1
|
Del Bianco D, Gentile R, Sallicandro L, Biagini A, Quellari PT, Gliozheni E, Sabbatini P, Ragonese F, Malvasi A, D’Amato A, Baldini GM, Trojano G, Tinelli A, Fioretti B. Electro-Metabolic Coupling of Cumulus-Oocyte Complex. Int J Mol Sci 2024; 25:5349. [PMID: 38791387 PMCID: PMC11120766 DOI: 10.3390/ijms25105349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Oocyte-cumulus cell interaction is essential for oocyte maturation and competence. The bidirectional crosstalk network mediated by gap junctions is fundamental for the metabolic cooperation between these cells. As cumulus cells exhibit a more glycolytic phenotype, they can provide metabolic substrates that the oocyte can use to produce ATP via oxidative phosphorylation. The impairment of mitochondrial activity plays a crucial role in ovarian aging and, thus, in fertility, determining the success or failure of assisted reproductive techniques. This review aims to deepen the knowledge about the electro-metabolic coupling of the cumulus-oocyte complex and to hypothesize a putative role of potassium channel modulators in order to improve fertility, promote intracellular Ca2+ influx, and increase the mitochondrial biogenesis and resulting ATP levels in cumulus cells.
Collapse
Affiliation(s)
- Diletta Del Bianco
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Rosaria Gentile
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Luana Sallicandro
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Andrea Biagini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
| | - Paola Tiziana Quellari
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Elko Gliozheni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Department of Medicine and Surgery, Perugia Medical School, University of Perugia, Piazza Lucio Severi 1, 06132 Perugia, Italy
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Tirana, AL1005 Tirana, Albania
| | - Paola Sabbatini
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
| | - Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| | - Antonio Malvasi
- Department of Biomedical Sciences and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Antonio D’Amato
- 1st Unit of Obstetrics and Gynecology, University of Bari, 70121 Bari, Italy;
| | | | - Giuseppe Trojano
- Department of Maternal and Child Health, “Madonna delle Grazie” Hospital ASM, 75100 Matera, Italy;
| | - Andrea Tinelli
- Department of Obstetrics and Gynecology and CERICSAL (CEntro di RIcerca Clinico SALentino), Veris delli Ponti Hospital, Via Giuseppina delli Ponti, 73020 Scorrano, Lecce, Italy
| | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell’Elce di Sotto 8, 06132 Perugia, Italy; (D.D.B.); (R.G.); (L.S.); (A.B.); (P.T.Q.); (E.G.); (P.S.); (F.R.)
- Laboratorio Interdipartimentale di Fisiopatologia della Riproduzione, Università degli Studi di Perugia, Edificio C, Piano 3 P.zza Lucio Severi, 1, Sant’Andrea delle Fratte, 06132 Perugia, Italy
| |
Collapse
|
2
|
Lee SE, Lim ES, Yoon JW, Park HJ, Kim SH, Lee HB, Han DH, Kim EY, Park SP. Cell starvation regulates ceramide-induced autophagy in mouse preimplantation embryo development. Cells Dev 2023; 175:203859. [PMID: 37271244 DOI: 10.1016/j.cdev.2023.203859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 05/23/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Ceramide induces autophagy upon starvation via downregulation of nutrient transporters. To elucidate the mechanism by which starvation regulates autophagy in mouse embryos, the present study investigated nutrient transporter expression and the effect of C2-ceramide on in vitro embryo development, apoptosis, and autophagy. The transcript levels of the glucose transporters Glut1 and Glut3 were high at the 1- and 2-cell stages, and gradually decreased at the morula and blastocyst (BL) stages. Similarly, expression of the amino acid transporters L-type amino transporter-1 (LAT-1) and 4F2 heavy chain (4F2hc) gradually decreased from the zygote to the BL stage. Upon ceramide treatment, expression of Glut1, Glut3, LAT-1, and 4F2hc was significantly reduced at the BL stage, while expression of the autophagy-related genes Atg5, LC3, and Gabarap and synthesis of LC3 were significantly induced. Ceramide-treated embryos exhibited significantly reduced developmental rates and total cell numbers per blastocyst, and increased levels of apoptosis and expression of Bcl2l1 and Casp3 at the BL stage. Ceramide treatment significantly decreased the average mitochondrial DNA copy number and mitochondrial area at the BL stage. In addition, ceramide treatment significantly decreased mTOR expression. These results suggest that ceramide-induced autophagy promotes apoptosis by following downregulation of nutrient transporters during mouse embryogenesis.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Seo Lim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Jae-Wook Yoon
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Hyo-Jin Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - So-Hee Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Han-Bi Lee
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Dong-Hun Han
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea
| | - Eun-Young Kim
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul 04795, Republic of Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province 63243, Republic of Korea.
| |
Collapse
|
3
|
Nishigaki A, Tsubokura H, Tsuzuki-Nakao T, Okada H. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function. Reprod Med Biol 2021; 21:e12428. [PMID: 34934403 PMCID: PMC8656197 DOI: 10.1002/rmb2.12428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Ovarian function is closely related to the degree of vascular network development surrounding the ovary. Maternal aging‐related construction defects in this vascular network can cause ovarian hypoxia, which impedes oocyte nutrient supply, leading to physiological changes in the ovaries and oocytes. The anti‐aging gene Sirtuin 1 (SIRT1) senses and adapts to ambient stress and is associated with hypoxic environments and mitochondrial biogenesis. Methods The present study is a literature review focusing on investigations involving the changes in SIRT1 and mitochondrial expression during hypoxia and the cytoprotective effects of the SIRT1 activator, resveratrol. Main findings Hypoxia suppresses SIRT1 and mitochondrial expression. Resveratrol can reverse the hypoxia‐induced decrease in mitochondrial and SIRT1 activity. Resveratrol suppresses the production of hypoxia‐inducible factor‐1α and vascular endothelial growth factor proteins. Conclusion Resveratrol exhibits protective activity against hypoxic stress and may prevent hypoxia‐ or aging‐related mitochondrial dysfunction. Resveratrol treatment may be a potential option for infertility therapy.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | - Hiroaki Tsubokura
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| | | | - Hidetaka Okada
- Department of Obstetrics and Gynecology Kansai Medical University Osaka Japan
| |
Collapse
|
4
|
Aoki S, Ito J, Hara S, Shirasuna K, Iwata H. Effect of maternal aging and vitrification on mitochondrial DNA copy number in embryos and spent culture medium. Reprod Biol 2021; 21:100506. [PMID: 33906097 DOI: 10.1016/j.repbio.2021.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
Maternal aging and vitrification affect mitochondrial quality and quantity in embryos. The present study investigated the effects of maternal aging on mitochondrial DNA (mtDNA) copy number in embryos, and the amount of cell-free mtDNA (cf-mtDNA) in spent culture medium (SCM) of embryos. Moreover, we examined the effects of vitrification on mtDNA copy number in embryos of young and aged cows, and on cf-mtDNA abundance in SCM. Oocytes collected from ovaries of young (20-40 months old) and aged cows (> 140 months old) were used to produce early stage embryos (8-12 cell-stage, 48 h after insemination). These embryos were individually cultured for 5 days, and mtDNA copy number in blastocysts and cf-mtDNA content in SCM, were evaluated by real-time PCR. At 48 h post-insemination, mtDNA copy number in embryos was greater for young cows compared with that of aged cows, whereas no significant difference was observed in cf-mtDNA in the SCM. Next, we addressed whether zona pellucida (ZP) may mask the difference in cf-mtDNA content in SCM. Using ZP-free embryos, we found significantly greater cf-mtDNA content in the SCM of blastocysts derived from aged cows. Furthermore, when embryos were vitrified and warmed, mtDNA copy number in blastocysts derived from young cows was lower, whereas cf-mtDNA content in SCM was greater than in those derived from aged cows. In conclusion, maternal aging affects mitochondrial kinetics and copy number in embryos following vitrification.
