1
|
Dukat P, Hölttä T, Oren R, Salmon Y, Urbaniak M, Vesala T, Aalto J, Lintunen A. Partitioning seasonal stem carbon dioxide efflux into stem respiration, bark photosynthesis, and transport-related flux in Scots pine. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4944-4959. [PMID: 38779859 PMCID: PMC11350082 DOI: 10.1093/jxb/erae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
Stem CO2 efflux is an important component of the carbon balance in forests. The efflux is considered to principally reflect the net result of two dominating and opposing processes: stem respiration and stem photosynthesis. In addition, transport of CO2 in xylem sap is thought to play an appreciable role in affecting the net flux. This work presents an approach to partition stem CO2 efflux among these processes using sap-flux data and CO2-exchange measurements from dark and transparent chambers placed on mature Scots pine (Pinus sylvestris) trees. Seasonal changes and monthly parameters describing the studied processes were determined. Respiration contributed most to stem net CO2 flux, reaching up to 79% (considering the sum of the absolute values of stem respiration, stem photosynthesis, and flux from CO2 transported in xylem sap to be 100%) in June, when stem growth was greatest. The contribution of photosynthesis accounted for up to 13% of the stem net CO2 flux, increasing over the monitoring period. CO2 transported axially with sap flow decreased towards the end of the growing season. At a reference temperature, respiration decreased starting around midsummer, while its temperature sensitivity increased during the summer. A decline was observed for photosynthetic quantum yield around midsummer together with a decrease in light-saturation point. The proposed approach facilitates modeling net stem CO2 flux at a range of time scales.
Collapse
Affiliation(s)
- Paulina Dukat
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Teemu Hölttä
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Ram Oren
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Nicholas School of the Environment & Pratt School of Engineering, Duke University, Durham NC, USA
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Marek Urbaniak
- Laboratory of Meteorology, Department of Construction and Geoengineering, Faculty of Environmental Engineering and Mechanical Engineering, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznań, Poland
| | - Timo Vesala
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Juho Aalto
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Anna Lintunen
- Institute for Atmospheric and Earth System Research/Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Schmiege SC, Heskel M, Fan Y, Way DA. It's only natural: Plant respiration in unmanaged systems. PLANT PHYSIOLOGY 2023; 192:710-727. [PMID: 36943293 PMCID: PMC10231469 DOI: 10.1093/plphys/kiad167] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 06/01/2023]
Abstract
Respiration plays a key role in the terrestrial carbon cycle and is a fundamental metabolic process in all plant tissues and cells. We review respiration from the perspective of plants that grow in their natural habitat and how it is influenced by wide-ranging elements at different scales, from metabolic substrate availability to shifts in climate. Decades of field-based measurements have honed our understanding of the biological and environmental controls on leaf, root, stem, and whole-organism respiration. Despite this effort, there remain gaps in our knowledge within and across species and ecosystems, especially in more challenging-to-measure tissues like roots. Recent databases of respiration rates and associated leaf traits from species representing diverse biomes, plant functional types, and regional climates have allowed for a wider-lens view at modeling this important CO2 flux. We also re-analyze published data sets to show that maximum leaf respiration rates (Rmax) in species from around the globe are related both to leaf economic traits and environmental variables (precipitation and air temperature), but that root respiration does not follow the same latitudinal trends previously published for leaf data. We encourage the ecophysiological community to continue to expand their study of plant respiration in tissues that are difficult to measure and at the whole plant and ecosystem levels to address outstanding questions in the field.
Collapse
Affiliation(s)
- Stephanie C Schmiege
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
| | - Mary Heskel
- Department of Biology, Macalester College, Saint Paul, MN, USA 55105
| | - Yuzhen Fan
- Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Danielle A Way
- Department of Biology, Western University, N6A 3K7, London, ON, Canada
- Research School of Biology, The Australian National University, Acton, ACT, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
3
|
Salomón RL, De Roo L, Oleksyn J, Steppe K. Mechanistic drivers of stem respiration: A modelling exercise across species and seasons. PLANT, CELL & ENVIRONMENT 2022; 45:1270-1285. [PMID: 34914118 DOI: 10.1111/pce.14246] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/22/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Stem respiration (RS ) plays a crucial role in plant carbon budgets. However, its poor understanding limits our ability to model woody tissue and whole-tree respiration. A biophysical model of stem water and carbon fluxes (TReSpire) was calibrated on cedar, maple and oak trees during spring and late summer. For this, stem sap flow, water potential, diameter variation, temperature, CO2 efflux, allometry and biochemistry were monitored. Shoot photosynthesis (PN ) and nonstructural carbohydrates (NSC) were additionally measured to evaluate source-sink relations. The highest RS and stem growth was found in maple and oak during spring, both being seasonally decoupled from PN and [NSC]. Temperature largely affected maintenance respiration (RM ) in the short term, but temperature-normalized RM was highly variable on a seasonal timescale. Overall, most of the respired CO2 radially diffused to the atmosphere (>87%) while the remainder was transported upward with the transpiration stream. The modelling exercise highlights the sink-driven behaviour of RS and the significance of overall metabolic activity on nitrogen (N) allocation patterns and N-normalized respiratory costs to capture RS variability over the long term. These insights should be considered when modelling plant respiration, whose representation is currently biased towards a better understanding of leaf metabolism.
