1
|
Xia J, Chen X, Li G, Qiu P, Wang W, Shao Z. A Review of Sponge-Derived Diterpenes: 2009-2022. Mar Drugs 2024; 22:447. [PMID: 39452855 PMCID: PMC11509224 DOI: 10.3390/md22100447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Sponges are a vital source of pharmaceutically active secondary metabolites, of which the main structural types are alkaloids and terpenoids. Many of these compounds exhibit biological activities. Focusing specifically on diterpenoids, this article reviews the structures and biological activities of 228 diterpenes isolated from more than 33 genera of sponges from 2009 to 2022. The Spongia sponges produce the most diterpenoid molecules among all genera, accounting for 27%. Of the 228 molecules, 110 exhibit cytotoxic, antibacterial, antifungal, antiparasitic, anti-inflammatory, and antifouling activities, among others. The most prevalent activity is cytotoxicity, present in 54 molecules, which represent 24% of the diterpenes reported. These structurally and biologically diverse diterpenoids highlight the vast, yet largely untapped, potential of marine sponges in the discovery of new bioactive molecules for medicinal use.
Collapse
Affiliation(s)
- Jinmei Xia
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Xiangwei Chen
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
- Department of Pharmacy, NO. 971 Hospital of the People’s Liberation Army Navy, Qingdao 266000, China
| | - Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Peng Qiu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Weiyi Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (X.C.); (G.L.); (P.Q.)
| |
Collapse
|
2
|
Bell JJ, Strano F, Broadribb M, Wood G, Harris B, Resende AC, Novak E, Micaroni V. Sponge functional roles in a changing world. ADVANCES IN MARINE BIOLOGY 2023; 95:27-89. [PMID: 37923539 DOI: 10.1016/bs.amb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Sponges are ecologically important benthic organisms with many important functional roles. However, despite increasing global interest in the functions that sponges perform, there has been limited focus on how such functions will be impacted by different anthropogenic stressors. In this review, we describe the progress that has been made in our understanding of the functional roles of sponges over the last 15 years and consider the impacts of anthropogenic stressors on these roles. We split sponge functional roles into interactions with the water column and associations with other organisms. We found evidence for an increasing focus on functional roles among sponge-focused research articles, with our understanding of sponge-mediated nutrient cycling increasing substantially in recent years. From the information available, many anthropogenic stressors have the potential to negatively impact sponge pumping, and therefore have the potential to cause ecosystem level impacts. While our understanding of the importance of sponges has increased in the last 15 years, much more experimental work is required to fully understand how sponges will contribute to reef ecosystem function in future changing oceans.
Collapse
Affiliation(s)
- James J Bell
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand.
| | - Francesca Strano
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Manon Broadribb
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Gabriela Wood
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Ben Harris
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Anna Carolina Resende
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Emma Novak
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Valerio Micaroni
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
3
|
Chen ZH, Guo YW, Li XW. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential. Nat Prod Rep 2023; 40:509-556. [PMID: 35942896 DOI: 10.1039/d2np00021k] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2011-2021Marine mollusks, which are well known as rich sources of diverse and biologically active natural products, have attracted significant attention from researchers due to their chemical and pharmacological properties. The occurrence of some of these marine mollusk-derived natural products in their preys, predators, and associated microorganisms has also gained interest in chemical ecology research. Based on previous reviews, herein, we present a comprehensive summary of the recent advances of interesting secondary metabolites from marine mollusks, focusing on their structural features, possible chemo-ecological significance, and promising biological activities, covering the literature from 2011 to 2021.
Collapse
Affiliation(s)
- Zi-Hui Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yue-Wei Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| |
Collapse
|
4
|
Forster LC, Clegg JK, Cheney KL, Garson MJ. Expanding the Repertoire of Spongian-16-One Derivatives in Australian Nudibranchs of the Genus Goniobranchus and Evaluation of Their Anatomical Distribution. Mar Drugs 2021; 19:680. [PMID: 34940679 PMCID: PMC8706817 DOI: 10.3390/md19120680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
Extracts of the mantle and viscera of the Indo-Pacific nudibranchs Goniobranchus aureopurpureus and Goniobranchus sp. 1 afforded 11 new diterpenoids (1-11), all of which possess a tetracyclic spongian-16-one scaffold with extensive oxidation at C-6, C-7, C-11, C-12, C-13, and/or C-20. The structures and relative configuration were investigated by NMR experiments, while X-ray crystallography provided the absolute configuration of 1, including a 2'S configuration for the 2-methylbutanoate substituent located at C-7. Dissection of animal tissue revealed that the mantle and viscera tissues differed in their metabolite composition with diterpenes 1-11 present in the mantle tissue of the two nudibranch species.