Collapse
Affiliation(s)
- Sogo Aoki
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Jun Ito
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Shunsuke Hara
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Tokyo University of Agriculture, Department of Animal Science, Funakon, 1737, Atsugi City, Kanagawa, Japan.
| |
Collapse
|
5
|
Magalhães LC, Cortez JV, Bhat MH, Sampaio ACNPC, Freitas JLS, Duarte JMB, Melo LM, Freitas VJF. In Vitro Development and Mitochondrial Gene Expression in Brown Brocket Deer ( Mazama gouazoubira) Embryos Obtained by Interspecific Somatic Cell Nuclear Transfer. Cell Reprogram 2020; 22:208-216. [PMID: 32559409 DOI: 10.1089/cell.2019.0069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The genetic diversity of Neotropical deer is increasingly jeopardized, owing to declining population size. Thus, the formation of cryobanking of somatic cells is important for the preservation of these species using cloning. The transformation of these cells into viable embryos has been hampered by a lack of endangered species oocytes. Accordingly, the aim of this study was to produce brown brocket deer embryos by interspecific somatic cell nuclear transfer (iSCNT), using goat or cattle oocytes as cytoplasts, and to elucidate embryo mitochondrial activity by measuring the expression levels of ATP6, COX3, and ND5. Cattle embryos produced by in vitro fertilization (IVF) were used as a control. There were no differences in the development of embryos produced by traditional SCNT and iSCNT when using either the goat cytoplasts (38.4% vs. 25.0% cleaved and 40.0% vs. 50.0% morula rates, respectively) or cattle cytoplast (72.8% vs. 65.5% cleaved and 11.3% vs. 5.9% blastocyst rates, respectively). Concerning the gene expression, no significant difference was observed when goat oocytes were used as cytoplasts. However, when using cattle oocytes and 16S as a reference gene, the iSCNT upregulated COX3, when compared with SCNT group. In contrast, when GAPDH was used as a reference gene, all the evaluated genes were upregulated in the iSCNT group, when compared with the IVF group. When compared with the SCNT group, only the expression of ATP6 was statistically different. In conclusion, it was demonstrated that interspecific nuclear transfer is a potentially useful tool for conservation programs of endangered similar deer species.
Collapse
Affiliation(s)
- Lívia C Magalhães
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - Jenin V Cortez
- Laboratory of Animal Biotechnology, National University Toribio Rodriguez de Mendoza, Chachapoyas, Peru
| | - Maajid H Bhat
- Department of Biology, University of Saskatchewan, Saskatoon, Canada
| | - Ana Clara N P C Sampaio
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - Jeferson L S Freitas
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| | - José M B Duarte
- Department of Animal Science, Deer Research and Conservation Center, São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Luciana M Melo
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil.,Molecular Genetics Research Unit, University Center Fametro (UNIFAMETRO), Fortaleza, Brazil
| | - Vicente J F Freitas
- Laboratory of Physiology and Control of Reproduction, Faculty of Veterinary, Ceará State University (UECE), Fortaleza, Brazil
| |
Collapse
|
6
|
Nishigaki A, Kido T, Kida N, Kakita‐Kobayashi M, Tsubokura H, Hisamatsu Y, Okada H. Resveratrol protects mitochondrial quantity by activating SIRT1/PGC-1α expression during ovarian hypoxia. Reprod Med Biol 2020; 19:189-197. [PMID: 32273826 PMCID: PMC7138948 DOI: 10.1002/rmb2.12323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Resveratrol is a well-known potent activator of sirtuin-1 (SIRT1). We investigated the direct effects of hypoxia and resveratrol on SIRT1/ peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α) pathways, vascular endothelial growth factor (VEGF), hypoxia-inducible factor (HIF)-1α, and mitochondrial quantity in a steroidogenic human ovarian granulosa-like tumor cell line (KGN) cells. METHODS KGN cells were cultured with cobalt chloride (CoCl2; a hypoxia-mimicking agent) and/or resveratrol. The mRNA and protein levels, protein secretion, and intracellular localization were assessed by real-time PCR, Western blot analysis, ELISA, and immunofluorescence staining, respectively. Mitochondrial quantity was measured based on the mitochondrial DNA (mtDNA) copy number. RESULTS CoCl2 simultaneously attenuated the levels of SIRT1 and mtDNA expression, and induced the levels of VEGF protein production. In contrast, resveratrol significantly increased the levels of SIRT1 and mtDNA copy number, but reduced VEGF production in normoxia. Resveratrol could recover CoCl2-suppressed SIRT1 and mtDNA expression and antagonize CoCl2-induced VEGF production. CoCl2 treatment resulted in a downregulation of PGC-1α expression, and this effect was recovered by resveratrol. Resveratrol significantly suppressed the production of the CoCl2-induced HIF-1α and VEGF proteins. CONCLUSION These results suggest that resveratrol improves mitochondrial quantity by activating the SIRT1/PGC-1α pathway and inhibits VEGF induction through HIF-1α under hypoxic conditions.
