1
|
Bian J, Cui Y, Li J, Guan Y, Tian S, Liu X. Genome-wide analysis of PIN genes in cultivated peanuts (Arachis hypogaea L.): identification, subcellular localization, evolution, and expression patterns. BMC Genomics 2023; 24:629. [PMID: 37865765 PMCID: PMC10590530 DOI: 10.1186/s12864-023-09723-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023] Open
Abstract
BACKGROUND Auxin is an important hormone in plants and the PIN-FORMED (PIN) genes are essential to auxin distribution in growth and developmental processes of plants. Peanut is an influential cash crop, but research into PIN genes in peanuts remains limited. RESULTS In this study, 16 PIN genes were identified in the genome of cultivated peanut, resolving into four subfamilies. All PIN genes were predicted to be located in the plasma membrane and a subcellular location experiment confirmed this prediction for eight of them. The gene structure, cis-elements in the promoter, and evolutionary relationships were elucidated, facilitating our understanding of peanut PINs and their evolution. In addition, the expression patterns of these PINs in various tissues were analyzed according to a previously published transcriptome dataset and qRT-PCR, which gave us a clear understanding of the temporal and spatial expression of PIN genes in different growth stages and different tissues. The expression trend of homologous genes was similar. AhPIN2A and AhPIN2B exhibited predominant expression in roots. AhPIN1A-1 and AhPIN1B-1 displayed significant upregulation following peg penetration, suggesting a potential close association with peanut pod development. Furthermore, we presented the gene network and gene ontology enrichment of these PINs. Notably, AhABCB19 exhibited a co-expression relationship with AhPIN1A and AhPIN1B-1, with all three genes displaying higher expression levels in peanut pegs and pods. These findings reinforce their potential role in peanut pod development. CONCLUSIONS This study details a comprehensive analysis of PIN genes in cultivated peanuts and lays the foundation for subsequent studies of peanut gene function and phenotype.
Collapse
Affiliation(s)
- Jianxin Bian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yuanyuan Cui
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Jihua Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yu Guan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Shuhua Tian
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Xiaoqin Liu
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong, 261325, China.
| |
Collapse
|
2
|
Gupta K, Gupta S, Faigenboim-Doron A, Patil AS, Levy Y, Carrus SC, Hovav R. Deep transcriptomic study reveals the role of cell wall biosynthesis and organization networks in the developing shell of peanut pod. BMC PLANT BIOLOGY 2021; 21:509. [PMID: 34732143 PMCID: PMC8565004 DOI: 10.1186/s12870-021-03290-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Peanut (Arachis hypogaea L.) belongs to an exceptional group of legume plants, wherein the flowers are produced aerially, but the pods develop under the ground. In such a unique environment, the pod's outer shell plays a vital role as a barrier against mechanical damage and soilborne pathogens. Recent studies have reported the uniqueness and importance of gene expression patterns that accompany peanut pods' biogenesis. These studies focused on biogenesis and pod development during the early stages, but the late developmental stages and disease resistance aspects still have gaps. To extend this information, we analyzed the transcriptome generated from four pod developmental stages of two genotypes, Hanoch (Virginia-type) and IGC53 (Peruvian-type), which differs significantly in their pod shell characteristics and pathogen resistance. RESULTS The transcriptome study revealed a significant reprogramming of the number and nature of differentially expressed (DE) genes during shell development. Generally, the numbers of DE genes were higher in IGC53 than in Hanoch, and the R5-R6 transition was the most dynamic in terms of transcriptomic changes. Genes related to cell wall biosynthesis, modification and transcription factors (TFs) dominated these changes therefore, we focused on their differential, temporal and spatial expression patterns. Analysis of the cellulose synthase superfamily identified specific Cellulose synthase (CesAs) and Cellulose synthase-like (Csl) genes and their coordinated interplay with other cell wall-related genes during the peanut shell development was demonstrated. TFs were also identified as being involved in the shell development process, and their pattern of expression differed in the two peanut genotypes. The shell component analysis showed that overall crude fiber, cellulose, lignin, hemicelluloses and dry matter increased with shell development, whereas K, N, protein, and ash content decreased. Genotype IGC53 contained a higher level of crude fiber, cellulose, NDF, ADF, K, ash, and dry matter percentage, while Hanoch had higher protein and nitrogen content. CONCLUSIONS The comparative transcriptome analysis identified differentially expressed genes, enriched processes, and molecular processes like cell wall biosynthesis/modifications, carbohydrate metabolic process, signaling, transcription factors, transport, stress, and lignin biosynthesis during the peanut shell development between two contrasting genotypes. TFs and other genes like chitinases were also enriched in peanut shells known for pathogen resistance against soilborne major pathogens causing pod wart disease and pod damages. This study will shed new light on the biological processes involved with underground pod development in an important legume crop.
