1
|
Dötterl S, Gershenzon J. Chemistry, biosynthesis and biology of floral volatiles: roles in pollination and other functions. Nat Prod Rep 2023; 40:1901-1937. [PMID: 37661854 DOI: 10.1039/d3np00024a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Covering: 2010 to 2023Floral volatiles are a chemically diverse group of plant metabolites that serve multiple functions. Their composition is shaped by environmental, ecological and evolutionary factors. This review will summarize recent advances in floral scent research from chemical, molecular and ecological perspectives. It will focus on the major chemical classes of floral volatiles, on notable new structures, and on recent discoveries regarding the biosynthesis and the regulation of volatile emission. Special attention will be devoted to the various functions of floral volatiles, not only as attractants for different types of pollinators, but also as defenses of flowers against enemies. We will also summarize recent findings on how floral volatiles are affected by abiotic stressors, such as increased temperatures and drought, and by other organisms, such as herbivores and flower-dwelling microbes. Finally, this review will indicate current research gaps, such as the very limited knowledge of the isomeric pattern of chiral compounds and its importance in interspecific interactions.
Collapse
Affiliation(s)
- Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstr 34, 5020 Salzburg, Austria.
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany.
| |
Collapse
|
2
|
Yang T, Yin X, Kang H, Yang D, Yang X, Yang Y, Yang Y. Chromosome-level genome assembly of Murraya paniculata sheds light on biosynthesis of floral volatiles. BMC Biol 2023; 21:142. [PMID: 37340448 PMCID: PMC10283294 DOI: 10.1186/s12915-023-01639-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Murraya paniculata (L.) Jack, commonly called orange jessamine in the family Rutaceae, is an important ornamental plant in tropical and subtropical regions which is famous for its strong fragrance. Although genome assemblies have been reported for many Rutaceae species, mainly in the genus Citrus, full genomic information has not been reported for M. paniculata, which is a prerequisite for in-depth genetic studies on Murraya and manipulation using genetic engineering techniques. Here, we report a high-quality chromosome-level genome assembly of M. paniculata and aim to provide insights on the molecular mechanisms of flower volatile biosynthesis. RESULTS The genome assembly with a contig N50 of 18.25 Mb consists of 9 pseudomolecules and has a total length of 216.86 Mb. Phylogenetic analysis revealed that M. paniculata diverged from the common ancestor approximately 25 million years ago and has not undergone any species-specific whole genome duplication events. Genome structural annotation and comparative genomics analysis revealed that there are obvious differences in transposon contents among the genomes of M. paniculata and Citrus species, especially in the upstream regions of genes. Research on the flower volatiles of M. paniculata and C. maxima at three flowering stages revealed significant differences in volatile composition with the flowers of C. maxima lacking benzaldehyde and phenylacetaldehyde. Notably, there are transposons inserted in the upstream region of the phenylacetaldehyde synthase (PAAS) genes Cg1g029630 and Cg1g029640 in C. maxima, but not in the upstream region of three PAAS genes Me2G_2379, Me2G_2381, and Me2G_2382 in M. paniculata. Our results indicated that compared to the low expression levels of PAAS genes in C. maxima, the higher expression levels of the three PAAS genes in M. paniculata are the main factor affecting the phenylacetaldehyde biosynthesis and causing the content difference of phenylacetaldehyde. The phenylacetaldehyde synthetic activities of the enzymes encoded by M. paniculata PAAS genes were validated by in vitro analyses. CONCLUSIONS Our study provides useful genomic resources of M. paniculata for further research on Rutaceae plants, identifies new PAAS genes, and provides insights into how transposons contribute to variations in flower volatiles among Murraya and Citrus plants.
Collapse
Affiliation(s)
- Tianyu Yang
- School of Life Science, Yunnan University, Kunming, 650500, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haotong Kang
- Key Laboratory of Plant Resources Conservation and Utilization, College of Biological Resources and Environmental Sciences, Jishou University, Jishou, 416000, China
| | - Danni Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xingyu Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China.
- Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
3
|
Liu Y, Wang Q, Abbas F, Zhou Y, He J, Fan Y, Yu R. Light Regulation of LoCOP1 and Its Role in Floral Scent Biosynthesis in Lilium 'Siberia'. PLANTS (BASEL, SWITZERLAND) 2023; 12:2004. [PMID: 37653921 PMCID: PMC10223427 DOI: 10.3390/plants12102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 09/02/2023]
Abstract
Light is an important environmental signal that governs plant growth, development, and metabolism. Constitutive photomorphogenic 1 (COP1) is a light signaling component that plays a vital role in plant light responses. We isolated the COP1 gene (LoCOP1) from the petals of Lilium 'Siberia' and investigated its function. The LoCOP1 protein was found to be the most similar to Apostasia shenzhenica COP1. LoCOP1 was found to be an important factor located in the nucleus and played a negative regulatory role in floral scent production and emission using the virus-induced gene silencing (VIGS) approach. The yeast two-hybrid, β-galactosidase, and bimolecular fluorescence complementation (BiFC) assays revealed that LoCOP1 interacts with LoMYB1 and LoMYB3. Furthermore, light modified both the subcellular distribution of LoCOP1 and its interactions with LoMYB1 and MYB3 in onion cells. The findings highlighted an important regulatory mechanism in the light signaling system that governs scent emission in Lilium 'Siberia' by the ubiquitination and degradation of transcription factors via the proteasome pathway.
