1
|
Morelli L, Havurinne V, Madeira D, Martins P, Cartaxana P, Cruz S. Photoprotective mechanisms in Elysia species hosting Acetabularia chloroplasts shed light on host-donor compatibility in photosynthetic sea slugs. PHYSIOLOGIA PLANTARUM 2024; 176:e14273. [PMID: 38566156 DOI: 10.1111/ppl.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Sacoglossa sea slugs have garnered attention due to their ability to retain intracellular functional chloroplasts from algae, while degrading other algal cell components. While protective mechanisms that limit oxidative damage under excessive light are well documented in plants and algae, the photoprotective strategies employed by these photosynthetic sea slugs remain unresolved. Species within the genus Elysia are known to retain chloroplasts from various algal sources, but the extent to which the metabolic processes from the donor algae can be sustained by the sea slugs is unclear. By comparing responses to high-light conditions through kinetic analyses, molecular techniques, and biochemical assays, this study shows significant differences between two photosynthetic Elysia species with chloroplasts derived from the green alga Acetabularia acetabulum. Notably, Elysia timida displayed remarkable tolerance to high-light stress and sophisticated photoprotective mechanisms such as an active xanthophyll cycle, efficient D1 protein recycling, accumulation of heat-shock proteins and α-tocopherol. In contrast, Elysia crispata exhibited absence or limitations in these photoprotective strategies. Our findings emphasize the intricate relationship between the host animal and the stolen chloroplasts, highlighting different capacities to protect the photosynthetic organelle from oxidative damage.
Collapse
Affiliation(s)
- Luca Morelli
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Vesa Havurinne
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Diana Madeira
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Patrícia Martins
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Sónia Cruz
- ECOMARE-Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
2
|
Napaumpaiporn P, Ogawa T, Sonoike K, Nishiyama Y. Improved capacity for the repair of photosystem II via reinforcement of the translational and antioxidation systems in Synechocystis sp. PCC 6803. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1165-1178. [PMID: 37983611 DOI: 10.1111/tpj.16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023]
Abstract
In the cyanobacterium Synechocystis sp. PCC 6803, translation factor EF-Tu is inactivated by reactive oxygen species (ROS) via oxidation of Cys82 and the oxidation of EF-Tu enhances the inhibition of the repair of photosystem II (PSII) by suppressing protein synthesis. In our present study, we generated transformants of Synechocystis that overexpressed a mutated form of EF-Tu, designated EF-Tu (C82S), in which Cys82 had been replaced by a Ser residue, and ROS-scavenging enzymes individually or together. Expression of EF-Tu (C82S) alone in Synechocystis enhanced the repair of PSII under strong light, with the resultant mitigation of PSII photoinhibition, but it stimulated the production of ROS. However, overexpression of superoxide dismutase and catalase, together with the expression of EF-Tu (C82S), lowered intracellular levels of ROS and enhanced the repair of PSII more significantly under strong light, via facilitation of the synthesis de novo of the D1 protein. By contrast, the activity of photosystem I was hardly affected in wild-type cells and in all the lines of transformed cells under the same strong-light conditions. Furthermore, transformed cells that overexpressed EF-Tu (C82S), superoxide dismutase, and catalase were able to survive longer under stronger light than wild-type cells. Thus, the reinforced capacity for both protein synthesis and ROS scavenging allowed both photosynthesis and cell proliferation to tolerate strong light.