Collapse
Affiliation(s)
- Akemi Nishigaki
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Takeharu Kido
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Naoko Kida
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | | | - Hiroaki Tsubokura
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Yoji Hisamatsu
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| | - Hidetaka Okada
- Department of Obstetrics and GynecologyKansai Medical UniversityOsakaJapan
| |
Collapse
|
7
|
García-Herreros M, Simintiras CA, Lonergan P. Temporally differential protein expression of glycolytic and glycogenic enzymes during in vitro preimplantation bovine embryo development. Reprod Fertil Dev 2019; 30:1245-1252. [PMID: 29566785 DOI: 10.1071/rd17429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/01/2018] [Indexed: 12/11/2022] Open
Abstract
Proteomic analyses are useful for understanding the metabolic pathways governing embryo development. This study investigated the presence of enzymes involved in glycolysis and glycogenesis in in vitro-produced bovine embryos at five developmental stages leading up to blastocyst formation. The enzymes examined were: (1) glycolytic: hexokinase-I (HK-I), phosphofructokinase-1 (PFK-1), pyruvate kinase mutase 1/2 (PKM-1/2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and (2) glycogenic: glycogen synthase kinase-3 isoforms α/ β (GSK-3α/β). Glucose transporter-1 (GLUT-1) was also analysed. The developmental stages examined were: (1) 2-4-cell, (2) 5-8-cell, (3) 16-cell, (4) morula and (5) expanded blastocyst. The enzymes HK-I, PFK-1, PKM-1/2, GAPDH and GLUT-1 were differentially expressed throughout all stages (P<0.05). GSK-3α and β were also differentially expressed from the 2-4-cell to the expanded blastocyst stage (P<0.05) and GLUT-1 was identified throughout. The general trend was that the abundance of PFK1, GAPDH and PKM-1/2 decreased whereas HK-I, phospho-GSK3α (P-GSK3α) and P-GSK3β levels increased as the embryo advanced. In contrast, GLUT-1 expression peaked at the 16-cell stage. These data combined suggest that in vitro bovine embryo metabolism switches from being glycolytic-centric to glycogenic-centric around the 16-cell stage, the developmental window also characterised by embryonic genome activation.
Collapse
Affiliation(s)
- Manuel García-Herreros
- National Institute for Agricultural and Veterinary Research (INIAV, I.P.), Quinta da Fonte Boa 2005-048, Santarém, Portugal
| | - Constantine A Simintiras
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin D04 N2E5, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Dublin D04 N2E5, Ireland
| |
Collapse
|
8
|
Zhang X, Sun Y, Dong X, Zhou J, Sun F, Han T, Lei P, Mao R, Guo X, Wang Q, Li P, Qu T, Huang J, Li L, Huang T, Zhong Y, Gu J. Mitochondrial DNA and genomic DNA ratio in embryo culture medium is not a reliable predictor for in vitro fertilization outcome. Sci Rep 2019; 9:5378. [PMID: 30926852 PMCID: PMC6441050 DOI: 10.1038/s41598-019-41801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/13/2019] [Indexed: 02/05/2023] Open
Abstract
To investigate the ratio of mitochondrial DNA to genomic DNA (mt/gDNA) in embryo culture medium as a possible predictor for embryonic development and pregnancy outcome, we collected a total of 93 embryo biopsy specimens from 52 women at the corresponding Day 3 (D3) and Day 5 (D5) embryo culture medium of in vitro fertilization. With the multiple annealing and looping-based amplification cycles method of next-generation sequencing for whole genome amplification, we examined the karyotype of the biopsy samples and the mt/gDNA ratio in the culture medium. Results showed that the ratio of mt/gDNA had an upward trend with decreasing trophectoderm levels with no significant difference. At the same time, from D3 to D5, the mt/gDNA ratio in the medium of embryos that failed to become blastocysts showed an upward trend, and the mt/gDNA ratio of medium from embryos that reached blastulation with successful pregnancy showed a decreasing trend, but the differences were not statistically significant. We conclude that there is a certain correlation between mt/gDNA ratio and early embryonic development, but it does not reach a level that can be used as a clinical predictor.
Collapse
Affiliation(s)
- Xinyue Zhang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Yue Sun
- Department of Clinical Research, Yikon Genomics Co. Ltd., Building 26, 1698 Wangyuan Road, Fengxian District, Shanghai, 201499, China
| | - Xin Dong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Jianming Zhou
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Fubo Sun
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Tingting Han
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ping Lei
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Rurong Mao
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Xuzhou Guo
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Qi Wang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Penghao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ting Qu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Jihua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Lingxiao Li
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Tianhua Huang
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China
| | - Ying Zhong
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
| | - Jiang Gu
- Jinxin Research Institute for Reproductive Medicine and Genetics, Chengdu Jinjiang Hospital for Maternal and Child Health Care, 66 Jingxiu Road, Chengdu, 610066, China.
- Laboratory of Molecular Pathology, Center of Molecular Diagnosis and Personalized Medicine, Provincial Key Laboratory of Infectious Diseases and Molecular Pathology, Shantou University Medical College, Shantou, China.
- Department of Pathology, Beijing University Health Science Center, Beijing, China.
| |
Collapse
|
9
|
Payton RR, Rispoli LA, Nagle KA, Gondro C, Saxton AM, Voy BH, Edwards JL. Mitochondrial-related consequences of heat stress exposure during bovine oocyte maturation persist in early embryo development. J Reprod Dev 2018; 64:243-251. [PMID: 29553057 PMCID: PMC6021609 DOI: 10.1262/jrd.2017-160] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/03/2018] [Indexed: 12/22/2022] Open
Abstract
Hyperthermia during estrus has direct consequences on the maturing oocyte that carries over to the resultant embryo to compromise its ability to continue in development. Because early embryonic development is reliant upon maternal transcripts and other ooplasmic components, we examined impact of heat stress on bovine oocyte transcripts using microarray. Oocytes were matured at 38.5ºC for 24 h or 41.0ºC for the first 12 h of in vitro maturation; 38.5ºC thereafter. Transcriptome profile was performed on total (adenylated + deadenylated) RNA and polyadenylated mRNA populations. Heat stress exposure altered the abundance of several transcripts important for mitochondrial function. The extent to which transcript differences are coincident with functional changes was evaluated by examining reactive oxygen species, ATP content, and glutathione levels. Mitochondrial reactive oxygen species levels were increased by 6 h exposure to 41.0ºC while cytoplasmic levels were reduced compared to controls (P < 0.0001). Exposure to 41.0ºC for 12 h increased total and reduced glutathione levels in oocytes at 12 h but reduced them by 24 h (time × temperature P < 0.001). ATP content was higher in heat-stressed oocytes at 24 h (P < 0.0001). Heat-induced increases in ATP content of matured oocytes persisted in early cleavage-stage embryos (8- to 16-cell embryos; P < 0.05) but were no longer apparent in blastocysts (P > 0.05). Collectively, results indicate that direct exposure of maturing oocytes to heat stress may alter oocyte mitochondrial processes/function, which is inherited by the early embryo after fertilization.