Collapse
Affiliation(s)
- Kapil Gupta
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel.
- Department of Biotechnology, Siddharth University, Kapilvastu, Siddharth Nagar, UP, India.
| | - Shubhra Gupta
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | | | | | - Yael Levy
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | - Scott Cohen Carrus
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel
| | - Ran Hovav
- Department of Field Crops, Plant Sciences Institute, ARO, Rishon Lezion, Israel.
| |
Collapse
|
3
|
Exploration of space to achieve scientific breakthroughs. Biotechnol Adv 2020; 43:107572. [PMID: 32540473 DOI: 10.1016/j.biotechadv.2020.107572] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Living organisms adapt to changing environments using their amazing flexibility to remodel themselves by a process called evolution. Environmental stress causes selective pressure and is associated with genetic and phenotypic shifts for better modifications, maintenance, and functioning of organismal systems. The natural evolution process can be used in complement to rational strain engineering for the development of desired traits or phenotypes as well as for the production of novel biomaterials through the imposition of one or more selective pressures. Space provides a unique environment of stressors (e.g., weightlessness and high radiation) that organisms have never experienced on Earth. Cells in the outer space reorganize and develop or activate a range of molecular responses that lead to changes in cellular properties. Exposure of cells to the outer space will lead to the development of novel variants more efficiently than on Earth. For instance, natural crop varieties can be generated with higher nutrition value, yield, and improved features, such as resistance against high and low temperatures, salt stress, and microbial and pest attacks. The review summarizes the literature on the parameters of outer space that affect the growth and behavior of cells and organisms as well as complex colloidal systems. We illustrate an understanding of gravity-related basic biological mechanisms and enlighten the possibility to explore the outer space environment for application-oriented aspects. This will stimulate biological research in the pursuit of innovative approaches for the future of agriculture and health on Earth.
Collapse
|
4
|
Li X, Yang Y, Ahmad S, Sun M, Yuan C, Zheng T, Han Y, Cheng T, Wang J, Zhang Q. Selection of optimal reference genes for qRT-PCR analysis of shoot development and graviresponse in prostrate and erect chrysanthemums. PLoS One 2019; 14:e0225241. [PMID: 31774840 PMCID: PMC6880974 DOI: 10.1371/journal.pone.0225241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 10/31/2019] [Indexed: 11/19/2022] Open
Abstract
The prostrate cultivars of ground-cover chrysanthemum have been used in landscape gardening due to their small stature, large crown width and strong branching ability. qRT-PCR is a rapid and powerful tool for gene expression analysis, while its accuracy highly depends on the stability of reference genes. The paucity of authentic reference genes presents a major hurdle in understanding the genetic regulators of prostrate architecture. Therefore, in order to reveal the regulatory mechanism of prostrate growth of chrysanthemum stems, here, stable reference genes were selected for expression analysis of key genes involved in shoot development and graviresponse. Based on transcriptome data, eleven reference genes with relatively stable expression were identified as the candidate reference genes. After the comprehensive analysis of the stability of these reference genes with four programs (geNorm, NormFinder, BestKeeper and RefFinder), we found that TIP41 was the most stable reference gene in all of the samples. SAND was determined as a superior reference gene in different genotypes and during the process of shoot development. The optimal reference gene for gravitropic response was PP2A-1. In addition, the expression patterns of LA1 and PIN1 further verified the reliability of the screened reference genes. These results can provide more accurate and reliable qRT-PCR normalization for future studies on the expression patterns of genes regulating plant architecture of chrysanthemums.