Collapse
Affiliation(s)
- Pornpan Napaumpaiporn
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Takako Ogawa
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Kintake Sonoike
- Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Yoshitaka Nishiyama
- Department of Biochemistry and Molecular Biology, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
- Green Bioscience Research Area, Strategic Research Center, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| |
Collapse
|
3
|
Cuitun‐Coronado D, Rees H, Colmer J, Hall A, de Barros Dantas LL, Dodd AN. Circadian and diel regulation of photosynthesis in the bryophyte Marchantia polymorpha. PLANT, CELL & ENVIRONMENT 2022; 45:2381-2394. [PMID: 35611455 PMCID: PMC9546472 DOI: 10.1111/pce.14364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/10/2023]
Abstract
Circadian rhythms are 24-h biological cycles that align metabolism, physiology, and development with daily environmental fluctuations. Photosynthetic processes are governed by the circadian clock in both flowering plants and some cyanobacteria, but it is unclear how extensively this is conserved throughout the green lineage. We investigated the contribution of circadian regulation to aspects of photosynthesis in Marchantia polymorpha, a liverwort that diverged from flowering plants early in the evolution of land plants. First, we identified in M. polymorpha the circadian regulation of photosynthetic biochemistry, measured using two approaches (delayed fluorescence, pulse amplitude modulation fluorescence). Second, we identified that light-dark cycles synchronize the phase of 24 h cycles of photosynthesis in M. polymorpha, whereas the phases of different thalli desynchronize under free-running conditions. This might also be due to the masking of the underlying circadian rhythms of photosynthesis by light-dark cycles. Finally, we used a pharmacological approach to identify that chloroplast translation might be necessary for clock control of light-harvesting in M. polymorpha. We infer that the circadian regulation of photosynthesis is well-conserved amongst terrestrial plants.
Collapse
Affiliation(s)
- David Cuitun‐Coronado
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
- School of Biological SciencesUniversity of BristolBristolUK
| | | | | | | | | | - Antony N. Dodd
- Department of Cell and Developmental BiologyJohn Innes CentreNorwichUK
| |
Collapse
|
4
|
Cao JY, Wang YY, Wu MN, Kong ZY, Lin JH, Ling T, Xu SM, Ma SN, Zhang L, Zhou CX, Yan XJ, Xu JL. RNA-seq Insights Into the Impact of Alteromonas macleodii on Isochrysis galbana. Front Microbiol 2021; 12:711998. [PMID: 34566917 PMCID: PMC8456094 DOI: 10.3389/fmicb.2021.711998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Phycospheric bacteria may be the key biological factors affecting the growth of algae. However, the studies about interaction between Isochrysis galbana and its phycospheric bacteria are limited. Here, we show that a marine heterotrophic bacterium, Alteromonas macleodii, enhanced the growth of I. galbana, and inhibited non-photochemical quenching (NPQ) and superoxide dismutase (SOD) activities of this microalgae. Further, we explored this phenomenon via examining how the entire transcriptomes of I. galbana changed when it was co-cultured with A. macleodii. Notable increase was observed in transcripts related to photosynthesis, carbon fixation, oxidative phosphorylation, ribosomal proteins, biosynthetic enzymes, and transport processes of I. galbana in the presence of A. macleodii, suggesting the introduction of the bacterium might have introduced increased production and transport of carbon compounds and other types of biomolecules. Besides, the transcriptome changed largely corresponded to reduced stress conditions for I. galbana, as inferred from the depletion of transcripts encoding DNA repair enzymes, superoxide dismutase (SOD) and other stress-response proteins. Taken together, the presence of A. macleodii mainly enhanced photosynthesis and biosynthesis of I. galbana and protected it from stress, especially oxidative stress. Transfer of fixed organic carbon, but perhaps other types of biomolecules, between the autotroph and the heterotroph might happen in I. galbana-A. macleodii co-culture. The present work provides novel insights into the transcriptional consequences of I. galbana of mutualism with its heterotrophic bacterial partner, and mutually beneficial associations existing in I. galbana-A. macleodii might be explored to improve productivity and sustainability of aquaculture algal rearing systems.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ying-Ying Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Min-Nan Wu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Zhou-Yan Kong
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Jing-Hao Lin
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Ting Ling
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Si-Min Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Shuo-Nan Ma
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Cheng-Xu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| | - Xiao-Jun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| | - Ji-Lin Xu
