1
|
Shrestha RK, Shi D, Obaid H, Elsayed NS, Xie D, Ni J, Ni C. Crops' response to the emergent air pollutants. PLANTA 2022; 256:80. [PMID: 36097229 DOI: 10.1007/s00425-022-03993-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Consequences of air pollutants on physiology, biology, yield and quality in the crops are evident. Crop and soil management can play significant roles in attenuating the impacts of air pollutants. With rapid urbanization and industrialization, air pollution has emerged as a serious threat to quality crop production. Assessing the effect of the elevated level of pollutants on the performance of the crops is crucial. Compared to the soil and water pollutants, the air pollutants spread more rapidly to the extensive area. This paper has reviewed and highlighted the major findings of the previous research works on the morphological, physiological and biochemical changes in some important crops and fruits exposed to the increasing levels of air pollutants. The crop, soil and environmental factors governing the effect of air pollutants have been discussed. The majority of the observations suggest that the air pollutants alter the physiology and biochemical in the plants, i.e., while some pollutants are beneficial to the growth and yields and modify physiological and morphological processes, most of them appeared to be detrimental to the crop yields and their quality. A better understanding of the mechanisms of the uptake of air pollutants and crop responses is quite important for devising the measures ‒ at both policy and program levels ‒ to minimize their possible negative impacts on crops. Further research directions in this field have also been presented.
Collapse
Affiliation(s)
- Ram Kumar Shrestha
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Lamjung Campus, Institute of Agriculture and Animal Science, Tribhuvan University, Lamjung, Nepal
| | - Dan Shi
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Hikmatullah Obaid
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Department of Soil Science and Plant Nutrition, Afghanistan National Agricultural Sciences and Technology University, Kandahar, Afghanistan
| | - Nader Saad Elsayed
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Soil and Agricultural Chemistry Department, Faculty of Agriculture (Saba-Basha), Alexandria University, Alexandria, Egypt
| | - Deti Xie
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Jiupai Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China
| | - Chengsheng Ni
- College of Resources and Environment, Southwest University, Teaching Building 35, Tiansheng Road No 2, Chongqing, 400715, China.
- Key Laboratory of Arable Land Conservation (Southwest China), Ministry of Agriculture, Chongqing, 400715, China.
- National Base of International S and T Collaboration On Water Environmental Monitoring and Simulation in Three Gorges Reservoir Region, Chongqing, 400716, China.
| |
Collapse
|
2
|
DeWoody J, Viger M, Lakatos F, Tuba K, Taylor G, Smulders MJM. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree. PLoS One 2013; 8:e79925. [PMID: 24260320 PMCID: PMC3833894 DOI: 10.1371/journal.pone.0079925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 09/30/2013] [Indexed: 12/27/2022] Open
Abstract
Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides) cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001) but negatively correlated with skeletonizer damage (P<0.01) in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast-growing forest tree.
Collapse
Affiliation(s)
- Jennifer DeWoody
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
- Current address: USDA Forest Service, National Forest Genetics Lab, 2480 Carson Road, Placerville, California, United States of America
| | - Maud Viger
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Ferenc Lakatos
- Institute of Silviculture and Forest Protection, University of West-Hungary, Sopron, Hungary
| | - Katalin Tuba
- Institute of Silviculture and Forest Protection, University of West-Hungary, Sopron, Hungary
| | - Gail Taylor
- Centre for Biological Sciences, Life Sciences, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
4
|
Calfapietra C, Gielen B, Karnosky D, Ceulemans R, Scarascia Mugnozza G. Response and potential of agroforestry crops under global change. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1095-1104. [PMID: 19815319 DOI: 10.1016/j.envpol.2009.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 08/29/2009] [Accepted: 09/03/2009] [Indexed: 05/28/2023]
Abstract
The use of agroforestry crops is a promising tool for reducing atmospheric carbon dioxide concentration through fossil fuel substitution. In particular, plantations characterised by high yields such as short rotation forestry (SRF) are becoming popular worldwide for biomass production and their role acknowledged in the Kyoto Protocol. While their contribution to climate change mitigation is being investigated, the impact of climate change itself on growth and productivity of these plantations needs particular attention, since their management might need to be modified accordingly. Besides the benefits deriving from the establishment of millions of hectares of these plantations, there is a risk of increased release into the atmosphere of volatile organic compounds (VOC) emitted in large amounts by most of the species commonly used. These hydrocarbons are known to play a crucial role in tropospheric ozone formation. This might represent a negative feedback, especially in regions already characterized by elevated ozone level.