Collapse
Affiliation(s)
- Yang Liu
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Qin Wang
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yiwei Zhou
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Jingjuan He
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (Q.W.); (F.A.); (Y.Z.); (J.H.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Floral secondary metabolites in context of biotic and abiotic stress factors. CHEMOECOLOGY 2021. [DOI: 10.1007/s00049-021-00366-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Cna'ani A, Dener E, Ben-Zeev E, Günther J, Köllner TG, Tzin V, Seifan M. Phylogeny and abiotic conditions shape the diel floral emission patterns of desert Brassicaceae species. PLANT, CELL & ENVIRONMENT 2021; 44:2656-2671. [PMID: 33715174 DOI: 10.1111/pce.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.
Collapse
Affiliation(s)
- Alon Cna'ani
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Dener
- The Albert Katz International School for Desert Studies, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Efrat Ben-Zeev
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, The Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jan Günther
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
- Section of Plant Biochemistry, Department of Plant and Environmental Science, University of Copenhagen, Copenhagen, Denmark
| | - Tobias G Köllner
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| | - Merav Seifan
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer campus, Midreshet Ban-Gurion, Israel
| |
Collapse
|
6
|
Farré-Armengol G, Fernández-Martínez M, Filella I, Junker RR, Peñuelas J. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1154. [PMID: 32849712 PMCID: PMC7412988 DOI: 10.3389/fpls.2020.01154] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/15/2020] [Indexed: 06/02/2023]
Abstract
Currently, a global analysis of the information available on the relative composition of the floral scents of a very diverse variety of plant species is missing. Such analysis may reveal general patterns on the distribution and dominance of the volatile compounds that form these mixtures, and may also allow measuring the effects of factors such as the phylogeny, pollination vectors, and climatic conditions on the floral scents of the species. To fill this gap, we compiled published data on the relative compositions and emission rates of volatile organic compounds (VOCs) in the floral scents of 305 plant species from 66 families. We also gathered information on the groups of pollinators that visited the flowers and the climatic conditions in the areas of distribution of these species. This information allowed us to characterize the occurrence and relative abundances of individual volatiles in floral scents and the effects of biotic and climatic factors on floral scent. The monoterpenes trans-β-ocimene and linalool and the benzenoid benzaldehyde were the most abundant floral VOCs, in both ubiquity and predominance in the floral blends. Floral VOC richness and relative composition were moderately preserved traits across the phylogeny. The reliance on different pollinator groups and the climate also had important effects on floral VOC richness, composition, and emission rates of the species. Our results support the hypothesis that key compounds or compounds originating from specific biosynthetic pathways mediate the attraction of the main pollinators. Our results also indicate a prevalence of monoterpenes in the floral blends of plants that grow in drier conditions, which could link with the fact that monoterpene emissions protect plants against oxidative stresses throughout drought periods and their emissions are enhanced under moderate drought stress. Sesquiterpenes, in turn, were positively correlated with mean annual temperature, supporting that sesquiterpene emissions are dominated mainly by ambient temperature. This study is the first to quantitatively summarise data on floral-scent emissions and provides new insights into the biotic and climatic factors that influence floral scents.
Collapse
Affiliation(s)
- Gerard Farré-Armengol
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | | | - Iolanda Filella
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| | - Robert R. Junker
- Department of Biosciences, University of Salzburg, Salzburg, Austria
- Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg, Marburg, Germany
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Barcelona, Spain
- CREAF, Barcelona, Spain
| |
Collapse
|
7
|
Seasonal and diel variations in scent composition of ephemeral Murraya paniculata (Linn.) Jack flowers are contributed by separate volatile components. BIOCHEM SYST ECOL 2020. [DOI: 10.1016/j.bse.2020.104004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Borghi M, Perez de Souza L, Yoshida T, Fernie AR. Flowers and climate change: a metabolic perspective. THE NEW PHYTOLOGIST 2019; 224:1425-1441. [PMID: 31257600 DOI: 10.1111/nph.16031] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/24/2019] [Indexed: 05/18/2023]
Abstract
Adverse climatic conditions at the time of flowering severely hinder crop yields and threaten the interactions between plants and their pollinators. These features depend on a common trait: the metabolism of flowers. In this Viewpoint article, we aim to provide insight into the metabolic changes that occur in flowers in response to changes in climate and emphasize that these changes severely impact the fitness of autogamous and allogamous species, plant-pollinator interactions, and overall ecosystem health. We review the biochemical processes that lead to failure of gamete development and to alterations of color, scent and nectar secretion. Then, making use of open access expression data, we examine the expression of genes that may drive these changes in response to heat and drought. Finally, we present measurements of metabolites from flowers exposed to a heat wave and discuss how the results of this short-term experiment may give rise to misleading conclusions regarding the positive effect of heat on flower fitness. We hope this article draws attention to this often-neglected dynamic and its important consequences.