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education of China, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Nymark M, Grønbech Hafskjold MC, Volpe C, Fonseca DDM, Sharma A, Tsirvouli E, Serif M, Winge P, Finazzi G, Bones AM. Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:113-132. [PMID: 33372269 DOI: 10.1111/tpj.15149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The chloroplast signal recognition particle 54 kDa (CpSRP54) protein is a member of the CpSRP pathway known to target proteins to thylakoid membranes in plants and green algae. Loss of CpSRP54 in the marine diatom Phaeodactylum tricornutum lowers the accumulation of a selection of chloroplast-encoded subunits of photosynthetic complexes, indicating a role in the co-translational part of the CpSRP pathway. In contrast to plants and green algae, absence of CpSRP54 does not have a negative effect on the content of light-harvesting antenna complex proteins and pigments in P. tricornutum, indicating that the diatom CpSRP54 protein has not evolved to function in the post-translational part of the CpSRP pathway. Cpsrp54 KO mutants display altered photophysiological responses, with a stronger induction of photoprotective mechanisms and lower growth rates compared to wild type when exposed to increased light intensities. Nonetheless, their phenotype is relatively mild, thanks to the activation of mechanisms alleviating the loss of CpSRP54, involving upregulation of chaperones. We conclude that plants, green algae, and diatoms have evolved differences in the pathways for co-translational and post-translational insertion of proteins into the thylakoid membranes.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Marthe Caroline Grønbech Hafskjold
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Davi de Miranda Fonseca
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Animesh Sharma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, NTNU, Trondheim, N-7491, Norway
- Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU and Central Administration, St Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Eirini Tsirvouli
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| | - Giovanni Finazzi
- Université Grenoble Alpes (UGA), Laboratoire de Physiologie Cellulaire et Végétale, UMR 5168, Centre National de la Recherche Scientifique (CNRS), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Interdisciplinary Research Institute of Grenoble (IRIG), CEA-Grenoble, Grenoble, 38000, France
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Trondheim, N-7491, Norway
| |
Collapse
|
6
|
|
7
|
Bonnanfant M, Jesus B, Pruvost J, Mouget JL, Campbell DA. Photosynthetic electron transport transients in Chlorella vulgaris under fluctuating light. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
8
|
Cao JY, Kong ZY, Zhang YF, Ling T, Xu JL, Liao K, Zhou CX, Yan XJ. Bacterial Community Diversity and Screening of Growth-Affecting Bacteria From Isochrysis galbana Following Antibiotic Treatment. Front Microbiol 2019; 10:994. [PMID: 31134030 PMCID: PMC6513876 DOI: 10.3389/fmicb.2019.00994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Algal cultures are generally co-cultures of algae and bacteria, especially when considering outdoor cultivation. However, the effects of associated bacteria on algal growth remain largely unexplored, particularly in the context of Isochrysis galbana. In the present study, we investigated the effects of antibiotic on the growth of I. galbana and its associated bacterial community. We found advantageous responses of I. galbana to antibiotic exposure, evidenced by the increased growth, and the maximal photochemical efficiency of PSII (Fv/Fm). Since antibiotics can cause major disturbances within bacterial community, we further conducted 16S rDNA amplicon sequencing to determine the changes of bacterial community diversity following antibiotic treatment. We found that antibiotic treatment considerably and negatively affected the abundance and diversity of bacterial community, and 17 significantly decreased bacterial species in the antibiotic-treated medium, including Pseudomonas stutzeri, were identified. Further co-culture experiments revealed that P. stutzeri inhibited the growth of I. galbana, and the inhibitory activity was retained in the cell-free bacterial filtrate. These results indicated that the negative effect of bacteria was not exclusively transmitted through contact with I. galbana but could be also mediated via secretory compounds. Taken together, our findings not only fully characterized the bacterial community associated with I. galbana and how the bacterial community changed in response to antibiotic perturbations, but also provided a valuable information about the interactions between I. galbana and its associated bacteria, which might help improve the yield, and quality of I. galbana during its cultivation processes.
Collapse
Affiliation(s)
- Jia-Yi Cao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Zhou-Yan Kong
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Yu-Fan Zhang
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Ting Ling
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Ji-Lin Xu
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Kai Liao
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Cheng-Xu Zhou
- Key Laboratory of Applied Marine Biotechnology, Ningbo University, Ministry of Education of China, Ningbo, China
| | - Xiao-Jun Yan
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo University, Ningbo, China
| |
Collapse
|
9
|
Stelzner J, Roemhild R, Garibay-Hernández A, Harbaum-Piayda B, Mock HP, Bilger W. Hydroxycinnamic acids in sunflower leaves serve as UV-A screening pigments. Photochem Photobiol Sci 2019; 18:1649-1659. [DOI: 10.1039/c8pp00440d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the weak absorption of hydroxycinnamic acids in the UV-A region, we found evidence that these compounds protect against damage induced by UV-A radiation in sunflowers.
