation of ADH and heat-induced aggregation of catalase. In addition, 2D NMR, ion mobility-mass spectrometry, and analytical-SEC demonstrate that the interaction between C-phycocyanin and α-synuclein is through nonstable interactions, indicating that transient interactions are likely to be responsible for preventing fibril formation. Overall, this work highlights how biomolecules from natural sources could be used to aid in the development of therapeutics to combat protein misfolding diseases.
Collapse
Affiliation(s)
- Yanqin Liu
- The School of Technology , Hebei Agricultural University , Cangzhou , Hebei 061100 , People's Republic of China
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Blagojce Jovcevski
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Tara L Pukala
- The School of Physical Sciences , The University of Adelaide , Adelaide , South Australia 5005 , Australia
| |
Collapse
|
12
|
Das S, Pukala TL, Smid SD. Exploring the Structural Diversity in Inhibitors of α-Synuclein Amyloidogenic Folding, Aggregation, and Neurotoxicity. Front Chem 2018; 6:181. [PMID: 29888220 PMCID: PMC5983024 DOI: 10.3389/fchem.2018.00181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022] Open
Abstract
Aggregation of α-Synuclein (αS) protein to amyloid fibrils is a neuropathological hallmark of Parkinson's disease (PD). Growing evidence suggests that extracellular αS aggregation plays a pivotal role in neurodegeneration found in PD in addition to the intracellular αS aggregates in Lewy bodies (LB). Here, we identified and compared a diverse set of molecules capable of mitigating protein aggregation and exogenous toxicity of αSA53T, a more aggregation-prone αS mutant found in familial PD. For the first time, we investigated the αS anti-amyloid activity of semi-synthetic flavonoid 2', 3', 4' trihydroxyflavone or 2-D08, which was compared with natural flavones myricetin and transilitin, as well as such structurally diverse polyphenols as honokiol and punicalagin. Additionally, two novel synthetic compounds with a dibenzyl imidazolidine scaffold, Compound 1 and Compound 2, were also investigated as they exhibited favorable binding with αSA53T. All seven compounds inhibited αSA53T aggregation as demonstrated by Thioflavin T fluorescence assays, with modified fibril morphology observed by transmission electron microscopy. Ion mobility-mass spectrometry (IM-MS) was used to monitor the structural conversion of native αSA53T into amyloidogenic conformations and all seven compounds preserved the native unfolded conformations of αSA53T following 48 h incubation. The presence of each test compound in a 1:2 molar ratio was also shown to inhibit the neurotoxicity of preincubated αSA53T using phaeochromocytoma (PC12) cell viability assays. Among the seven tested compounds 2-D08, honokiol, and the synthetic Compound 2 demonstrated the highest inhibition of aggregation, coupled with neuroprotection from preincubated αSA53T in vitro. Molecular docking predicted that all compounds bound near the lysine-rich region of the N-terminus of αSA53T, where the flavonoids and honokiol predominantly interacted with Lys 23. Overall, these findings highlight that (i) restricted vicinal trihydroxylation in the flavone B-ring is more effective in stabilizing the native αS conformations, thus blocking amyloidogenic aggregation, than dihydroxylation aggregation in both A and B-ring, and (ii) honokiol, punicalagin, and the synthetic imidazolidine Compound 2 also inhibit αS amyloidogenic aggregation by stabilizing its native conformations. This diverse set of molecules acting on a singular pathological target with predicted binding to αSA53T in the folding-prone N-terminal region may contribute toward novel drug-design for PD.
Collapse
Affiliation(s)
- Sukanya Das
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health Sciences and Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Tara L. Pukala
- Discipline of Chemistry, School of Physical Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Scott D. Smid
- Discipline of Pharmacology, Adelaide Medical School, Faculty of Health Sciences and Medicine, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
13
|
Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT. Sizing Up Protein-Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:25-44. [PMID: 28301749 DOI: 10.1146/annurev-anchem-061516-045414] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry-based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein-small-molecule complexes, and discuss the bright future awaiting this group of technologies.
Collapse
Affiliation(s)
| | - Richard Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
14
|
Konijnenberg A, Ranica S, Narkiewicz J, Legname G, Grandori R, Sobott F, Natalello A. Opposite Structural Effects of Epigallocatechin-3-gallate and Dopamine Binding to α-Synuclein. Anal Chem 2016; 88:8468-75. [PMID: 27467405 DOI: 10.1021/acs.analchem.6b00731] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The intrinsically disordered and amyloidogenic protein α-synuclein (AS) has been linked to several neurodegenerative states, including Parkinson's disease. Here, nanoelectrospray-ionization mass spectrometry (nano-ESI-MS), ion mobility (IM), and native top-down electron transfer dissociation (ETD) techniques are employed to study AS interaction with small molecules known to modulate its aggregation, such as epigallocatechin-3-gallate (EGCG) and dopamine (DA). The complexes formed by the two ligands under identical conditions reveal peculiar differences. While EGCG engages AS in compact conformations, DA preferentially binds to the protein in partially extended conformations. The two ligands also have different effects on AS structure as assessed by IM, with EGCG leading to protein compaction and DA to its extension. Native top-down ETD on the protein-ligand complexes shows how the different observed modes of binding of the two ligands could be related to their known opposite effects on AS aggregation. The results also show that the protein can bind either ligand in the absence of any covalent modifications, such as oxidation.