Collapse
Affiliation(s)
- Rebecca R Payton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Louisa A Rispoli
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Kimberly A Nagle
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Arnold M Saxton
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - Brynn H Voy
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| | - J Lannett Edwards
- Department of Animal Science, The University of Tennessee, Institute of Agriculture, AgResearch, Knoxville, TN, USA
| |
Collapse
|
10
|
González-Grajales LA, Favetta LA, King WA, Mastromonaco GF. Lack of effects of ooplasm transfer on early development of interspecies somatic cell nuclear transfer bison embryos. BMC DEVELOPMENTAL BIOLOGY 2016; 16:36. [PMID: 27737629 PMCID: PMC5064788 DOI: 10.1186/s12861-016-0137-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 09/29/2016] [Indexed: 12/20/2022]
Abstract
Background Successful development of iSCNT (interspecies somatic cell nuclear transfer) embryos depends on complex interactions between ooplasmic and nuclear components, which can be compromised by genetic divergence. Transfer of ooplasm matching the genetic background of the somatic cell in iSCNT embryos is a valuable tool to study the degree of incompatibilities between nuclear and ooplasmic components. This study investigated the effects of ooplasm transfer (OT) on cattle (Bos taurus) and plains bison (Bison bison bison) embryos produced by iSCNT and supplemented with or without ooplasm from cattle or plains bison oocytes. Results Embryos in all groups were analysed for developmental competence that included cleavage rates, ATP content, and expression of nuclear- and mitochondrial- encoded genes at 8–16 cell stage. Interestingly, no significant differences were observed in embryo development, ATP content, and expression of nuclear respiratory factor 2 (NRF2), mitochondrial transcription factor A (TFAM) and mitochondrial subunit 2 of cytochrome c oxidase (mt-COX2) among groups. Thus, although OT did not result in any detrimental effects on the reconstructed embryos due to invasive manipulation, significant benefits of OT were not observed up to the 8–16 cell stage. Conclusions This study showed that a viable technique for OT + SCNT is possible, however, further understanding of the effects of OT on blastocyst development is necessary.
Collapse
Affiliation(s)
| | - Laura A Favetta
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - W Allan King
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada
| | - Gabriela F Mastromonaco
- Department of Biomedical Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, N1G 2W1, Canada. .,Reproductive Physiology, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario, M1B 5K7, Canada.
| |
Collapse
|
11
|
Igarashi H, Takahashi T, Abe H, Nakano H, Nakajima O, Nagase S. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation. Hum Reprod 2016; 31:2331-2338. [DOI: 10.1093/humrep/dew203] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
12
|
Schoevers EJ, Santos RR, Fink-Gremmels J, Roelen BAJ. Toxicity of beauvericin on porcine oocyte maturation and preimplantation embryo development. Reprod Toxicol 2016; 65:159-169. [PMID: 27474255 DOI: 10.1016/j.reprotox.2016.07.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/01/2016] [Accepted: 07/25/2016] [Indexed: 11/30/2022]
Abstract
Beauvericin (BEA) is one of many toxins produced by Fusarium species that contaminate feed materials. The aim of this study was to assess its effects on porcine oocyte maturation and preimplantation embryo development. Cumulus-oocyte-complexes and developing embryos were exposed to BEA and cultured until the blastocyst stage. Cumulus cells, oocytes and embryos were examined for viability, progesterone synthesis, multidrug resistance protein (MDR1), ATP content and gene expression related to MDR1 function, oxidative phosphorylation, steroidogenesis and apoptosis. BEA was toxic in embryos, oocytes and cumulus cells at concentrations exceeding 0.5μM, and embryos were most vulnerable after the four-cell stage. Since BEA exerted different effects in embryos, oocytes and cumulus cells, the toxic mechanism is suggested to involve different pathways. Currently there are no consistent data on adverse effects of BEA in pig farms.
Collapse
Affiliation(s)
- Eric J Schoevers
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands.
| | - Regiane R Santos
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Johanna Fink-Gremmels
- Institute for Risk Assessment Sciences, Division Veterinary Pharmacology, Pharmacotherapy and Toxicology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bernard A J Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
13
|
Itami N, Shiratsuki S, Shirasuna K, Kuwayama T, Iwata H. Mitochondrial biogenesis and degradation are induced by CCCP treatment of porcine oocytes. Reproduction 2015; 150:97-104. [PMID: 25995440 DOI: 10.1530/rep-15-0037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/20/2015] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the mitochondrial quality control system in porcine oocytes during meiotic maturation. Cumulus cell oocyte complexes (COCs) collected from gilt ovaries were treated with 10 μM carbonyl cyanide-m-chlorophenylhydrazone (CCCP; a mitochondrial uncoupler) for 2 h. The CCCP treatment was found to significantly reduce ATP content, increase the amount of phosphorylated AMP-activated protein kinase and elevate reactive oxygen species levels in oocytes. When the CCCP-treated COCs were cultured further for 44 h in maturation medium, the ATP levels were restored and the parthenogenetic developmental rate of oocytes to the blastocyst stage was comparable with that of untreated COCs. To examine the effects of CCCP treatment of oocytes on the kinetics of mitochondrial DNA copy number (Mt number), COCs treated with 0 or 10 μM CCCP were cultured for 44 h, after which the Mt number was determined by RT-PCR. CCCP treatment was found to increase the Mt number in the modified maturation medium in which mitochondrial degradation was inhibited by MG132, whereas CCCP treatment did not affect the Mt number in the maturation medium lacking MG132. The relative gene expression of TFAM was furthermore shown to be significantly higher in CCCP-treated oocytes than in untreated oocytes. Taken together, the finding presented here suggest that when the mitochondria are injured, mitochondrial biogenesis and degradation are induced, and that these processes may contribute to the recuperation of oocytes.
Collapse
Affiliation(s)
- N Itami
- Department of Animal ReproductionTokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| | - S Shiratsuki
- Department of Animal ReproductionTokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| | - K Shirasuna
- Department of Animal ReproductionTokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| | - T Kuwayama
- Department of Animal ReproductionTokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| | - H Iwata
- Department of Animal ReproductionTokyo University of Agriculture, Funako 1737, Atsugi, Kanagawa, 243-0034, Japan
| |
Collapse
|
14
|
Stigliani S, Persico L, Lagazio C, Anserini P, Venturini PL, Scaruffi P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol Hum Reprod 2014; 20:1238-46. [PMID: 25232043 DOI: 10.1093/molehr/gau086] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In assisted reproduction technology, embryo competence is routinely evaluated on morphological criteria. Over the last decade, efforts in improving non-invasive embryo assessment have looked into the secretome of embryos. Human embryos release genomic DNA (gDNA) and mitochondrial DNA (mtDNA) into the culture medium, and the mtDNA/gDNA ratio is significantly correlated with embryo fragmentation. Here, we investigate whether mtDNA/gDNA ratio in embryo spent medium is correlated with blastulation potential and implantation. The mtDNA/gDNA ratio was assessed in 699 Day 3 culture media by quantitative polymerase chain reaction (qPCR) to investigate its correlation with embryo morphology, blastocyst development and implantation. A logistic regression model evaluated whether mtDNA/gDNA ratio in the secretome may improve the prediction of blastulation. We found that embryos that successfully developed into blastocysts exhibited a significantly higher mtDNA/gDNA ratio in the culture medium compared with those that arrest (P = 0.0251), and mtDNA/gDNA, combined with morphological grading, has the potential to predict blastulation better than morphology alone (P = 0.02). Moreover, mtDNA/gDNA ratio was higher in the media from good-quality embryos that reached the full blastocyst stage on Day 5 compared with those that developed more slowly (P < 0.0001). With respect to blastocyst morphology, higher trophectoderm quality was associated with a higher mtDNA/gDNA ratio in the culture medium. Finally, a high mtDNA/gDNA ratio in spent medium was associated with successful implantation outcome (P = 0.0452) of good-quality embryos. In summary, the mtDNA/gDNA ratio in the Day 3 embryo secretome, in combination with morphological grading, may be a novel, non-invasive, early biomarker to improve identification of viable embryos with high developmental potential.