Collapse
Affiliation(s)
- Jana Stelzner
- Department of Ecophysiology of Plants
- Botanical Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Roderich Roemhild
- Department of Evolutionary Ecology and Genetics
- Zoological Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Adriana Garibay-Hernández
- Department of Physiology and Cell Biology
- Leibniz Institute for Plant Genetics and Crop Plant Research
- 06466 Gatersleben
- Germany
| | - Britta Harbaum-Piayda
- Department of Food Technology
- Institute of Human Nutrition and Food Science
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| | - Hans-Peter Mock
- Department of Physiology and Cell Biology
- Leibniz Institute for Plant Genetics and Crop Plant Research
- 06466 Gatersleben
- Germany
| | - Wolfgang Bilger
- Department of Ecophysiology of Plants
- Botanical Institute
- Christian-Albrechts University Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
10
|
Yuan W, Gao G, Shi Q, Xu Z, Wu H. Combined effects of ocean acidification and warming on physiological response of the diatom Thalassiosira pseudonana to light challenges. MARINE ENVIRONMENTAL RESEARCH 2018; 135:63-69. [PMID: 29397992 DOI: 10.1016/j.marenvres.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 06/07/2023]
Abstract
Diatoms are one of the most important groups of phytoplankton in terms of abundance and ecological functionality in the ocean. They usually dominate the phytoplankton communities in coastal waters and experience frequent and large fluctuations in light. In order to evaluate the combined effects of ocean warming and acidification on the diatom's exploitation of variable light environments, we grew a globally abundant diatom Thalassiosira pseudonana under two levels of temperature (18, 24 °C) and pCO2 (400, 1000 μatm) to examine its physiological performance after light challenge. It showed that the higher temperature increased the photoinactivation rate in T. pseudonana at 400 μatm pCO2, while the higher pCO2 alleviated the negative effect of the higher temperature on PSII photoinactivation. Higher pCO2 stimulated much faster PsbA removal, but it still lagged behind the photoinactivation of PSII under high light. Although the sustained phase of nonphotochemical quenching (NPQs) and activity of superoxide dismutase (SOD) were provoked during the high light exposure in T. pseudonana under the combined pCO2 and temperature conditions, it could not offset the damage caused by these multiple environmental changes, leading to decreased maximum photochemical yield.
Collapse
Affiliation(s)
- Wubiao Yuan
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Guang Gao
- Marine Resources Development Institute of Jiangsu, Huaihai Institute of Technology, Lianyungang 222005, China
| | - Qi Shi
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | - Zhiguang Xu
- College of Life Science, Ludong University, Yantai 264025, China
| | - Hongyan Wu
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China; College of Life Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
11
|
Tian Y, Ungerer P, Zhang H, Ruban AV. Direct impact of the sustained decline in the photosystem II efficiency upon plant productivity at different developmental stages. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:45-53. [PMID: 28260626 DOI: 10.1016/j.jplph.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/28/2016] [Accepted: 10/28/2016] [Indexed: 06/06/2023]
Abstract
The impact of chronic photoinhibition of photosystem II (PSII) on the productivity of plants remains unknown. The present study investigated the influences of persistent decline in the PSII yield on morphology and productivity of Arabidopsis plants that were exposed to lincomycin at two different developmental stages (seedling and rosette stage). The results indicated that, although retarded, the lincomycin treated plants were able to accomplish the entire growth period with only 50% of the maximum quantum yield of primary photochemistry (Fv/Fm) of the control plants. The decline in quantum yield limited the electron transport rate (ETR). The impact of lincomycin on NPQ was not significant in seedlings, but was pronounced in mature plants. The treated plants produced an above ground biomass of 50% compared to control plants. Moreover, a linear relationship was found between the above ground biomass and total rosette leaf area, and the slope was decreased due to photoinhibition. The starch accumulation was highly inhibited by lincomycin treatment. Lincomycin induced a significant decrease in seed yield with plants treated from the rosette state showing higher yield than those treated from the seedling stage. Our data suggest that the sustained decline of PSII efficiency decreases plant productivity by constraining the ETR, leaf development and starch production.