Collapse
Affiliation(s)
- Louise C. Forster
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.F.); (J.K.C.)
| | - Jack K. Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.F.); (J.K.C.)
| | - Karen L. Cheney
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Mary J. Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (L.C.F.); (J.K.C.)
| |
Collapse
|
5
|
Avila C, Angulo-Preckler C. Bioactive Compounds from Marine Heterobranchs. Mar Drugs 2020; 18:657. [PMID: 33371188 PMCID: PMC7767343 DOI: 10.3390/md18120657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022] Open
Abstract
The natural products of heterobranch molluscs display a huge variability both in structure and in their bioactivity. Despite the considerable lack of information, it can be observed from the recent literature that this group of animals possesses an astonishing arsenal of molecules from different origins that provide the molluscs with potent chemicals that are ecologically and pharmacologically relevant. In this review, we analyze the bioactivity of more than 450 compounds from ca. 400 species of heterobranch molluscs that are useful for the snails to protect themselves in different ways and/or that may be useful to us because of their pharmacological activities. Their ecological activities include predator avoidance, toxicity, antimicrobials, antifouling, trail-following and alarm pheromones, sunscreens and UV protection, tissue regeneration, and others. The most studied ecological activity is predation avoidance, followed by toxicity. Their pharmacological activities consist of cytotoxicity and antitumoral activity; antibiotic, antiparasitic, antiviral, and anti-inflammatory activity; and activity against neurodegenerative diseases and others. The most studied pharmacological activities are cytotoxicity and anticancer activities, followed by antibiotic activity. Overall, it can be observed that heterobranch molluscs are extremely interesting in regard to the study of marine natural products in terms of both chemical ecology and biotechnology studies, providing many leads for further detailed research in these fields in the near future.
Collapse
Affiliation(s)
- Conxita Avila
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
| | - Carlos Angulo-Preckler
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, Biodiversity Research Institute (IrBIO), Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Catalonia, Spain;
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Hansine Hansens veg 18, 9019 Tromsø, Norway
| |
Collapse
|
6
|
Purification, chemical structure and antioxidant activity of active ingredient (LPT-3d) separated from Lachnum sp. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Forster LC, White AM, Cheney KL, Garson MJ. Oxygenated Terpenes from the Indo-Pacific Nudibranchs Goniobranchus splendidus and Goniobranchus collingwoodi. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Three new terpenes each with a highly oxygenated or rearranged spongian framework were characterized from organic extracts of the nudibranchs G. splendidus and G. collingwoodi collected from Eastern Australia.
Collapse
Affiliation(s)
- Louise C. Forster
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Andrew M. White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4072, Australia
| | - Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Mary J. Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
8
|
Tao DJ, Slutskyy Y, Muuronen M, Le A, Kohler P, Overman LE. Total Synthesis of (-)-Chromodorolide B By a Computationally-Guided Radical Addition/Cyclization/Fragmentation Cascade. J Am Chem Soc 2018; 140:3091-3102. [PMID: 29412658 DOI: 10.1021/jacs.7b13799] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first total synthesis of a chromodorolide marine diterpenoid is described. The core of the diterpenoid is constructed by a bimolecular radical addition/cyclization/fragmentation cascade that unites two complex fragments and forms two C-C bonds and four contiguous stereogenic centers of (-)-chromodorolide B in a single step. This coupling step is initiated by visible-light photocatalytic fragmentation of a redox-active ester, which can be accomplished in the presence of an iridium or a less-precious electron-rich dicyanobenzene photocatalyst, and employs equimolar amounts of the two addends. Computational studies guided the development of this central step of the synthesis and provide insight into the origin of the observed stereoselectivity.
Collapse
Affiliation(s)
- Daniel J Tao
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Yuriy Slutskyy
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Mikko Muuronen
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Alexander Le
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Philipp Kohler
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| | - Larry E Overman
- Department of Chemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
9
|
Dewi AS, Pierens GK, Cheney KL, Blanchfield JT, Garson MJ. Chromolactol, an Oxygenated Diterpene from the Indo-Pacific Nudibranch Goniobranchus coi: Spectroscopic and Computational Studies. Aust J Chem 2018. [DOI: 10.1071/ch18243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A rearranged spongian diterpene chromolactol was obtained from the mantle extract of the Indo-Pacific nudibranch Goniobranchus coi. The structure of chromolactol, either 1a or 1b, which was investigated by extensive NMR experiments and by data comparison as well as by molecular modelling studies and density functional calculations, has a different relative configuration of the 2,8-dioxabicyclo-[3.3.0]-octane ring compared with the co-metabolite norrisolide (2). A biosynthetic pathway leading to the preferred diastereomer of chromolactol (1a) is presented.