Collapse
Affiliation(s)
- S Stigliani
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| | - L Persico
- Department of Economics and Business Studies, University of Genoa, Genoa, Italy
| | - C Lagazio
- Department of Economics and Business Studies, University of Genoa, Genoa, Italy
| | - P Anserini
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| | - P L Venturini
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy University of Genoa, Genoa, Italy
| | - P Scaruffi
- UOS Physiopathology of Human Reproduction, IRCCS AOU San Martino-IST, Largo R. Benzi, 10, 16132 Genoa, Italy
| |
Collapse
|
15
|
Meirelles FV, Bressan FF, Smith LC, Perecin F, Chiaratti MR, Ferraz JBS. Cytoplasmatic inheritance, epigenetics and reprogramming DNA as tools in animal breeding. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Hansen PJ. Antecedents of mammalian fertility: Lessons from the heat-stressed cow regarding the importance of oocyte competence for fertilization and embryonic development. Anim Front 2013. [DOI: 10.2527/af.2013-0031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter J. Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Takeda K. Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs. Reprod Med Biol 2013; 12:47-55. [PMID: 29699130 DOI: 10.1007/s12522-012-0142-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/21/2012] [Indexed: 01/05/2023] Open
Abstract
Although somatic cell nuclear transfer (SCNT) is a powerful tool for production of cloned animals, SCNT embryos generally have low developmental competency and many abnormalities. The interaction between the donor nucleus and the enucleated ooplasm plays an important role in early embryonic development, but the underlying mechanisms that negatively impact developmental competency remain unclear. Mitochondria have a broad range of critical functions in cellular energy supply, cell signaling, and programmed cell death; thus, affect embryonic and fetal development. This review focuses on mitochondrial considerations influencing SCNT techniques in farm animals. Donor somatic cell mitochondrial DNA (mtDNA) can be transmitted through what has been considered a "bottleneck" in mitochondrial genetics via the SCNT maternal lineage. This indicates that donor somatic cell mitochondria have a role in the reconstructed cytoplasm. However, foreign somatic cell mitochondria may affect the early development of SCNT embryos. Nuclear-mitochondrial interactions in interspecies/intergeneric SCNT (iSCNT) result in severe problems. A major biological selective pressure exists against survival of exogenous mtDNA in iSCNT. Yet, mtDNA differences in SCNT animals did not reflect transfer of proteomic components following proteomic analysis. Further study of nuclear-cytoplasmic interactions is needed to illuminate key developmental characteristics of SCNT animals associated with mitochondrial biology.
Collapse
Affiliation(s)
- Kumiko Takeda
- NARO Institute of Livestock and Grassland Science National Agriculture and Food Research Organization 2 Ikenodai 305-0901 Tsukuba Japan
| |
Collapse
|
18
|
Takeo S, Goto H, Kuwayama T, Monji Y, Iwata H. Effect of maternal age on the ratio of cleavage and mitochondrial DNA copy number in early developmental stage bovine embryos. J Reprod Dev 2012; 59:174-9. [PMID: 23269452 PMCID: PMC3934204 DOI: 10.1262/jrd.2012-148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Age-associated deterioration in both the quality and quantity of mitochondria occurs in older women. The main aim of this study was to examine the effect of age on mitochondrial DNA copy number (mtDNA number) in early developmental stage bovine embryos as well as the dynamics of mtDNA number during early embryo development. Real-time PCR was used to determine mtDNA number. In vitro-produced embryos 48 h after insemination derived from Japanese black cows, ranging in age from 25 to 209 months were categorized based on their cleavage status. There was an overall negative relationship between the age of the cow and cleavage status, to the extent that the ratio of embryos cleaved over the 4-cell stage was greater in younger cows. The mtDNA number did not differ among the cleaved status of embryos. In the next experiment, oocytes collected from each donor cow were divided into 2 groups containing 10 oocytes each, in order to compare the mtDNA number of mature oocytes and early developmental stage embryos within individuals. Upon comparing the mtDNA number between oocytes at the M2 stage and early developmental stage 48 h post insemination, mtDNA number was found to decrease in most cows, but was found to increase in some cows. In conclusion, age affects the cleaving ability of oocytes, and very old cows (> 180 months) tend to have lower mtDNA numbers in their oocytes. The change in mtDNA number during early development varied among individual cows, although overall, it showed a tendency to decrease.
Collapse
Affiliation(s)
- Shun Takeo
- Tokyo University of Agriculture, Kanagawa 243-0034, Japan
| | | | | | | | | |
Collapse
|
19
|
Mahrous E, Yang Q, Clarke HJ. Regulation of mitochondrial DNA accumulation during oocyte growth and meiotic maturation in the mouse. Reproduction 2012; 144:177-85. [DOI: 10.1530/rep-12-0113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oocytes accumulate an enormous quantity of mitochondrial (mt) DNA, and an insufficient amount of mtDNA may underlie some cases of poor oocyte quality leading to infertility. Little is known, however, about the mechanisms that govern the timing and regulation of mtDNA accumulation during oogenesis. We report, through analysis of the mtDNA content of individual oocytes of the mouse, that mtDNA accumulates steadily during oocyte growth to reach a value of ∼175 000 copies per cell. MtDNA content ceases to increase once oocytes reach full size and remains unchanged during meiotic maturation. To test whether mtDNA accumulation depends on oocyte growth, we inhibited growth in vitro in two ways – by exposing complexes comprising partially grown oocytes enclosed by granulosa cells to a chemical inhibitor of the phosphatidylinositol-3-kinase signaling pathway and by removing the surrounding granulosa cells from partially grown oocytes. Under both conditions, the oocytes fail to grow, but mtDNA accumulation is unaffected, indicating that the two processes can be mechanistically uncoupled. Quantitative analysis of the mRNAs encoding proteins required for mtDNA replication revealed that Polg (Polga) (polymerase-γ, α-subunit), Polg2 (Polgb), and Tfam (transcription factor A, mitochondrial) increase during oocyte growth but then decrease after fully grown oocytes become transcriptionally silent as indicated by the non-surrounded nucleolus-to-surrounded nucleolus transition. Thus, there is a correlation between the decline in the quantity of mRNAs encoding mtDNA replication factors in fully grown oocytes and the arrest of mtDNA accumulation in these cells, suggesting that the two events may be causally linked.
Collapse
|
20
|
Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT). Biochem Biophys Res Commun 2012; 424:765-70. [PMID: 22809505 DOI: 10.1016/j.bbrc.2012.07.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 11/23/2022]
Abstract
Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A→T), 16062 (T→C), and 16135 (G→A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.