Collapse
Affiliation(s)
- Yonglan Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK; Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Petra Ungerer
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing 102206, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
12
|
Ni G, Zimbalatti G, Murphy CD, Barnett AB, Arsenault CM, Li G, Cockshutt AM, Campbell DA. Arctic Micromonas uses protein pools and non-photochemical quenching to cope with temperature restrictions on Photosystem II protein turnover. PHOTOSYNTHESIS RESEARCH 2017; 131:203-220. [PMID: 27639727 PMCID: PMC5247552 DOI: 10.1007/s11120-016-0310-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/08/2016] [Indexed: 05/12/2023]
Abstract
Micromonas strains of small prasinophyte green algae are found throughout the world's oceans, exploiting widely different niches. We grew arctic and temperate strains of Micromonas and compared their susceptibilities to photoinactivation of Photosystem II, their counteracting Photosystem II repair capacities, their Photosystem II content, and their induction and relaxation of non-photochemical quenching. In the arctic strain Micromonas NCMA 2099, the cellular content of active Photosystem II represents only about 50 % of total Photosystem II protein, as a slow rate constant for clearance of PsbA protein limits instantaneous repair. In contrast, the temperate strain NCMA 1646 shows a faster clearance of PsbA protein which allows it to maintain active Photosystem II content equivalent to total Photosystem II protein. Under growth at 2 °C, the arctic Micromonas maintains a constitutive induction of xanthophyll deepoxidation, shown by second-derivative whole-cell spectra, which supports strong induction of non-photochemical quenching under low to moderate light, even if xanthophyll cycling is blocked. This non-photochemical quenching, however, relaxes during subsequent darkness with kinetics nearly comparable to the temperate Micromonas NCMA 1646, thereby limiting the opportunity cost of sustained downregulation of PSII function after a decrease in light.
Collapse
Affiliation(s)
- Guangyan Ni
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, CAS, Guangzhou, 510160, China
| | - Gabrielle Zimbalatti
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Cole D Murphy
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | | | - Christopher M Arsenault
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Gang Li
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, CAS, Guangzhou, 510301, China
| | - Amanda M Cockshutt
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada
| | - Douglas A Campbell
- Department of Chemistry & Biochemistry, Mount Allison University, 63B York St., Sackville, NB, E4L3M7, Canada.
| |
Collapse
|
13
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|
14
|
Belgio E, Ungerer P, Ruban AV. Light-harvesting superstructures of green plant chloroplasts lacking photosystems. PLANT, CELL & ENVIRONMENT 2015; 38:2035-47. [PMID: 25737144 DOI: 10.1111/pce.12528] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/23/2015] [Indexed: 05/26/2023]
Abstract
The light-harvesting antenna of higher plant photosystem II (LHCII) is the major photosynthetic membrane component encoded by an entire family of homologous nuclear genes. On the contrary, the great majority of proteins of photosystems and electron transport components are encoded by the chloroplast genome. In this work, we succeeded in gradually inhibiting the expression of the chloroplast genes that led to the disappearance of the photosystem complexes, mimicking almost total photoinhibition. The treated plants, despite displaying only some early signs of senescence, sustained their metabolism and growth for several weeks. The only major remaining membrane component was LHCII antenna that formed superstructures - stacks of dozens of thylakoids or supergrana. Freeze-fracture electron microscopy revealed specific organization, directly displaying frequently bifurcated membranes with reduced or totally absent photosystem II (PSII) reaction centre complexes. Our findings show that it is possible to accumulate large amounts of light-harvesting membranes, organized into three-dimensional structures, in the absence of reaction centre complexes. This points to the reciprocal role of LHCII and PSII in self-assembly of the three-dimensional matrix of the photosynthetic membrane, dictating its size and flexible adaptation to the light environment.