Collapse
|
10
|
Abstract
Covering: up to the end of February 2017Nudibranchs have attracted the attention of natural product researchers due to the potential for discovery of bioactive metabolites, in conjunction with the interesting predator-prey chemical ecological interactions that are present. This review covers the literature published on natural products isolated from nudibranchs up to February 2017 with species arranged taxonomically. Selected examples of metabolites obtained from nudibranchs across the full range of taxa are discussed, including their origins (dietary or biosynthetic) if known and biological activity.
Collapse
Affiliation(s)
- Lewis J Dean
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| | | |
Collapse
|
11
|
Forster LC, Winters AE, Cheney KL, Dewapriya P, Capon RJ, Garson MJ. Spongian-16-one Diterpenes and Their Anatomical Distribution in the Australian Nudibranch Goniobranchus collingwoodi. JOURNAL OF NATURAL PRODUCTS 2017; 80:670-675. [PMID: 28032760 DOI: 10.1021/acs.jnatprod.6b00936] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Six new (1-6) spongian-16-one analogues have been characterized from the Australian nudibranch species Goniobranchus collingwoodi, along with four known spongian-16-one derivatives. The structures and relative configuration were suggested by spectroscopic analyses informed by molecular modeling. Dissection of animal tissue revealed that the mantle and viscera differ in their terpene composition. Whole body extracts were not toxic to brine shrimp (Artemia sp.), but were unpalatable to palaemon shrimp (Palaemon serenus) at a concentration found within the nudibranch. Individual terpenes were not cytotoxic to human lung (NCIH-460), colorectal (SW620), and liver (HepG2) cancer cells.
Collapse
Affiliation(s)
- Louise C Forster
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Anne E Winters
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Pradeep Dewapriya
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Robert J Capon
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Institute for Molecular Bioscience, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
The Sequestration of Oxy-Polybrominated Diphenyl Ethers in the Nudibranchs Miamira magnifica and Miamira miamirana. Mar Drugs 2016; 14:md14110198. [PMID: 27801777 PMCID: PMC5128741 DOI: 10.3390/md14110198] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 11/17/2022] Open
Abstract
A series of oxy-polybrominated diphenyl ethers (O-PBDEs) has been isolated from the extracts of Miamira magnifica and Miamira miamirana collected from Queensland, Australia. M. magnifica sequesters the new OH-PBDE 1 and six known OH-PBDEs containing four to six bromines (2–7). M. miamirana also accumulates known tribromo- and tetrabromo OMe-PBDEs 8–10 in both mantle and viscera tissues. To date, Miamira is the only genus of the family Chromodorididae that is known to incorporate O-PBDEs, rather than terpenes, in the mantle where the metabolites may play a putative role in chemical defense. The extract of M. magnifica was tested in a brine shrimp lethality assay and exhibited an LD50 of 58 μg/mL.
Collapse
|
13
|
White AM, Dewi AS, Cheney KL, Winters AE, Blanchfield JT, Garson MJ. Oxygenated Diterpenes from the Indo-Pacific Nudibranchs Goniobranchus splendidus and Ardeadoris egretta. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601100714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Five new diterpenes (1-5), each with a highly oxygenated spongian framework, were characterized from an organic extract of a specimen of the nudibranch Goniobranchus splendidus collected from Eastern Australia. The new diterpene 7α-hydroxydendrillol-3 (6) was identified from specimens of Ardeodoris egretta. The structures and relative configurations of the six new metabolites have been elucidated by analysis of their spectroscopic data.
Collapse
Affiliation(s)
- Andrew M. White
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Ariyanti S. Dewi
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Karen L. Cheney
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Anne E. Winters
- School of Biological Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Joanne T. Blanchfield
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| | - Mary J. Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
14
|
White AM, Pierens GK, Forster LC, Winters AE, Cheney KL, Garson MJ. Rearranged Diterpenes and Norditerpenes from Three Australian Goniobranchus Mollusks. JOURNAL OF NATURAL PRODUCTS 2016; 79:477-483. [PMID: 26698272 DOI: 10.1021/acs.jnatprod.5b00866] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three new norditerpenes (1, 6, and 7) and four diterpenes (2-5) with extensively rearranged carbon skeletons have been characterized from Australian nudibranchs. The relative configuration of the cyclopropyl-containing verrielactone (1) from Goniobranchus verrieri was suggested by spectroscopic analysis at 500 MHz informed by a combination of molecular modeling and DFT calculations. The nudibranchs G. splendidus and G. cf. splendidus provided 2-7, for which the structures and stereochemistry were deduced by 2D NMR studies at either 500 or 700 MHz. Each of the seven terpenoids exhibited a carbon skeleton modified from one of the tetrahydroaplysulphurin, spongionellin, or gracilane series of terpenes. A biosynthetic pathway to terpenes 1-7 from spongialactone is proposed.
