1
|
Khashei Siuki H, Ghamari Kargar P, Bagherzade G. New Acetamidine Cu(II) Schiff base complex supported on magnetic nanoparticles pectin for the synthesis of triazoles using click chemistry. Sci Rep 2022; 12:3771. [PMID: 35260647 PMCID: PMC8904776 DOI: 10.1038/s41598-022-07674-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.
Collapse
Affiliation(s)
- Hossein Khashei Siuki
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Pouya Ghamari Kargar
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran
| | - Ghodsieh Bagherzade
- Department of Chemistry, Faculty of Sciences, University of Birjand, 97175-615, Birjand, Iran.
| |
Collapse
|
2
|
Xu W, Brown LE, Porco JA. Divergent, C-C Bond Forming Macrocyclizations Using Modular Sulfonylhydrazone and Derived Substrates. J Org Chem 2021; 86:16485-16510. [PMID: 34730970 PMCID: PMC8783553 DOI: 10.1021/acs.joc.1c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A divergent approach to C-C bond forming macrocycle construction is described. Modular sulfonylhydrazone and derived pyridotriazole substrates with three key building blocks have been constructed and cyclized to afford diverse macrocyclic frameworks. Broad substrate scope and functional group tolerance have been demonstrated. In addition, site-selective postfunctionalization allowed for further diversification of macrocyclic cores.
Collapse
Affiliation(s)
- Wenqing Xu
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
3
|
Serkova OS, Glushko VV, Toropygin IY, Maslennikova VI. Synthesis of Triazole‐Containing
rctt
Tetra‐
C
‐Naphthyl‐Calix [4]resorcinarene and 1,1‐Dinaphthylmethane Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202003503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Olga S. Serkova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Valentina V. Glushko
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| | - Ilya Yu. Toropygin
- Institute of Biomedical Chemistry Pogodinskaya Str. 10 Moscow 119121 Russia
| | - Vera I. Maslennikova
- Institute of Biology and Chemistry Moscow Pedagogical State University Kibalchicha Str. 6 Moscow 129164 Russia
| |
Collapse
|
4
|
Horsfall AJ, Dunning KR, Keeling KL, Scanlon DB, Wegener KL, Abell AD. A Bimane‐Based Peptide Staple for Combined Helical Induction and Fluorescent Imaging. Chembiochem 2020; 21:3423-3432. [DOI: 10.1002/cbic.202000485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Aimee J. Horsfall
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kylie R. Dunning
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Robinson Research Institute, Adelaide Medical School The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kelly L. Keeling
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Denis B. Scanlon
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Kate L. Wegener
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- School of Biological Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
| | - Andrew D. Abell
- The Department of Chemistry, School of Physical Sciences The University of Adelaide North Terrace Adelaide SA 5005 Australia
- The ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) The University of Adelaide North Terrace Adelaide SA 5005 Australia
- Institute for Photonics and Advanced Sensing (IPAS) The University of Adelaide North Terrace Adelaide SA 5005 Australia
| |
Collapse
|
5
|
Chow HY, Zhang Y, Matheson E, Li X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem Rev 2019; 119:9971-10001. [PMID: 31318534 DOI: 10.1021/acs.chemrev.8b00657] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic peptides have been attracting a lot of attention in recent decades, especially in the area of drug discovery, as more and more naturally occurring cyclic peptides with diverse biological activities have been discovered. Chemical synthesis of cyclic peptides is essential when studying their structure-activity relationships. Conventional peptide cyclization methods via direct coupling have inherent limitations, like the susceptibility to epimerization at the C-terminus, poor solubility of fully protected peptide precursors, and low yield caused by oligomerization. In this regard, chemoselective ligation-mediated cyclization methods have emerged as effective strategies for cyclic peptide synthesis. The toolbox for cyclic peptide synthesis has been expanded substantially in the past two decades, allowing more efficient synthesis of cyclic peptides with various scaffolds and modifications. This Review will explore different chemoselective ligation technologies used for cyclic peptide synthesis that generate both native and unnatural peptide linkages. The practical issues and limitations of different methods will be discussed. The advance in cyclic peptide synthesis will benefit the biological and medicinal study of cyclic peptides, an important class of macrocycles with potentials in numerous fields, notably in therapeutics.