Collapse
|
21
|
Hua S, Lu C, Song Y, Li R, Liu X, Quan F, Wang Y, Liu J, Su F, Zhang Y. High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos. Reprod Fertil Dev 2012; 24:501-9. [PMID: 22401282 DOI: 10.1071/rd11091] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/03/2011] [Indexed: 01/09/2023] Open
Abstract
To investigate the effect of mitochondrial heteroplasmy on embryo development, cloned embryos produced using bovine oocytes as the recipient cytoplasm and ovine granulosa cells as the donor nuclei were complemented with 2pL mitochondrial suspension isolated from ovine (BOOMT embryos) or bovine (BOBMT embryos) granulosa cells; cloned embryos without mitochondrial injection served as the control group (BO embryos). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and sodium bisulfite genomic sequencing were used to analyse mRNA and methylation levels of pluripotency genes (OCT4, SOX2) and mitochondrial genes (TFAM, POLRMT) in the early developmental stages of cloned embryos. The number of mitochondrial DNA copies in 2pL ovine-derived and bovine-derived mitochondrial suspensions was 960±110 and 1000±120, respectively. The blastocyst formation rates were similar in BOBMT and BO embryos (P>0.05), but significantly higher than in BOOMT embryos (P<0.01). Expression of OCT4 and SOX2, as detected by RT-qPCR, decreased significantly in BOOMT embryos (P<0.05), whereas the expression of TFAM and POLRMT increased significantly, compared with expression in BOOMT and BO embryos (P<0.05). In addition, methylation levels of OCT4 and SOX2 were significantly greater (P<0.05), whereas those of TFAM and POLRMT were significantly lower (P<0.01), in BOOMT embryos compared with BOBMT and BO embryos. Together, the results of the present study suggest that the degree of mitochondrial heteroplasmy may affect embryonic development.
Collapse
Affiliation(s)
- Song Hua
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province 712100, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Artuso L, Romano A, Verri T, Domenichini A, Argenton F, Santorelli FM, Petruzzella V. Mitochondrial DNA metabolism in early development of zebrafish (Danio rerio). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1002-11. [DOI: 10.1016/j.bbabio.2012.03.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 03/12/2012] [Accepted: 03/14/2012] [Indexed: 10/28/2022]
|
23
|
De Bem TH, Chiaratti MR, Rochetti R, Bressan FF, Sangalli JR, Miranda MS, Pires PR, Schwartz KR, Sampaio RV, Fantinato-Neto P, Pimentel JR, Perecin F, Smith LC, Meirelles FV, Adona PR, Leal CL. Viable Calves Produced by Somatic Cell Nuclear Transfer Using Meiotic-Blocked Oocytes. Cell Reprogram 2011; 13:419-29. [DOI: 10.1089/cell.2011.0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiago H.C. De Bem
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos R. Chiaratti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Raquel Rochetti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Fabiana F. Bressan
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano R. Sangalli
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Moysés S. Miranda
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pedro R.L. Pires
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Kátia R.L. Schwartz
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael V. Sampaio
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Paulo Fantinato-Neto
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - José R.V. Pimentel
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence C. Smith
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Flávio V. Meirelles
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Paulo R. Adona
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Universidade do Norte do Paraná, Londrina, PR, Brazil
| | - Cláudia L.V. Leal
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
24
|
Yan H, Yan Z, Ma Q, Jiao F, Huang S, Zeng F, Zeng Y. Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning. J Genet Genomics 2011; 38:21-8. [PMID: 21338949 DOI: 10.1016/j.jcg.2010.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 10/19/2010] [Accepted: 10/21/2010] [Indexed: 12/29/2022]
Abstract
Reconstructed embryos derived from intersubspecies somatic cell nuclear transfer (SCNT) have poorer developmental potential than those from intrasubspecies SCNT. Based on our previous study that Holstein dairy bovine (HD) mitochondrial DNA (mtDNA) haplotype compatibility between donor karyoplast and recipient cytoplast is crucial for SCNT embryo development, we performed intersubspecies SCNT using HD as donor karyoplast and Luxi yellow heifer (LY) as recipient cytoplast according to mtDNA haplotypes determined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. The results demonstrated that intersubspecies mtDNA homotype SCNT embryos had higher pre- and post-implantation developmental competence than intrasubspecies mtDNA heterotype embryos as well as improved blastocyst reprogramming status, including normal H3K9 dimethylation pattern and promoter hypomethylation of pluripotent genes such as Oct4 and Sox2, suggesting that intersubspecies SCNT using LY oocytes maintains HD cloning efficiency and may reprogram HD nuclei to develop into a normal cloned animal ultimately. Our results indicated that karyoplast-cytoplast interactions and mtDNA haplotype compatibility may affect bovine intersubspecies SCNT efficiency. This study on bovine intersubspecies SCNT is valuable for understanding the mechanisms of mtDNA haplotype compatibility between karyoplast and cytoplast impacting the bovine SCNT efficiency, and provides an alternative and economic resource for HD cloning.
Collapse
Affiliation(s)
- Hao Yan
- Shanghai Institute of Medical Genetics, Shanghai Jiao Tong University, 24/1400 West Beijing Road, Shanghai 200040, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Cannon MV, Takeda K, Pinkert CA. Mitochondrial biology in reproduction. Reprod Med Biol 2011; 10:251-258. [PMID: 29662358 DOI: 10.1007/s12522-011-0101-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 06/22/2011] [Indexed: 11/28/2022] Open
Abstract
Mitochondrial biology plays an important role in the reproductive process, with influence on germ cell development and quality as well as embryonic development and reproductive success. This review outlines the role of mitochondrial genetics and function in reproductive biology, including a discussion of general mitochondrial function, genetics and germline transmission. Also highlighted are the mitochondrial morphologic changes that occur during oogenesis and the role these changes play in the mitochondrial bottleneck that influences the distribution of deleterious mitochondrial genomes to offspring. The review covers the influence of mitochondria in embryonic stem cell and induced pluripotent stem cell biology and development. Lastly, the role of mitochondrial biology in assisted reproductive techniques is discussed.
Collapse
Affiliation(s)
| | - Kumiko Takeda
- National Institute of Livestock and Grassland Science, NARO Tsukuba Japan
| | | |
Collapse
|
26
|
Iwata H, Goto H, Tanaka H, Sakaguchi Y, Kimura K, Kuwayama T, Monji Y. Effect of maternal age on mitochondrial DNA copy number, ATP content and IVF outcome of bovine oocytes. Reprod Fertil Dev 2011; 23:424-32. [PMID: 21426860 DOI: 10.1071/rd10133] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 09/15/2010] [Indexed: 11/23/2022] Open
Abstract
The primary aim of the present study was to examine the effect of maternal age (in months) on mitochondrial DNA copy number (Mt number), ATP content and IVF outcome of bovine oocytes. We also compared the Mt number of oocytes with fertilisation outcome and ATP content. Oocytes were collected from cows aged 20-204 months and the Mt number was determined by real-time polymerase chain reaction. The Mt number in immature and mature oocytes was determined to be 368,118 and 807,794, respectively; the ATP content in these oocytes was 1.2 and 2.0 pM, respectively. Both Mt number and ATP content increased during oocyte maturation. However, after 90 months of age, the Mt number of mature oocytes decreased with increasing maternal age, whereas the ATP content of mature oocytes was positively correlated with maternal age (P<0.01); there was no obvious relationship observed between Mt number and ATP content. Furthermore, maternal age was positively correlated with the abnormal fertilisation rate (P<0.01). Mt number and fertilisation outcome were unrelated, but the nature of this relationship differed between young (21-89 months) and old (>89 months) cows. Thus, we conclude that Mt number, the ATP content and fertilisation outcome of bovine oocytes are affected by maternal age.