Collapse
Affiliation(s)
- Xiaowei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yujie Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ming Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Cunquan Yuan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Mun BG, Lee SU, Hussain A, Kim HH, Rolly NK, Jung KH, Yun BW. S-nitrosocysteine-responsive genes modulate diverse regulatory pathways in Oryza sativa: a transcriptome profiling study. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:630-644. [PMID: 32290965 DOI: 10.1071/fp17249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 12/05/2017] [Indexed: 06/11/2023]
Abstract
Rice (Oryza sativa L.) is a major food crop and also a well-established genetic model. Nitric oxide (NO) and its derivatives are important signalling molecules that actively participate in various signalling pathways in response to different stresses. In this study, we performed RNA-seq mediated transcriptomic analysis of rice after treatment with the nitric oxide donor, S-nitroso-L-cysteine (CySNO), generating an average of 37.5 and 41.5 million reads from control and treated leaf samples respectively. More than 95% of the reads were successfully mapped to the O. sativa reference genome yielding a total of 33539 differentially expressed genes (DEGs, P < 0.05). Further analyses identified 825 genes with at least 2-fold change in the expression following treatment with CySNO (P < 0.01). The DEGs identified were involved in diverse molecular functions such as catalytic activity, binding, transport, and receptor activity and were mostly located in the membrane, organelles such as nucleus, Golgi apparatus and mitochondria. DEGs also contained several genes that regulate responses to abiotic stresses such as drought, heat, cold and salt stress and biotic stresses. We also found significantly similar expression patterns of CySNO-responsive DEGs of rice with the CySNO-responsive DEGs of Arabidopsis in a previous study. Expression patterns of genes involved in key biological functions were verified using quantitative real time (qRT)-PCR. The findings of this study suggest that NO regulates the transcriptional control of genes involved in a wide variety of physiological functions in rice, and that NO-mediated transcriptional networks are highly conserved across the plant kingdom. This study provides useful information regarding the transcriptional response of plants to nitrosative stress.
Collapse
Affiliation(s)
- Bong-Gyu Mun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Sang-Uk Lee
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Adil Hussain
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Hyun-Ho Kim
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Nkulu Kabange Rolly
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| | - Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology and Crop Biotechnology Institute, Kyung Hee University, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byung-Wook Yun
- School of Applied Bioscience, College of Agriculture and Life Science, Kyungpook National University, 80 Daehak-ro, Bukgu, Daegu, 41566, South Korea
| |
Collapse
|
6
|
Nayak SN, Agarwal G, Pandey MK, Sudini HK, Jayale AS, Purohit S, Desai A, Wan L, Guo B, Liao B, Varshney RK. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization. Sci Rep 2017; 7:9659. [PMID: 28851929 PMCID: PMC5574979 DOI: 10.1038/s41598-017-09260-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/19/2017] [Indexed: 11/25/2022] Open
Abstract
Aflatoxin contamination, caused by fungal pathogen Aspergillus flavus, is a major quality and health problem delimiting the trade and consumption of groundnut (Arachis hypogaea L.) worldwide. RNA-seq approach was deployed to understand the host-pathogen interaction by identifying differentially expressed genes (DEGs) for resistance to in-vitro seed colonization (IVSC) at four critical stages after inoculation in J 11 (resistant) and JL 24 (susceptible) genotypes of groundnut. About 1,344.04 million sequencing reads have been generated from sixteen libraries representing four stages in control and infected conditions. About 64% and 67% of quality filtered reads (1,148.09 million) were mapped onto A (A. duranensis) and B (A. ipaёnsis) subgenomes of groundnut respectively. About 101 million unaligned reads each from J 11 and JL 24 were used to map onto A. flavus genome. As a result, 4,445 DEGs including defense-related genes like senescence-associated proteins, resveratrol synthase, 9s-lipoxygenase, pathogenesis-related proteins were identified. In A. flavus, about 578 DEGs coding for growth and development of fungus, aflatoxin biosynthesis, binding, transport, and signaling were identified in compatible interaction. Besides identifying candidate genes for IVSC resistance in groundnut, the study identified the genes involved in host-pathogen cross-talks and markers that can be used in breeding resistant varieties.