Collapse
Affiliation(s)
- Roberto L Salomón
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Sistemas Naturales e Historia Forestal, Universidad Politécnica de Madrid, Madrid, Spain
| | - Linus De Roo
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Jacek Oleksyn
- Polish Academy of Sciences, Institute of Dendrology, Körnik, Poland
| | - Kathy Steppe
- Laboratory of Plant Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Lee BR, Ibáñez I. Spring phenological escape is critical for the survival of temperate tree seedlings. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Benjamin R. Lee
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| | - Inés Ibáñez
- School for Environment and Sustainability University of Michigan Ann Arbor MI USA
| |
Collapse
|
5
|
Posch BC, Kariyawasam BC, Bramley H, Coast O, Richards RA, Reynolds MP, Trethowan R, Atkin OK. Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5051-5069. [PMID: 31145793 DOI: 10.1093/jxb/erz257] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
High temperatures account for major wheat yield losses annually and, as the climate continues to warm, these losses will probably increase. Both photosynthesis and respiration are the main determinants of carbon balance and growth in wheat, and both are sensitive to high temperature. Wheat is able to acclimate photosynthesis and respiration to high temperature, and thus reduce the negative affects on growth. The capacity to adjust these processes to better suit warmer conditions stands as a potential avenue toward reducing heat-induced yield losses in the future. However, much remains to be learnt about such phenomena. Here, we review what is known of high temperature tolerance in wheat, focusing predominantly on the high temperature responses of photosynthesis and respiration. We also identify the many unknowns that surround this area, particularly with respect to the high temperature response of wheat respiration and the consequences of this for growth and yield. It is concluded that further investigation into the response of photosynthesis and respiration to high temperature could present several methods of improving wheat high temperature tolerance. Extending our knowledge in this area could also lead to more immediate benefits, such as the enhancement of current crop models.
Collapse
Affiliation(s)
- Bradley C Posch
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Buddhima C Kariyawasam
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Helen Bramley
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Onoriode Coast
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | | | - Matthew P Reynolds
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Richard Trethowan
- Plant Breeding Institute, Sydney Institute of Agriculture & School of Life and Environmental Sciences, The University of Sydney, Narrabri, NSW, Australia
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
6
|
Lei S, Zeng B, Xu S, Zhang X. Response of basal metabolic rate to complete submergence of riparian species Salix variegata in the Three Gorges reservoir region. Sci Rep 2017; 7:13885. [PMID: 29066737 PMCID: PMC5654956 DOI: 10.1038/s41598-017-13467-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 09/25/2017] [Indexed: 01/11/2023] Open
Abstract
One-year old seedlings of Salix variegata (submergence-tolerant) and Cinnamomum camphora (submergence-intolerant) were selected and subjected to complete submergence (2 m) for 1, 5, 10, and 20 days, to elucidate the submergence- tolerance mechanism of S. variegata in the Three Gorges reservoir region. The basal CO2 emission ratios (BCERs) and O2 consumption rates (OCRs) of leaf, stem, and root were determined. The basal O2 consumption rates (BOCRs) were calculated from the OCRs of different parts and their biomass allocations and used for evaluating the basal metabolic rate (BMR) of species with BCERs. The results showed that: (1) The BCERs of both species responded to flooding similarly, and no significant differences occurred between the submerged S. variegata (SS) and the submerged C. camphora (SC) seedlings, and between the control S. variegata (CS) and the control C. camphora (CC) seedlings. (2) The BOCRs of SS were significantly lower than those of SC on days 1 and 20, while no significant differences occurred between CS and CC for every duration. Therefore, the BMRs, evaluated from BOCRs rather than from BCERs, were related to submergence-tolerance of species, and the response of BMR to submergence would contribute to the survival of S. variegata seedlings under flooding.
Collapse
Affiliation(s)
- Shutong Lei
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276005, China
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Bo Zeng
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Shaojun Xu
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
- Forestry College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaoping Zhang
- Key Laboratory of Eco-Environment in the Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|