Collapse
Affiliation(s)
- Hisataka Iwata
- Tokyo University of Agriculture, Funako 1737, Atugi City 243-0034, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Lee SE, Hwang KC, Sun SC, Xu YN, Kim NH. Modulation of autophagy influences development and apoptosis in mouse embryos developing in vitro. Mol Reprod Dev 2011; 78:498-509. [PMID: 21681844 DOI: 10.1002/mrd.21331] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/06/2011] [Indexed: 11/08/2022]
Abstract
Autophagyis, the bulk degradation of proteins and organelles, is essential for cellular maintenance, cell viability, and development, and is often involved in type II programmed cell death in mammals. This study investigated the expression levels of autophagy-related genes and the effect of 3-methyladenine (3-MA, an autophagy inhibitor) or rapamycin (an autophagy inducer) on the in vitro development and apoptosis of mouse embryos. LC3, which is essential for the formation of autophagosomes, was widely expressed in mouse embryos, and high levels of transcript were present from 1 to 4 cells but gradually decreased through the morula and blastocyst stages. 3-MA-treated embryos exhibited significantly reduced developmental rates and total cell numbers, but increased rates of apoptosis. Furthermore, both the expression of Lc3, Gabarap, Atg4A, and Atg4B, and the synthesis of LC3 were significantly reduced at the blastocyst stage. Although rapamycin treatment did not affect developmental rates, cell numbers decreased, and the apoptosis rate increased. Expression of Lc3, Gabarap, Atg4A, and Atg4B, and synthesis of LC3 increased as well. Modulation of Lc3 mRNA and LC3 protein levels using 3-MA or rapamycin significantly increased apoptotic cell death through the disruption of mitochondrial morphology and reduction of mtDNA copy number at the blastocyst stage. Interestingly, the inner cell mass, detected by immunostaining with POU5F1 (OCT3/4) after 3-MA or rapamycin treatment of embryos, was significantly increased compared to controls. These results suggest that autophagy influences developmental patterning and apoptosis, and may play a role in early mouse embryogenesis.
Collapse
Affiliation(s)
- Seung-Eun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | | | | | | | | |
Collapse
|
28
|
Srirattana K, Matsukawa K, Akagi S, Tasai M, Tagami T, Nirasawa K, Nagai T, Kanai Y, Parnpai R, Takeda K. Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim Sci J 2011; 82:236-43. [PMID: 21729201 DOI: 10.1111/j.1740-0929.2010.00827.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although interspecies/intergeneric somatic cell nuclear transfer (iSCNT) has been proposed as a tool to produce offspring of endangered species, conflict between donor nucleus and recipient cytoplasm in iSCNT embryos has been identified as an impediment to implementation for agricultural production. To investigate the nuclear-mitochondrial interactions on the developmental potential of iSCNT embryos, we analyzed the mtDNA copy numbers in iSCNT embryos reconstructed with water buffalo (swamp type) fibroblasts and bovine enucleated oocytes (buffalo iSCNT). As controls, SCNT embryos were derived from bovine fibroblasts (bovine SCNT). Buffalo iSCNT and bovine SCNT embryos showed similar rates of cleavage and development to the 8-cell stage (P>0.05). However, buffalo iSCNT embryos did not develop beyond the 16-cell stage. Both bovine and buffalo mtDNA content in buffalo iSCNT embryos was stable throughout the nuclear transfer process, and arrested at the 8- to 16-cell stage (P>0.05). In bovine SCNT embryos that developed to the blastocyst stage, mtDNA copy number was increased (P<0.05). In conclusion, both the donor cell and recipient cytoplast mtDNAs of buffalo iSCNT embryos were identified and maintained through the iSCNT process until the 8-16-cell stage. In addition, the copy number of mtDNA per embryo was a useful monitor to investigate nuclear-mitochondrial interactions.
Collapse
Affiliation(s)
- Kanokwan Srirattana
- Embryo Technology and Stem Cell Research Center and School of Biotechnology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Mezzalira JC, Ohlweiler LU, da Costa Gerger RP, Casali R, Vieira FK, Ambrósio CE, Miglino MA, Rodrigues JL, Mezzalira A, Bertolini M. Production of bovine hand-made cloned embryos by zygote-oocyte cytoplasmic hemi-complementation. Cell Reprogram 2011; 13:65-76. [PMID: 21241164 DOI: 10.1089/cell.2010.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of the cytoplast type and activation process on development of cloned embryos. Bovine oocytes (MII) or zygotes at the one-cell stage (IVF) were manually bisected and segregated in MII or IVF hemi-cytoplasts or hemi-karyoplasts. Adult skin cells from a bovine female were used as nucleus donors (SC). Experimental groups were composed of IVF embryos; parthenogenetic embryos; hand-made cloned (HMC) embryos; and reconstructed HMC embryos using IVF hemi-cytoplast + MII hemi-cytoplast + SC (G-I); IVF hemi-cytoplast + IVF hemi-cytoplast + SC (G-II); MII hemi-cytoplast + IVF hemi-karyoplast (G-III); and IVF hemi-cytoplast + IVF hemi-karyoplast (G-IV). Embryos from G-I to G-IV were allocated to subgroups as sperm-activated (SA) or were further chemically activated (SA + CA). Embryos from all groups and subgroups were in vitro cultured in the WOW system. Blastocyst development in subgroup G-I SA (28.2%) was similar to IVF (27.0%) and HMC (31.4%) controls, perhaps due to a to a more suitable activation process and/or better complementation of cytoplasmic reprogramming factors, with the other groups and subgroups having lower levels of development. No blastocyst development was observed when using IVF hemi-karyoplasts (G-III and G-IV), possibly due to the manipulation process during a sensitive biological period. In summary, the presence of cytoplasmic factors from MII hemi-oocytes and the sperm activation process from hemi-zygotes appear to be necessary for adequate in vitro development, as only the zygote-oocyte hemi-complementation was as efficient as controls for the generation of bovine cloned blastocysts.