Collapse
Affiliation(s)
- Spurthi N Nayak
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Department of Biotechnology, University of Agricultural Sciences, Dharwad, India
| | - Gaurav Agarwal
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA, USA
- University of Georgia, Department of Plant Pathology, Tifton, GA, USA
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Hari K Sudini
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Ashwin S Jayale
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Shilp Purohit
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Aarthi Desai
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Liyun Wan
- Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Baozhu Guo
- Crop Protection and Management Research Unit, USDA-Agricultural Research Service, Tifton, GA, USA
| | - Boshou Liao
- Oil Crops Research Institute (OCRI), Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
7
|
Chen X, Yang Q, Li H, Li H, Hong Y, Pan L, Chen N, Zhu F, Chi X, Zhu W, Chen M, Liu H, Yang Z, Zhang E, Wang T, Zhong N, Wang M, Liu H, Wen S, Li X, Zhou G, Li S, Wu H, Varshney R, Liang X, Yu S. Transcriptome-wide sequencing provides insights into geocarpy in peanut (Arachis hypogaea L.). PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1215-24. [PMID: 26502832 PMCID: PMC11388922 DOI: 10.1111/pbi.12487] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 08/14/2015] [Accepted: 09/07/2015] [Indexed: 05/22/2023]
Abstract
A characteristic feature of peanut is the subterranean fructification, geocarpy, in which the gynophore ('peg'), a specialized organ that transitions from upward growth habit to downward outgrowth upon fertilization, drives the developing pod into the soil for subsequent development underground. As a step towards understanding this phenomenon, we explore the developmental dynamics of the peanut pod transcriptome at 11 successive stages. We identified 110 217 transcripts across developmental stages and quantified their abundance along a pod developmental gradient in pod wall. We found that the majority of transcripts were differentially expressed along the developmental gradient as well as identified temporal programs of gene expression, including hundreds of transcription factors. Thought to be an adaptation to particularly harsh subterranean environments, both up- and down-regulated gene sets in pod wall were enriched for response to a broad array of stimuli, like gravity, light and subterranean environmental factors. We also identified hundreds of transcripts associated with gravitropism and photomorphogenesis, which may be involved in the geocarpy. Collectively, this study forms a transcriptional baseline for geocarpy in peanut as well as provides a considerable body of evidence that transcriptional regulation in peanut aerial and subterranean fruits is complex.
Collapse
Affiliation(s)
- Xiaoping Chen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Qingli Yang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, China
| | - Haifen Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Heying Li
- South China Agricultural University, Guangzhou, China
| | - Yanbin Hong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Lijuan Pan
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Na Chen
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Fanghe Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Xiaoyuan Chi
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Wei Zhu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Mingna Chen
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liu
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Zhen Yang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Erhua Zhang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Tong Wang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Ni Zhong
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Mian Wang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Hong Liu
- South China Agricultural University, Guangzhou, China
| | - Shijie Wen
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Xingyu Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Guiyuan Zhou
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Shaoxiong Li
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Hong Wu
- South China Agricultural University, Guangzhou, China
| | - Rajeev Varshney
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Xuanqiang Liang
- Crops Research Institute, Guangdong Academy of Agricultural Sciences (GAAS), South China Peanut Sub-center of National Center of Oilseed Crops Improvement, Guangdong Key Laboratory for Crops Genetic Improvement, Guangzhou, China
| | - Shanlin Yu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
8
|
Nitric oxide-dependent vasodilation and Ca2+signalling induced by erythrodiol in rat aorta. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2015. [DOI: 10.1016/s2222-1808(15)60892-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|