1
|
Vincent M, Boubakri H, Gasser M, Hay AE, Herrera-Belaroussi A. What contribution of plant immune responses in Alnus glutinosa-Frankia symbiotic interactions? Symbiosis 2023. [DOI: 10.1007/s13199-022-00889-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
2
|
Chetri SPK, Rahman Z, Thomas L, Lal R, Gour T, Agarwal LK, Vashishtha A, Kumar S, Kumar G, Kumar R, Sharma K. Paradigms of actinorhizal symbiosis under the regime of global climatic changes: New insights and perspectives. J Basic Microbiol 2022; 62:764-778. [PMID: 35638879 DOI: 10.1002/jobm.202200043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/17/2022] [Accepted: 05/14/2022] [Indexed: 11/05/2022]
Abstract
Nitrogen occurs as inert and inaccessible dinitrogen gaseous form (N2 ) in the atmosphere. Biological nitrogen fixation is a chief process that makes this dinitrogen (N2 ) accessible and bioavailable in the form of ammonium (NH4 + ) ions. The key organisms to fix nitrogen are certain prokaryotes, called diazotrophs either in the free-living form or establishing significant mutual relationships with a variety of plants. On such examples is ~95-100 MY old incomparable symbiosis between dicotyledonous trees and a unique actinobacterial diazotroph in diverse ecosystems. In this association, the root of the certain dicotyledonous tree (~25 genera and 225 species) belonging to three different taxonomic orders, Fagales, Cucurbitales, and Rosales (FaCuRo) known as actinorhizal trees can host a diazotroph, Frankia of order Frankiales. Frankia is gram-positive, branched, filamentous, sporulating, and free-living soil actinobacterium. It resides in the specialized, multilobed, and coralloid organs (lateral roots but without caps), the root nodules of actinorhizal tress. This review aims to provide systematic information on the distribution and the phylogenetic diversity of hosts from FaCuRo and their micro-endosymbionts (Frankia spp.), colonization mechanisms, and signaling pathways. We also aim to provide details on developmental and physiological imperatives for gene regulation and functional genomics of symbiosis, phenomenal restoration ecology, influences of contemporary global climatic changes, and anthropogenic impacts on plant-Frankia interactions for the functioning of ecosystems and the biosphere.
Collapse
Affiliation(s)
| | - Zeeshanur Rahman
- Department of Botany, Zakir Husain Delhi College, University of Delhi, New Delhi, Delhi, India
| | - Lebin Thomas
- Department of Botany, Hansraj College, University of Delhi, New Delhi, Delhi, India
| | - Ratan Lal
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Tripti Gour
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Lokesh Kumar Agarwal
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Akanksha Vashishtha
- Department of Plant Protection, CCS University, Meerut, Uttar Pradesh, India
| | - Sachin Kumar
- Department of Botany, Shri Venkateshwara College, University of Delhi, New Delhi, Delhi, India
| | - Gaurav Kumar
- Department of Environmental Studies, PGDAV College, University of Delhi, New Delhi, Delhi, India
| | - Rajesh Kumar
- Department of Botany, Hindu College, University of Delhi, New Delhi, Delhi, India
| | - Kuldeep Sharma
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
3
|
The δ15N value of N2 fixing actinorhizal plants and legumes grown with N2 as the only nitrogen source. Symbiosis 2019. [DOI: 10.1007/s13199-019-00650-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
AbstractThe aim of this study was to investigate the effects of different plant parts and the age of plants at harvest as well as N2 fixing bacterial strains on the N concentration in symbiotic plant parts, especially on the δ15N signature of the actinorhizal plants and legumes. The 15N natural abundance method was used. Two actinorhizal plants were studied: Alnus incana (L.) infected with the Frankia strains ArI3 or “lsF” (local source of Frankia) and Hippophaë rhamnoides (L.) infected with the Frankia strains T1 or E15b. Two legume species were studied: Hedysarum coronarium (L.), infected with a soil suspension, and Robinia pseudoacacia (L.), infected with a crushed nodule suspension. It was particularly interesting that in A. incana, the two Frankia strains affected not only N concentration and δ15N signature of leaves and roots, but also had an impact on plant growth at first harvest. In Hippophaë rhamnoides plants inoculated with the Frankia strains T1 and E15b, N concentrations and δ15N values did not differ at any harvest time. However, plants nodulated by the Frankia strain T1 showed a higher nitrogen fixation rate and higher plant dry matter at all harvesting times. Based on our results for the quantification of N2 fixation with the “B” value, that is the δ15N value of the N2 fixing plants relying only on N2 fixation, plant parts, ages and strains should be carefully considered.