Collapse
Affiliation(s)
- Hoi Yee Chow
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China
| | - Eilidh Matheson
- School of Chemistry , University of Edinburgh , Edinburgh EH8 9LE , United Kingdom
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong SAR , P. R. China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , P. R. China
| |
Collapse
|
6
|
Schumann NC, Bruning J, Marshall AC, Abell AD. The role of N-terminal heterocycles in hydrogen bonding to α-chymotrypsin. Bioorg Med Chem Lett 2019; 29:396-399. [PMID: 30579793 DOI: 10.1016/j.bmcl.2018.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 01/14/2023]
Abstract
A series of dipeptide aldehydes containing different N-terminal heterocycles was prepared and assayed in vitro against α-chymotrypsin to ascertain the importance of the heterocycle in maintaining a β-strand geometry while also providing a hydrogen bond donor equivalent to the backbone amide nitrogen of the surrogate amino acid. The dipeptide containing a pyrrole constraint (10) was the most potent inhibitor, with >30-fold improved activity over dipeptides which lacked a nitrogen hydrogen bond donor (namely thiophene 11, furan 12 and pyridine 13). Molecular docking studies of 10 bound to α-chymotrypsin demonstrates a hydrogen bond between the pyrrole nitrogen donor and the backbone carbonyl of Gly216 located in the S3 pocket which is proposed to be critical for overall binding.
Collapse
Affiliation(s)
- Nicholas C Schumann
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - John Bruning
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew C Marshall
- School of Biological Sciences, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Andrew D Abell
- School of Chemistry & Physics, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
7
|
An efficient green diversity oriented synthesis of pyrimidinone and indole appended macrocyclic peptidomimetics. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Husain AA, Bisht KS. Synthesis of a novel resorcin[4]arene–glucose conjugate and its catalysis of the CuAAC reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles in water. RSC Adv 2019; 9:10109-10116. [PMID: 35520904 PMCID: PMC9062644 DOI: 10.1039/c9ra00972h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/05/2019] [Indexed: 11/21/2022] Open
Abstract
The Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) in aqueous media using resorcin[4]arene glycoconjugate (RG) is reported. The eight β-d-glucopyranoside moieties constructed on the resorcin[4]arene upper rim provide a pseudo-saccharide cavity that offers a suitable host environment for water-insoluble hydrophobic azido and/or alkyne substrates in water. The utility of RG was established as an efficient inverse phase transfer catalyst for the CuAAC in water as a green approach for the synthesis of 1,4-disubstituted 1,2,3-triazole species. The catalytic utility of RG (1 mol%) was demonstrated in a multicomponent one-pot CuAAC for various azido/alkyne substrates. The RG acts as a molecular host and a micro-reactor resulting in the 1,4-disubstituted 1,2,3-triazoles in excellent yield. The Cu(i)-catalyzed azide–alkyne cycloaddition (CuAAC) in aqueous media using resorcin[4]arene glycoconjugate (RG) is reported.![]()
Collapse
Affiliation(s)
- Ali A. Husain
- Department of Chemistry
- University of South Florida
- Tampa
- USA
| | | |
Collapse
|
9
|
Tripeptide analogues of MG132 as protease inhibitors. Bioorg Med Chem 2018; 27:436-441. [PMID: 30581047 DOI: 10.1016/j.bmc.2018.12.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022]
Abstract
The 26S proteasome and calpain are linked to a number of important human diseases. Here, we report a series of analogues of the prototypical tripeptide aldehyde inhibitor MG132 that show a unique combination of high activity and selectivity for calpains over proteasome. Tripeptide aldehydes (1-3) with an aromatic P3 substituent show enhanced activity and selectivity against ovine calpain 2 relative to chymotrypsin-like activity of proteasome. Docking studies reveal the key contacts between inhibitors and calpain to confirm the importance of the S3 pocket with respect to selectivity between calpains 1 and 2 and the proteasome.