Collapse
Affiliation(s)
- Erica Belgio
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Petra Ungerer
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
15
|
Zulfugarov IS, Tovuu A, Eu YJ, Dogsom B, Poudyal RS, Nath K, Hall M, Banerjee M, Yoon UC, Moon YH, An G, Jansson S, Lee CH. Production of superoxide from Photosystem II in a rice (Oryza sativa L.) mutant lacking PsbS. BMC PLANT BIOLOGY 2014; 14:242. [PMID: 25342550 PMCID: PMC4219129 DOI: 10.1186/s12870-014-0242-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 09/08/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND PsbS is a 22-kDa Photosystem (PS) II protein involved in non-photochemical quenching (NPQ) of chlorophyll fluorescence. Rice (Oryza sativa L.) has two PsbS genes, PsbS1 and PsbS2. However, only inactivation of PsbS1, through a knockout (PsbS1-KO) or in RNAi transgenic plants, results in plants deficient in qE, the energy-dependent component of NPQ. RESULTS In studies presented here, under fluctuating high light, growth of young seedlings lacking PsbS is retarded, and PSII in detached leaves of the mutants is more sensitive to photoinhibitory illumination compared with the wild type. Using both histochemical and fluorescent probes, we determined the levels of reactive oxygen species, including singlet oxygen, superoxide, and hydrogen peroxide, in leaves and thylakoids. The PsbS-deficient plants generated more superoxide and hydrogen peroxide in their chloroplasts. PSII complexes isolated from them produced more superoxide compared with the wild type, and PSII-driven superoxide production was higher in the mutants. However, we could not observe such differences either in isolated PSI complexes or through PSI-driven electron transport. Time-course experiments using isolated thylakoids showed that superoxide production was the initial event, and that production of hydrogen peroxide proceeded from that. CONCLUSION These results indicate that at least some of the photoprotection provided by PsbS and qE is mediated by preventing production of superoxide released from PSII under conditions of excess excitation energy.
Collapse
Affiliation(s)
- Ismayil S Zulfugarov
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, North-Eastern Federal University, 58 Belinsky Str, Yakutsk, 677-027 Republic of Sakha (Yakutia) Russian Federation
- />Institute of Botany, Azerbaijan National Academy of Sciences, Patamdar Shosse 40, Baku, AZ 1073 Azerbaijan
| | - Altanzaya Tovuu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
- />Department of Biology, Mongolian State University of Agriculture, Zaisan, Ulaanbaatar, 17024 Mongolia
| | - Young-Jae Eu
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Bolormaa Dogsom
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Roshan Sharma Poudyal
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Krishna Nath
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Michael Hall
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Mainak Banerjee
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Ung Chan Yoon
- />Department of Chemistry, Pusan National University, Jangjeon-dong, Keumjung-gu, Busan, 609-735 Korea
| | - Yong-Hwan Moon
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| | - Gynheung An
- />Crop Biotech Institute, Kyung Hee University, Yongin, 446-701 Korea
| | - Stefan Jansson
- />Umeå Plant Science Center, Department of Plant Physiology, Umeå University, Umeå, SE-901 87 Sweden
| | - Choon-Hwan Lee
- />Department of Integrated Biological Science and Department of Molecular Biology, Pusan National University, Busan, 609-735 Korea
| |
Collapse
|
16
|
Hu YY, Fan DY, Losciale P, Chow WS, Zhang WF. Whole-tissue determination of the rate coefficients of photoinactivation and repair of photosystem II in cotton leaf discs based on flash-induced P700 redox kinetics. PHOTOSYNTHESIS RESEARCH 2013; 117:517-528. [PMID: 23589088 DOI: 10.1007/s11120-013-9822-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Using radioactively labelled amino acids to investigate repair of photoinactivated photosystem II (PS II) gives only a relative rate of repair, while using chlorophyll fluorescence parameters yields a repair rate coefficient for an undefined, variable location within the leaf tissue. Here, we report on a whole-tissue determination of the rate coefficient of photoinactivation k i , and that of repair k r in cotton leaf discs. The method assays functional PS II via a P700 kinetics area associated with PS I, as induced by a single-turnover, saturating flash superimposed on continuous background far-red light. The P700 kinetics area, directly proportional to the oxygen yield per single-turnover, saturating flash, was used to obtain both k i and k r . The value of k i , directly proportional to irradiance, was slightly higher when CO2 diffusion into the abaxial surface (richer in stomata) was blocked by contact with water. The value of k r , sizable in darkness, changed in the light depending on which surface was blocked by contact with water. When the abaxial surface was blocked, k r first peaked at moderate irradiance and then decreased at high irradiance. When the adaxial surface was blocked, k r first increased at low irradiance, then plateaued, before increasing markedly at high irradiance. At the highest irradiance, k r differed by an order of magnitude between the two orientations, attributable to different extents of oxidative stress affecting repair (Nishiyama et al., EMBO J 20: 5587-5594, 2001). The method is a whole-tissue, convenient determination of the rate coefficient of photoinactivation k i and that of repair k r .