Collapse
|
4
|
Taylor A, Qiu YL. Evolutionary History of Subtilases in Land Plants and Their Involvement in Symbiotic Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:489-501. [PMID: 28353400 DOI: 10.1094/mpmi-10-16-0218-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Subtilases, a family of proteases involved in a variety of developmental processes in land plants, are also involved in both mutualistic symbiosis and host-pathogen interactions in different angiosperm lineages. We examined the evolutionary history of subtilase genes across land plants through a phylogenetic analysis integrating amino acid sequence data from full genomes, transcriptomes, and characterized subtilases of 341 species of diverse green algae and land plants along with subtilases from 12 species of other eukaryotes, archaea, and bacteria. Our analysis reconstructs the subtilase gene phylogeny and identifies 11 new gene lineages, six of which have no previously characterized members. Two large, previously unnamed, subtilase gene lineages that diverged before the origin of angiosperms accounted for the majority of subtilases shown to be associated with symbiotic interactions. These lineages expanded through both whole-genome and tandem duplication, with differential neofunctionalization and subfunctionalization creating paralogs associated with different symbioses, including nodulation with nitrogen-fixing bacteria, arbuscular mycorrhizae, and pathogenesis in different plant clades. This study demonstrates for the first time that a key gene family involved in plant-microbe interactions proliferated in size and functional diversity before the explosive radiation of angiosperms.
Collapse
Affiliation(s)
- Alexander Taylor
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| | - Yin-Long Qiu
- University of Michigan, Department of Ecology and Evolutionary Biology, Ann Arbor, MI, U.S.A
| |
Collapse
|
5
|
Granqvist E, Sun J, Op den Camp R, Pujic P, Hill L, Normand P, Morris RJ, Downie JA, Geurts R, Oldroyd GED. Bacterial-induced calcium oscillations are common to nitrogen-fixing associations of nodulating legumes and nonlegumes. THE NEW PHYTOLOGIST 2015; 207:551-8. [PMID: 26010117 PMCID: PMC4736677 DOI: 10.1111/nph.13464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 03/25/2015] [Indexed: 05/03/2023]
Abstract
Plants that form root-nodule symbioses are within a monophyletic 'nitrogen-fixing' clade and associated signalling processes are shared with the arbuscular mycorrhizal symbiosis. Central to symbiotic signalling are nuclear-associated oscillations in calcium ions (Ca(2+) ), occurring in the root hairs of several legume species in response to the rhizobial Nod factor signal. In this study we expanded the species analysed for activation of Ca(2+) oscillations, including nonleguminous species within the nitrogen-fixing clade. We showed that Ca(2+) oscillations are a common feature of legumes in their association with rhizobia, while Cercis, a non-nodulating legume, does not show Ca(2+) oscillations in response to Nod factors from Sinorhizobium fredii NGR234. Parasponia andersonii, a nonlegume that can associate with rhizobia, showed Nod factor-induced calcium oscillations to S. fredii NGR234 Nod factors, but its non-nodulating sister species, Trema tomentosa, did not. Also within the nitrogen-fixing clade are actinorhizal species that associate with Frankia bacteria and we showed that Alnus glutinosa induces Ca(2+) oscillations in root hairs in response to exudates from Frankia alni, but not to S. fredii NGR234 Nod factors. We conclude that the ability to mount Ca(2+) oscillations in response to symbiotic bacteria is a common feature of nodulating species within the nitrogen-fixing clade.