Collapse
|
10
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2017. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Kadyrov R. Reduction of Amides to Amines under Mild Conditions via Catalytic Hydrogenation of Amide Acetals and Imidates. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800855] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Renat Kadyrov
- Evonik Resource Efficiency GmbH Rodenbacher Chaussee 4 63457 Hanau-Wolfgang Germany
| |
Collapse
|
12
|
Přibylka A, Krchňák V. An Alkyne Rod to Constrain a Peptide Backbone in an Extended Conformation. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adam Přibylka
- Department of Organic Chemistry; Palacký University; 17. listopadu 12 771 46 Olomouc Czech Republic
| | - Viktor Krchňák
- Department of Organic Chemistry; Palacký University; 17. listopadu 12 771 46 Olomouc Czech Republic
- Department of Organic Chemistry and Biochemistry; University of Notre Dame; 46556 Notre Dame IN United States
| |
Collapse
|
13
|
Cao J, Ma C, Zang J, Gao S, Gao Q, Kong X, Yan Y, Liang X, Ding Q, Zhao C, Wang B, Xu W, Zhang Y. Novel leucine ureido derivatives as aminopeptidase N inhibitors using click chemistry. Bioorg Med Chem 2018; 26:3145-3157. [PMID: 29859750 DOI: 10.1016/j.bmc.2018.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/17/2018] [Accepted: 04/19/2018] [Indexed: 10/17/2022]
|
14
|
Mao ZY, Si CM, Liu YW, Dong HQ, Wei BG, Lin GQ. Divergent Synthesis of Revised Apratoxin E, 30-epi-Apratoxin E, and 30S/30R-Oxoapratoxin E. J Org Chem 2017; 82:10830-10845. [DOI: 10.1021/acs.joc.7b01598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuo-Ya Mao
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Chang-Mei Si
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yi-Wen Liu
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Han-Qing Dong
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| | - Bang-Guo Wei
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Guo-Qiang Lin
- Department
of Natural Products Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- Institute
of Biomedical Sciences, Fudan University, 130 Dongan Road, Shanghai 200433, China
| |
Collapse
|
15
|
Blanco B, Palasis KA, Adwal A, Callen DF, Abell AD. Azobenzene-containing photoswitchable proteasome inhibitors with selective activity and cellular toxicity. Bioorg Med Chem 2017. [PMID: 28642029 DOI: 10.1016/j.bmc.2017.06.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A series of azobenzene-containing peptidic boronate esters was prepared and the activity of the thermally adapted states (TAS), enriched in trans isomer, and the photostationary states (PSS), enriched in cis isomer, for each compound were evaluated against β5 and β1 proteasome subunits. Compounds with a sterically demanding phenyl-substituted azobenzene at P2 (4c), and a less sterically demanding unsubstituted azobenzene at the N-terminus (5a), showed the greatest difference in activity between the two states. In both cases, the more active trans-enriched TAS had activity comparable to bortezomib and delanzomib. Furthermore, cis-enriched 4c inhibited tumor growth in both breast and colorectal carcinoma cell lines. Significantly, the initial trans-enriched TAS of 4c was not cytotoxic against the non-malignant MCF-10A cells.
Collapse
Affiliation(s)
- Beatriz Blanco
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Kathryn A Palasis
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Alaknanda Adwal
- Centre for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - David F Callen
- Centre for Personalised Cancer Medicine, Discipline of Medicine, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Andrew D Abell
- Department of Chemistry, The University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia; ARC Centre of Excellence for Nanoscale BioPhotonics (CNBP) and Institute of Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|