Collapse
Affiliation(s)
- Yuan-Yuan Hu
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi, 832003, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Tyystjärvi E. Photoinhibition of Photosystem II. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 300:243-303. [PMID: 23273864 DOI: 10.1016/b978-0-12-405210-9.00007-2] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Photoinhibition of Photosystem II (PSII) is the light-induced loss of PSII electron-transfer activity. Although photoinhibition has been studied for a long time, there is no consensus about its mechanism. On one hand, production of singlet oxygen ((1)O(2)) by PSII has promoted models in which this reactive oxygen species (ROS) is considered to act as the agent of photoinhibitory damage. These chemistry-based models have often not taken into account the photophysical features of photoinhibition-like light response and action spectrum. On the other hand, models that reproduce these basic photophysical features of the reaction have not considered the importance of data about ROS. In this chapter, it is shown that the evidence behind the chemistry-based models and the photophysically oriented models can be brought together to build a mechanism that confirms with all types of experimental data. A working hypothesis is proposed, starting with inhibition of the manganese complex by light. Inability of the manganese complex to reduce the primary donor promotes recombination between the oxidized primary donor and Q(A), the first stable quinone acceptor of PSII. (1)O(2) production due to this recombination may inhibit protein synthesis or spread the photoinhibitory damage to another PSII center. The production of (1)O(2) is transient because loss of activity of the oxygen-evolving complex induces an increase in the redox potential of Q(A), which lowers (1)O(2) production.
Collapse
Affiliation(s)
- Esa Tyystjärvi
- Molecular Plant Biology, Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland.
| |
Collapse
|
18
|
Wu H, Roy S, Alami M, Green BR, Campbell DA. Photosystem II photoinactivation, repair, and protection in marine centric diatoms. PLANT PHYSIOLOGY 2012; 160:464-76. [PMID: 22829321 PMCID: PMC3440219 DOI: 10.1104/pp.112.203067] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/23/2012] [Indexed: 05/02/2023]
Abstract
Diatoms are important contributors to aquatic primary production, and can dominate phytoplankton communities under variable light regimes. We grew two marine diatoms, the small Thalassiosira pseudonana and the large Coscinodiscus radiatus, across a range of temperatures and treated them with a light challenge to understand their exploitation of variable light environments. In the smaller T. pseudonana, photosystem II (PSII) photoinactivation outran the clearance of PSII protein subunits, particularly in cells grown at sub- or supraoptimal temperatures. In turn the absorption cross section serving PSII photochemistry was down-regulated in T. pseudonana through induction of a sustained phase of nonphotochemical quenching that relaxed only slowly over 30 min of subsequent low-light incubation. In contrast, in the larger diatom C. radiatus, PSII subunit turnover was sufficient to counteract a lower intrinsic susceptibility to photoinactivation, and C. radiatus thus did not need to induce sustained nonphotochemical quenching under the high-light treatment. T. pseudonana thus incurs an opportunity cost of sustained photosynthetic down-regulation after the end of an upward light shift, whereas the larger C. radiatus can maintain a balanced PSII repair cycle under comparable conditions.