Collapse
Affiliation(s)
- Andrew M White
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Gregory K Pierens
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Louise C Forster
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Anne E Winters
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Karen L Cheney
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, ‡School of Biological Sciences, and §Centre of Advanced Imaging, The University of Queensland , Brisbane, QLD 4072, Australia
| |
Collapse
|
15
|
Abstract
The first total synthesis of a chromodorolide diterpenoid is described. The synthesis features a bimolecular radical addition/cyclization/fragmentation cascade that unites butenolide and trans-hydrindane fragments while fashioning two C-C bonds and stereoselectively forming three of the ten contiguous stereocenters of chromodorolide B.
Collapse
Affiliation(s)
- Daniel J Tao
- Department of Chemistry, 1102 Natural Sciences II, University of California , Irvine, California 92697-2025, United States
| | - Yuriy Slutskyy
- Department of Chemistry, 1102 Natural Sciences II, University of California , Irvine, California 92697-2025, United States
| | - Larry E Overman
- Department of Chemistry, 1102 Natural Sciences II, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
16
|
New marine natural products from sponges (Porifera) of the order Dictyoceratida (2001 to 2012); a promising source for drug discovery, exploration and future prospects. Biotechnol Adv 2016; 34:473-491. [PMID: 26802363 DOI: 10.1016/j.biotechadv.2015.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/15/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
Abstract
The discovery of new drugs can no longer rely primarily on terrestrial resources, as they have been heavily exploited for over a century. During the last few decades marine sources, particularly sponges, have proven to be a most promising source of new natural products for drug discovery. This review considers the order Dictyoceratida in the Phylum Porifera from which the largest number of new marine natural products have been reported over the period 2001-2012. This paper examines all the sponges from the order Dictyoceratida that were reported as new compounds during the time period in a comprehensive manner. The distinctive physical characteristics and the geographical distribution of the different families are presented. The wide structural diversity of the compounds produced and the variety of biological activities they exhibited is highlighted. As a representative of sponges, insights into this order and avenues for future effective natural product discovery are presented. The research institutions associated with the various studies are also highlighted with the aim of facilitating collaborative relationships, as well as to acknowledge the major international contributors to the discovery of novel sponge metabolites. The order Dictyoceratida is a valuable source of novel chemical structures which will continue to contribute to a new era of drug discovery.
Collapse
|
17
|
Hirayama Y, Katavic PL, White AM, Pierens GK, Lambert LK, Winters AE, Kigoshi H, Kita M, Garson MJ. New Cytotoxic Norditerpenes from the Australian Nudibranchs Goniobranchus Splendidus and Goniobranchus Daphne. Aust J Chem 2016. [DOI: 10.1071/ch15203] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study reports the isolation and characterisation of six new metabolites with ‘gracilin’-type carbon skeletons and of aplytandiene-3 from the Australian nudibranch Goniobranchus splendidus. The structure of gracilin G is revised, and the C-6 configuration deduced by comparison of calculated 3JC/H values with values measured using the EXSIDE pulse sequence. A lactone isolated from Goniobranchus daphne contains a rearranged spongionellin-type skeleton. Screening of selected metabolites revealed significant cytotoxicity against a HeLa S3 cell line by five of the new terpenes.
Collapse
|
18
|
Abstract
This review covers the literature published in 2012 for marine natural products, with 1035 citations (673 for the period January to December 2012) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1241 for 2012), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
Somerville MJ, Katavic PL, Lambert LK, Pierens GK, Blanchfield JT, Cimino G, Mollo E, Gavagnin M, Banwell MG, Garson MJ. Isolation of thuridillins D-F, diterpene metabolites from the Australian sacoglossan mollusk Thuridilla splendens; relative configuration of the epoxylactone ring. JOURNAL OF NATURAL PRODUCTS 2012; 75:1618-1624. [PMID: 22988884 DOI: 10.1021/np300442s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This first chemical study of the sacoglossan mollusk Thuridilla splendens from Mooloolaba, South East Queensland, has resulted in the isolation of three new metabolites, thuridillins D-F (1-3), and one known metabolite, thuridillin A (4). Thuridillin D (1) was isolated by conventional flash chromatography on silica gel, while a mixture of thuridillins E (2) and F (3) was obtained by PTLC on AgNO(3)-impregnated silica gel. Thuridillins D-F were determined to be structurally related to thuridillin B (5); 1 possessed a hydroxy group at C-11, and 2 and 3 were Δ(10,11)- and Δ(11,12)-isomers, respectively. HSQC-HECADE NMR data, together with conformational analysis, NOESY experiments, and (1)H-(1)H coupling studies enabled assignment of the individual relative configurations of the epoxylactone, the 2,5-diacetoxy-2,5-dihydrofuran, and cyclohexyl moieties within thuridillin D (1).
Collapse
Affiliation(s)
- Michael J Somerville
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|