Collapse
Affiliation(s)
- Albert Konijnenberg
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Simona Ranica
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Joanna Narkiewicz
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A , 34136 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp , Groenenborgerlaan 171, 2020 Antwerp, Belgium.,Astbury Centre for Structural Molecular Biology, University of Leeds , Leeds, LS2 9JT, U.K.,School of Molecular and Cellular Biology, University of Leeds , Leeds, LS2 9JT, U.K
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza 2, 20126 Milan, Italy.,Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), UdR of Milano-Bicocca, and Milan Center of Neuroscience (NeuroMI), 20126 Milan, Italy
| |
Collapse
|
15
|
Liu Y, Graetz M, Ho L, Pukala TL. Ion mobility-mass spectrometry-based screening for inhibition of α- synuclein aggregation. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:255-264. [PMID: 26307705 DOI: 10.1255/ejms.1359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Aberrant protein folding and formation of amyloid fibrils are associated with numerous debilitating human diseases, for which there are currently no suitable therapeutic treatments. For instance, Parkinson's disease is characterised pathologically by the intraneural accumulation of the amyloid protein α- synuclein. In order to search for new therapeutic agents that are effective in preventing the early conformational changes that precede protein aggregation, it is necessary to devise new analytical screening approaches. Here we demonstrate the use of ion mobility-mass spectrometry for screening of molecules capable of inhibiting the misfolding and aggregation of α-synuclein (specifically, the A53T human mutant). Importantly, this assay allows for the analysis of conformational changes that precede aggregation, and therefore is unique in its ability to identify inhibitors working at the earliest stages of amyloid formation. In addition, we use complementary mass spectrometry methods to probe selected protein-ligand interactions responsible for fibril inhibition.
Collapse
Affiliation(s)
- Yanqin Liu
- Discipline of Chemistry, University of Adelaide, SA, 5005, Australia.
| | - Michael Graetz
- Discipline of Chemistry, University of Adelaide, SA, 5005, Australia.
| | - Lam Ho
- Discipline of Chemistry, University of Adelaide, SA, 5005, Australia.
| | - Tara L Pukala
- Dis cipline of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
16
|
Woods L, Radford S, Ashcroft A. Advances in ion mobility spectrometry-mass spectrometry reveal key insights into amyloid assembly. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1834:1257-68. [PMID: 23063533 PMCID: PMC3787735 DOI: 10.1016/j.bbapap.2012.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 09/27/2012] [Accepted: 10/02/2012] [Indexed: 10/28/2022]
Abstract
Interfacing ion mobility spectrometry to mass spectrometry (IMS-MS) has enabled mass spectrometric analyses to extend into an extra dimension, providing unrivalled separation and structural characterization of lowly populated species in heterogeneous mixtures. One biological system that has benefitted significantly from such advances is that of amyloid formation. Using IMS-MS, progress has been made into identifying transiently populated monomeric and oligomeric species for a number of different amyloid systems and has led to an enhanced understanding of the mechanism by which small molecules modulate amyloid formation. This review highlights recent advances in this field, which have been accelerated by the commercial availability of IMS-MS instruments. This article is part of a Special Issue entitled: Mass spectrometry in structural biology.
Collapse
Affiliation(s)
| | - S.E. Radford
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| | - A.E. Ashcroft
- Astbury Centre for Structural Molecular Biology & School of Molecular and Cellular Biology, University of Leeds, LS2 9JT, UK
| |
Collapse
|
17
|
Williams DM, Pukala TL. Novel insights into protein misfolding diseases revealed by ion mobility-mass spectrometry. MASS SPECTROMETRY REVIEWS 2013; 32:169-187. [PMID: 23345084 DOI: 10.1002/mas.21358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 05/23/2012] [Accepted: 05/29/2012] [Indexed: 06/01/2023]
Abstract
Amyloid disorders incorporate a wide range of human diseases arising from the failure of a specific peptide or protein to adopt, or remain in, its native functional conformational state. These pathological conditions, such as Parkinson's disease, Alzheimer's disease and Huntington's disease are highly debilitating, exact enormous costs on both individuals and society, and are predicted to increase in prevalence. Consequently, they form the focus of a topical and rich area of current scientific research. A major goal in attempts to understand and treat protein misfolding diseases is to define the structures and interactions of protein species intermediate between fully folded and aggregated, and extract a description of the aggregation process. This has proven a difficult task due to the inability of traditional structural biology approaches to analyze structurally heterogeneous systems. Continued developments in instrumentation and analytical approaches have seen ion mobility-mass spectrometry (IM-MS) emerge as a complementary approach for protein structure determination, and in some cases, a structural biology tool in its own right. IM-MS is well suited to the study of protein misfolding, and has already yielded significant structural information for selected amyloidogenic systems during the aggregation process. This review describes IM-MS for protein structure investigation, and provides a summary of current research highlighting how this methodology has unequivocally and unprecedentedly provided structural and mechanistic detail pertaining to the oligomerization of a variety of disease related proteins.
Collapse
Affiliation(s)
- Danielle M Williams
- School of Chemistry and Physics, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
18
|
Vlad C, Lindner K, Karreman C, Schildknecht S, Leist M, Tomczyk N, Rontree J, Langridge J, Danzer K, Ciossek T, Petre A, Gross ML, Hengerer B, Przybylski M. Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson's disease protein alpha-synuclein as revealed by ion mobility mass spectrometry. Chembiochem 2011; 12:2740-4. [PMID: 22162214 DOI: 10.1002/cbic.201100569] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Indexed: 12/29/2022]
Abstract
Gas-phase protein separation by ion mobility: With its ability to separate the Parkinson's disease protein α-synuclein and its autoproteolytic products-despite the small concentrations of the latter-ion-mobility MS has enabled the characterization of intermediate fragments in in vitro oligomerization-aggregation. In particular, a possible key fragment, the highly aggregating C-terminal fragment, αSyn(72-140), has been revealed.
Collapse
Affiliation(s)
- Camelia Vlad
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
High performance ion mobility spectrometry as a fast and low cost green analytical technology part I: analysis of nutritional supplements. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s12127-011-0072-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|