Collapse
Affiliation(s)
| | - Jongho Sun
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Rik Op den Camp
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Petar Pujic
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | - Lionel Hill
- John Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | - Philippe Normand
- Ecologie MicrobienneCentre National de la Recherche Scientifique UMR 5557Université Lyon IUniversité LyonVilleurbanneFrance
| | | | | | - Rene Geurts
- Department of Plant ScienceLaboratory of Molecular BiologyWageningen UniversityDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | | |
Collapse
|
6
|
Carro L, Pujic P, Alloisio N, Fournier P, Boubakri H, Hay AE, Poly F, François P, Hocher V, Mergaert P, Balmand S, Rey M, Heddi A, Normand P. Alnus peptides modify membrane porosity and induce the release of nitrogen-rich metabolites from nitrogen-fixing Frankia. THE ISME JOURNAL 2015; 9:1723-33. [PMID: 25603394 PMCID: PMC4511928 DOI: 10.1038/ismej.2014.257] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/20/2014] [Accepted: 11/30/2014] [Indexed: 12/11/2022]
Abstract
Actinorhizal plant growth in pioneer ecosystems depends on the symbiosis with the nitrogen-fixing actinobacterium Frankia cells that are housed in special root organs called nodules. Nitrogen fixation occurs in differentiated Frankia cells known as vesicles. Vesicles lack a pathway for assimilating ammonia beyond the glutamine stage and are supposed to transfer reduced nitrogen to the plant host cells. However, a mechanism for the transfer of nitrogen-fixation products to the plant cells remains elusive. Here, new elements for this metabolic exchange are described. We show that Alnus glutinosa nodules express defensin-like peptides, and one of these, Ag5, was found to target Frankia vesicles. In vitro and in vivo analyses showed that Ag5 induces drastic physiological changes in Frankia, including an increased permeability of vesicle membranes. A significant release of nitrogen-containing metabolites, mainly glutamine and glutamate, was found in N2-fixing cultures treated with Ag5. This work demonstrates that the Ag5 peptide is central for Frankia physiology in nodules and uncovers a novel cellular function for this large and widespread defensin peptide family.
Collapse
Affiliation(s)
- Lorena Carro
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Petar Pujic
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Nicole Alloisio
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Pascale Fournier
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Hasna Boubakri
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Anne E Hay
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Franck Poly
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| | - Philippe François
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Valerie Hocher
- Equipe Rhizogenèse, UMR DIADE (IRD, UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Peter Mergaert
- Institut des Sciences du Végétal, CNRS, UPR 2355, Gif-sur-Yvette, France
| | - Severine Balmand
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Marjolaine Rey
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Abdelaziz Heddi
- INSA-Lyon, INRA, UMR203 BF2I, Biologie Fonctionnelle Insectes et Interactions, Villeurbanne, France
| | - Philippe Normand
- Université Lyon 1, Université de Lyon, CNRS, Ecologie Microbienne, UMR 5557, Villeurbanne, France
| |
Collapse
|
7
|
Kazan K. Auxin and the integration of environmental signals into plant root development. ANNALS OF BOTANY 2013; 112:1655-65. [PMID: 24136877 PMCID: PMC3838554 DOI: 10.1093/aob/mct229] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 08/12/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Auxin is a versatile plant hormone with important roles in many essential physiological processes. In recent years, significant progress has been made towards understanding the roles of this hormone in plant growth and development. Recent evidence also points to a less well-known but equally important role for auxin as a mediator of environmental adaptation in plants. SCOPE This review briefly discusses recent findings on how plants utilize auxin signalling and transport to modify their root system architecture when responding to diverse biotic and abiotic rhizosphere signals, including macro- and micro-nutrient starvation, cold and water stress, soil acidity, pathogenic and beneficial microbes, nematodes and neighbouring plants. Stress-responsive transcription factors and microRNAs that modulate auxin- and environment-mediated root development are also briefly highlighted. CONCLUSIONS The auxin pathway constitutes an essential component of the plant's biotic and abiotic stress tolerance mechanisms. Further understanding of the specific roles that auxin plays in environmental adaptation can ultimately lead to the development of crops better adapted to stressful environments.
Collapse
Affiliation(s)
- Kemal Kazan
- Commonwealth Scientific and Industrial Organization (CSIRO) Plant Industry, Queensland Bioscience Precinct (QBP), Brisbane, Queensland 4067, Australia
| |
Collapse
|
8
|
Abdel-Lateif K, Bogusz D, Hocher V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. PLANT SIGNALING & BEHAVIOR 2012; 7:636-41. [PMID: 22580697 PMCID: PMC3442858 DOI: 10.4161/psb.20039] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids are a group of secondary metabolites derived from the phenylpropanoid pathway. They are ubiquitous in the plant kingdom and have many diverse functions including key roles at different levels of root endosymbioses. While there is a lot of information on the role of particular flavonoids in the Rhizobium-legume symbiosis, yet their exact role during the establishment of arbuscular mycorrhiza and actinorhizal symbioses still remains unclear. Within the context of the latest data suggesting a common symbiotic signaling pathway for both plant-fungal and plant bacterial endosymbioses between legumes and actinorhiza-forming fagales, this mini-review highlights some of the recent studies on the three major types of root endosymbioses. Implication of the molecular knowledge of endosymbioses signaling and genetic manipulation of flavonoid biosynthetic pathway on the development of strategies for the transfer and optimization of nodulation are also discussed.