Collapse
Affiliation(s)
- Monica Borghi
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | | | - Takuya Yoshida
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| |
Collapse
|
9
|
Delle-Vedove R, Schatz B, Dufay M. Understanding intraspecific variation of floral scent in light of evolutionary ecology. ANNALS OF BOTANY 2017; 120:1-20. [PMID: 28873948 PMCID: PMC5737645 DOI: 10.1093/aob/mcx055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/29/2017] [Indexed: 05/29/2023]
Abstract
Background and Aims Among the various floral traits involved in pollinator attraction and potentially under selection mediated by pollinators, floral scent/fragrance has been less investigated than other components of floral phenotype. Whether or not pollinator-mediated selection impacts floral scents depends on the heritability of scent/fragrance and the occurrence of some variation within species. Although most studies have investigated how scent varies among species, growing amounts of data are available on variation at the intraspecific level. Methods The results of 81 studies investigating intraspecific variation of floral scents in 132 taxa were reviewed. For each study, whether variation was found in either identity, proportion or absolute quantities of volatile organic compounds (VOCs) was recorded, as well as information with the potential to explain variation, such as methodology, plant origin or pollination biology. Key Results Variation was found for almost all investigated species, both among individuals (among and sometimes within populations) and within individuals across different temporal scales. Cases in which such variation is a possible result of pollinator-mediated selection were analysed, by discussing separately selection related to variation in pollinator identity/behaviour among populations or across time, deceit pollination and sex-specific selection. Not surprisingly, in many cases, pollinator-mediated selection alone does not explain the observed variation in floral scent. This led us to review current knowledge on less investigated factors, such as selection mediated by natural enemies, genetic drift and gene flow, environmental constraints, phylogenetic inertia, or biochemical constraints that could be invoked to explain scent variation. Conclusions This review highlights the great potential of analysing floral scent variation and including it in integrated studies of floral phenotypes. We also have identified the current gaps in our understanding of this complex signal and we propose several methodological and conceptual future directions in this research area.
Collapse
Affiliation(s)
- Roxane Delle-Vedove
- Universite de Lille, CNRS UMR 8198 Evo-Eco-Paleo, 59655 Villeneuve d'Ascq Cedex, France
| | - Bertrand Schatz
- CEFE (Centre d’Ecologie Fonctionnelle et Evolutive), UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier, France
| | - Mathilde Dufay
- Universite de Lille, CNRS UMR 8198 Evo-Eco-Paleo, 59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|
10
|
Jiang Y, Ye J, Li S, Niinemets Ü. Regulation of Floral Terpenoid Emission and Biosynthesis in Sweet Basil ( Ocimum basilicum). JOURNAL OF PLANT GROWTH REGULATION 2016; 35:921-935. [PMID: 29367803 PMCID: PMC5777610 DOI: 10.1007/s00344-016-9591-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Past studies have focused on the composition of essential oil of Ocimum basilicum leaves, but data on composition and regulation of its aerial emissions, especially floral volatile emissions are scarce. We studied the chemical profile, within-flower spatial distribution (sepals, petals, pistils with stamina and pedicels), diurnal emission kinetics and effects of exogenous methyl jasmonate (MeJA) application on the emission of floral volatiles by dynamic headspace collection and identification using gas chromatography-mass spectrometry (GC-MS) and proton transfer reaction mass spectrometry (PTR-MS). We observed more abundant floral emissions from flowers compared with leaves. Sepals were the main emitters of floral volatiles among the flower parts studied. The emissions of lipoxygenase compounds (LOX) and monoterpenoids, but not sesquiterpene emissions, displayed a diurnal variation driven by light. Response to exogenous MeJA treatment of flowers consisted of a rapid stress response and a longer-term acclimation response. The initial response was associated with enhanced emissions of fatty acid derivatives, monoterpenoids, and sesquiterpenoids without variation of the composition of individual compounds. The longer-term response was associated with enhanced monoterpenoid and sesquiterpenoid emissions with profound changes in the emission spectrum. According to correlated patterns of terpenoid emission changes upon stress, highlighted by a hierarchical cluster analysis, candidate terpenoid synthases responsible for observed diversity and complexity of released terpenoid blends were postulated. We conclude that flower volatile emissions differ quantitatively and qualitatively from leaf emissions, and overall contribute importantly to O. basilicum flavor, especially under stress conditions.
Collapse
Affiliation(s)
- Yifan Jiang
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- College of Art, Changzhou University, Gehu 1, Changzhou, 213164, Jiangsu, China
| | - Jiayan Ye
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Shuai Li
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, Tallinn 10130, Estonia
| |
Collapse
|