Collapse
Affiliation(s)
- C Calfapietra
- Institute of Agro-Environmental & Forest Biology, Roma, Italy.
| | | | | | | | | |
Collapse
|
5
|
McGrath JM, Karnosky DF, Ainsworth EA. Spring leaf flush in aspen (Populus tremuloides) clones is altered by long-term growth at elevated carbon dioxide and elevated ozone concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1023-1028. [PMID: 19625117 DOI: 10.1016/j.envpol.2009.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 07/02/2009] [Indexed: 05/28/2023]
Abstract
Early spring leaf out is important to the success of deciduous trees competing for light and space in dense forest plantation canopies. In this study, we investigated spring leaf flush and how long-term growth at elevated carbon dioxide concentration ([CO(2)]) and elevated ozone concentration ([O(3)]) altered leaf area index development in a closed Populus tremuloides (aspen) canopy. This work was done at the Aspen FACE experiment where aspen clones have been grown since 1997 in conditions simulating the [CO(2)] and [O(3)] predicted for approximately 2050. The responses of two clones were compared during the first month of spring leaf out when CO(2) fumigation had begun, but O(3) fumigation had not. Trees in elevated [CO(2)] plots showed a stimulation of leaf area index (36%), while trees in elevated [O(3)] plots had lower leaf area index (-20%). While individual leaf area was not significantly affected by elevated [CO(2)], the photosynthetic operating efficiency of aspen leaves was significantly improved (51%). There were no significant differences in the way that the two aspen clones responded to elevated [CO(2)]; however, the two clones responded differently to long-term growth at elevated [O(3)]. The O(3)-sensitive clone, 42E, had reduced individual leaf area when grown at elevated [O(3)] (-32%), while the tolerant clone, 216, had larger mature leaf area at elevated [O(3)] (46%). These results indicate a clear difference between the two clones in their long-term response to elevated [O(3)], which could affect competition between the clones, and result in altered genotypic composition in future atmospheric conditions.
Collapse
Affiliation(s)
- Justin M McGrath
- Department of Plant Biology, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
6
|
Riikonen J, Percy KE, Kivimäenpää M, Kubiske ME, Nelson ND, Vapaavuori E, Karnosky DF. Leaf size and surface characteristics of Betula papyrifera exposed to elevated CO2 and O3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1029-1035. [PMID: 19674822 DOI: 10.1016/j.envpol.2009.07.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/26/2009] [Indexed: 05/28/2023]
Abstract
Betula papyrifera trees were exposed to elevated concentrations of CO(2) (1.4 x ambient), O(3) (1.2 x ambient) or CO(2) + O(3) at the Aspen Free-air CO(2) Enrichment Experiment. The treatment effects on leaf surface characteristics were studied after nine years of tree exposure. CO(2) and O(3) increased epidermal cell size and reduced epidermal cell density but leaf size was not altered. Stomatal density remained unaffected, but stomatal index increased under elevated CO(2). Cuticular ridges and epicuticular wax crystallites were less evident under CO(2) and CO(2) + O(3). The increase in amorphous deposits, particularly under CO(2) + O(3,) was associated with the appearance of elongated plate crystallites in stomatal chambers. Increased proportions of alkyl esters resulted from increased esterification of fatty acids and alcohols under elevated CO(2) + O(3). The combination of elevated CO(2) and O(3) resulted in different responses than expected under exposure to CO(2) or O(3) alone.
Collapse
Affiliation(s)
- Johanna Riikonen
- Department of Environmental Science, University of Kuopio, Finland.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ryan A, Cojocariu C, Possell M, Davies WJ, Hewitt CN. Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. PLANT, CELL & ENVIRONMENT 2009; 32:31-45. [PMID: 19076530 DOI: 10.1111/j.1365-3040.2008.01897.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study examined whether two genotypes of hybrid poplar (Populus deltoides x Populus trichocarpa), previously classified as ozone tolerant and ozone sensitive, had differing physiological and biochemical responses when fumigated with 120 nL L(-1) ozone for 6 h per day for eight consecutive days. Isoprene emission rate, ozone uptake and a number of physiological and biochemical parameters were investigated before, during and after fumigation with ozone. Previous studies have shown that isoprene protects plants against oxidative stress. Therefore, it was hypothesized that these two genotypes would differ in either their basal isoprene emission rates or in the response of isoprene to fumigation by ozone. Our results showed that the basal emission rates of isoprene, physiological responses and ozone uptake rates were all similar. However, significant differences were found in visible damage, carotenoids, hydrogen peroxide (H(2)O(2)), thiobarbituric acid reactions (TBARS) and post-fumigation isoprene emission rates. It is shown that, although the classification of ozone tolerance or sensitivity had been previously clearly and carefully defined using one particular set of parameters, assessment of other key variables does not necessarily lead to the same conclusions. Thus, it may be necessary to reconsider the way in which plants are classified as ozone tolerant or sensitive.
Collapse
Affiliation(s)
- A Ryan
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | | | | |
Collapse
|