Collapse
Affiliation(s)
- Khalid Abdel-Lateif
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| | - Didier Bogusz
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| | - Valérie Hocher
- Equipe Rhizogenèse; UMR DIADE (IRD, UM2); Institut de Recherche pour le Développement (IRD); Montpellier, France
| |
Collapse
|
9
|
Berry AM, Mendoza-Herrera A, Guo YY, Hayashi J, Persson T, Barabote R, Demchenko K, Zhang S, Pawlowski K. New perspectives on nodule nitrogen assimilation in actinorhizal symbioses. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:645-652. [PMID: 32480919 DOI: 10.1071/fp11095] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 06/10/2011] [Indexed: 06/11/2023]
Abstract
Nitrogen-fixing root nodules are plant organs specialised for symbiotic transfer of nitrogen and carbon between microsymbiont and host. The organisation of nitrogen assimilation, storage and transport processes is partitioned at the subcellular and tissue levels, in distinctive patterns depending on the symbiotic partners. In this review, recent advances in understanding of actinorhizal nodule nitrogen assimilation are presented. New findings indicate that Frankia within nodules of Datisca glomerata (Presl.) Baill. carries out both primary nitrogen assimilation and biosynthesis of arginine, rather than exporting ammonium. Arginine is a typical storage form of nitrogen in plant tissues, but is a novel nitrogen carrier molecule in root nodule symbioses. Thus Frankia within D. glomerata nodules exhibits considerable metabolic independence. Furthermore, nitrogen reassimilation is likely to take place in the host in the uninfected nodule cortical cells of this root nodule symbiosis, before amino acid export to host sink tissues via the xylem. The role of an augmented pericycle in carbon and nitrogen exchange in root nodules deserves further attention in actinorhizal symbiosis, and further highlights the importance of a comprehensive, structure-function approach to understanding function in root nodules. Moreover, the multiple patterns of compartmentalisation in relation to nitrogen flux within root nodules demonstrate the diversity of possible functional interactions between host and microsymbiont that have evolved in the nitrogen-fixing clade.
Collapse
Affiliation(s)
- Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Alberto Mendoza-Herrera
- Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa, Tamaulipas, Mexico
| | - Ying-Yi Guo
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Jennifer Hayashi
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Tomas Persson
- Department of Botany, Stockholm University, 10691 Stockholm, Sweden
| | - Ravi Barabote
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Kirill Demchenko
- Komarov Botanical Institute, Russian Academy of Sciences, St Petersburg 197376, Russia
| | - Shuxiao Zhang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
10
|
Ribeiro A, Gra A IS, Pawlowski K, Santos PC. Actinorhizal plant defence-related genes in response to symbiotic Frankia. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:639-644. [PMID: 32480918 DOI: 10.1071/fp11012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/10/2011] [Indexed: 05/15/2023]
Abstract
Actinorhizal plants have become increasingly important as climate changes threaten to remake the global landscape over the next decades. These plants are able to grow in nutrient-poor and disturbed soils, and are important elements in plant communities worldwide. Besides that, most actinorhizal plants are capable of high rates of nitrogen fixation due to their capacity to establish root nodule symbiosis with N2-fixing Frankia strains. Nodulation is a developmental process that requires a sequence of highly coordinated events. One of these mechanisms is the induction of defence-related events, whose precise role in a symbiotic interaction remains to be elucidated. This review summarises what is known about the induction of actinorhizal defence-related genes in response to symbiotic Frankia and their putative function during symbiosis.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - In S Gra A
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
11
|
Ribeiro A, Berry AM, Pawlowski K, Santos PC. Actinorhizal plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:v-vii. [PMID: 32480916 DOI: 10.1071/fpv38n9_fo] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Actinorhizal plants are a group of taxonomically diverse angiosperms with remarkable economic and ecological significance. Most actinorhizal plants are able to thrive under extreme adverse environmental conditions as well as to fix atmospheric nitrogen due to their capacity to establish root nodule symbioses with Frankia bacteria. This special issue of Functional Plant Biology is dedicated to actinorhizal plant research, covering part of the work presented at the 16th International Meeting onFrankia and Actinorhizal Plants, held on 5-8 September 2010, in Oporto, Portugal. The papers (4 reviews and 10 original articles) give an overall picture of the status of actinorhizal plant research and the imposed challenges, covering several aspects of the symbiosis, ecology and molecular tools.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|