Collapse
Affiliation(s)
- Hongyan Wu
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Suzanne Roy
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Meriem Alami
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Beverley R. Green
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| | - Douglas A. Campbell
- Biology, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); College of Biological Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China (H.W.); Institut des sciences de la mer de Rimouski, Université du Québec, Rimouski, Quebec, Canada G5L 3A1 (S.R.); and Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (M.A., B.R.G.)
| |
Collapse
|
19
|
Wu H, Cockshutt AM, McCarthy A, Campbell DA. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. PLANT PHYSIOLOGY 2011; 156:2184-95. [PMID: 21617029 PMCID: PMC3149953 DOI: 10.1104/pp.111.178772] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 05/17/2023]
Abstract
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light.
Collapse
Affiliation(s)
| | | | | | - Douglas A. Campbell
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China (H.W.); Chemistry and Biochemistry Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G8 (A.M.C., A.M.)
| |
Collapse
|
20
|
Parameterization of photosystem II photoinactivation and repair. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:258-65. [PMID: 21565161 DOI: 10.1016/j.bbabio.2011.04.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/23/2011] [Accepted: 04/02/2011] [Indexed: 11/22/2022]
Abstract
The photoinactivation (also termed photoinhibition or photodamage) of Photosystem II (PSII) and the counteracting repair reactions are fundamental elements of the metabolism and ecophysiology of oxygenic photoautotrophs. Differences in the quantification, parameterization and terminology of Photosystem II photoinactivation and repair can erect barriers to understanding, and particular parameterizations are sometimes incorrectly associated with particular mechanistic models. These issues lead to problems for ecophysiologists seeking robust methods to include photoinhibition in ecological models. We present a comparative analysis of terms and parameterizations applied to photoinactivation and repair of Photosystem II. In particular, we show that the target size and quantum yield approaches are interconvertible generalizations of the rate constant of photoinactivation across a range of incident light levels. Our particular emphasis is on phytoplankton, although we draw upon the literature from vascular plants. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
21
|
Energy Dissipation and Photoinhibition: A Continuum of Photoprotection. PHOTOPROTECTION, PHOTOINHIBITION, GENE REGULATION, AND ENVIRONMENT 2008. [DOI: 10.1007/1-4020-3579-9_5] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Gáspár L, Sárvári E, Morales F, Szigeti Z. Presence of 'PSI free' LHCI and monomeric LHCII and subsequent effects on fluorescence characteristics in lincomycin treated maize. PLANTA 2006; 223:1047-57. [PMID: 16292567 DOI: 10.1007/s00425-005-0149-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 09/28/2005] [Indexed: 05/05/2023]
Abstract
The cause of the strong non-photochemical fluorescence quenching was examined in maize (Zea mays L.) plants that were treated with lincomycin during the 72 h period of greening. They were deficient in core complexes but seemed to contain the full complement of antennae. The following results were obtained: (1) High F(o) could not be attributed to the dark reduction of Q(A) but to the presence of a high amount of not properly organized antenna complexes due to the inhibited synthesis of reaction centres. (2) On illumination fluorescence intensity dropped considerably below F(o) within 20 s, and reached a steady state still below F(o). (3) Slowly relaxing part of non-photochemical quenching was significantly higher than in control plants. (4) De-epoxidation state was constant, and corresponded to the maximal value of the control. (5) Free Lhca1/4 dimers could be detected in all submembrane fractions, including the grana, obtained by digitonin fractionation. (6) Increase in the 679 and 700 nm fluorescence emissions could be attributed to the monomerisation of part of LHCII and to the presence of free Lhca2 or LHCII aggregates, respectively. (7) LHCII or PSII+LHCII and Lhca1/4 interaction may contribute to the increase of long-wavelength fluorescence in the granal fraction. We assume that the elevated fluorescence quenching of monomeric LHCII as well as the interaction between LHCII or PSII+LHCII and Lhca1/4 can be considered as an explanation for the extensive non-photochemical fluorescence quenching in lincomycin treated plants. The permanent presence of zeaxanthin may have contributed to the fast formation of quenching.
Collapse
Affiliation(s)
- László Gáspár
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Pázmány Péter sétány 1/c, 1117 Budapest, Hungary.
| | | | | | | |
Collapse
|