Collapse
Affiliation(s)
- Joana Claudia Mezzalira
- Animal Reproduction Laboratory, Center of Agronomy and Veterinary Sciences (CAV), Santa Catarina State University (UDESC) , Santa Catarina, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kameyama Y, Ohnishi H, Shimoi G, Hashizume R, Ito M, Smith LC. Asymmetrical allocation of mitochondrial DNA to blastomeres during the first two cleavages in mouse embryos. Reprod Fertil Dev 2010; 22:1247-53. [PMID: 20883650 DOI: 10.1071/rd10076] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 06/21/2010] [Indexed: 12/14/2022] Open
Abstract
A recent report showed higher oxygen consumption, adenosine triphosphate (ATP) production and mitochondrial localisation in trophectoderm cells than in the inner cell mass of mouse blastocysts. We hypothesised that this phenomenon was due to the asymmetrical distribution of mitochondria in the blastomeres during the earlier stages. Oocytes, 2-cell embryos and 4-cell embryos were analysed to determine the volume, ATP content and mitochondrial DNA (mtDNA) copy number in the whole egg and individual blastomeres. Significant differences were detected in the volumes of cytoplasm and ATP contents between blastomeres from the 2-cell and 4-cell embryos. Moreover, whilst remaining stable in whole embryos, mtDNA copy number differed between blastomeres, indicating that mitochondria in oocytes are unevenly delivered into the daughter blastomeres during the first two cleavages. Although their volume and ATP content were not correlated, there was a significant correlation between volume and mtDNA copy number in 2- and 4-cell blastomeres. These results indicate that the number of mitochondria delivered to blastomeres during early cleavage is not precisely equal, suggesting that the allocation of mitochondria into daughter blastomeres is affected by uneven cytoplasmic distribution during cytokinesis in the oocyte and mother blastomeres.
Collapse
Affiliation(s)
- Yuichi Kameyama
- Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan.
| | | | | | | | | | | |
Collapse
|
31
|
Lee JH, Peters A, Fisher P, Bowles EJ, St John JC, Campbell KHS. Generation of mtDNA homoplasmic cloned lambs. Cell Reprogram 2010; 12:347-55. [PMID: 20698774 DOI: 10.1089/cell.2009.0096] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Generally in mammals, individual animals contain only maternally inherited mitochondrial DNA (mtDNA), as paternal (sperm)-derived mitochondria are usually eliminated during early development. Somatic cell nuclear transfer (SCNT) bypasses the normal routes of mtDNA inheritance and introduces not only a different nuclear genome into the recipient cytoplast (in general an enucleated oocyte) but also somatic mitochondria. Differences in mtDNA genotype between recipient oocytes and potential mtDNA heteroplasmy due to persistence and replication of somatic mtDNA means that offspring generated by SCNT are not true clones. However, more importantly, the consequences of the presence of somatic mtDNA, mtDNA heteroplasmy, or possible incompatibility between nuclear and mtDNA genotypes on subsequent development and function of the embryo, fetus and offspring are unknown. Following sexual reproduction, mitochondrial function requires the biparental control of maternally inherited mtDNA, whereas following SCNT incompatibility between the recipient cell mitochondrial and transplanted nuclear genomes, or mtDNA heteroplasmy, may result in energy imbalance and initiate the onset of mtDNA-type disease, or disruption of normal developmental events. To remove the potentially adverse effects of somatic mtDNA following SCNT we have previously produced embryos using donor cells depleted to residual levels of mtDNA (mtDNA). We now report that these cells support development to term and produced live lambs in which no donor somatic mtDNA was detected, the lambs being homoplasmic for recipient oocyte DNA.
Collapse
Affiliation(s)
- Joon-Hee Lee
- University of Nottingham, Sutton Bonington, Loughborough, Leics United Kingdom
| | | | | | | | | | | |
Collapse
|
32
|
Chiaratti MR, Ferreira CR, Meirelles FV, Méo SC, Perecin F, Smith LC, Ferraz ML, de Sá Filho MF, Gimenes LU, Baruselli PS, Gasparrini B, Garcia JM. Xenooplasmic transfer between buffalo and bovine enables development of homoplasmic offspring. Cell Reprogram 2010; 12:231-6. [PMID: 20698765 DOI: 10.1089/cell.2009.0076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Nuclear-mitochondrial incompatibilities may be responsible for the development failure reported in embryos and fetuses produced by interspecies somatic cell nuclear transfer (iSCNT). Herein we performed xenooplasmic transfer (XOT) by introducing 10 to 15% of buffalo ooplasm into bovine zygotes to assess its effect on the persistence of buffalo mitochondrial DNA (mtDNA). Blastocyst rates were not compromised by XOT in comparison to both in vitro fertilized embryos and embryos produced by transfer of bovine ooplasm into bovine zygotes. Moreover, offspring were born after transfer of XOT embryos to recipient cows. Buffalo mtDNA introduced in zygotes was still present at the blastocyst stage (8.3 vs. 9.3%, p = 0.11), indicating unaltered heteroplasmy during early development. Nonetheless, no vestige of buffalo mtDNA was found in offspring, indicating a drift to homoplasmy during later stages of development. In conclusion, we show that the buffalo mtDNA introduced by XOT into a bovine zygote do not compromise embryo development. On the other hand, buffalo mtDNA was not inherited by offspring indicating a possible failure in the process of interspecies mtDNA replication.
Collapse
|
33
|
Sha HY, Chen JQ, Chen J, Zhang PY, Wang P, Chen LP, Cheng GX, Zhu JH. Fates of donor and recipient mitochondrial DNA during generation of interspecies SCNT-derived human ES-like cells. CLONING AND STEM CELLS 2010; 11:497-507. [PMID: 19780695 DOI: 10.1089/clo.2009.0021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To investigate nuclear donor and cytoplast recipient mitochondria fate and their effects on generation of interspecies somatic cell nuclear transfer (iSCNT)-derived human embryonic stem (ES)-like cells, iSCNT embryos were reconstructed between enucleated goat oocytes and human neural stem cells (hNSCs). A total of 10.74% cleaved embryos (13/121) developed to blastocyst stage. One typical primary ES-like (tpES-like) colony and two nontypical primary ES-like (non-tpES-like) colonies designated as non-tpES-like cell-1 and non-tpES-like cell-2, respectively, were obtained from the inner cell masses of iSCNT blastocysts. The tpES-like cells expressed ESC markers. Both human and goat mtDNA could be detected in the embryos at 2-8-, 16-32-cell, and blastocyst stages, and in tpES-like colony and two non-tpES-like colonies. Human mtDNA copies per cell from embryos at two- to eight-cell stage to the three colonies maintain almost its original level, whereas 2.88 x 10(5) goat mtDNA copies per oocyte decreased to 10.8 copies per tpES-like cell, 493 copies per non-tpES-like cell-1, and 77.6 copies per non-tpES-like cell-2, resulting in 43.75% (8.4/19.2), 1.24% (6.2/499), and 14.63% (13.3/90.9) mtDNA content in tpES-like cell, non-tpES-like cell-1, and non-tpES-like cell-2 was that of nuclear donor, respectively. Human-specific Tfam and Polg mRNA could be detected in cells of the three colonies. However, tpES-like colony failed to be passaged. The mRNA level of CoxIV encoded by nuclear donor in tpES-like cell was higher than that in non-tpES-like cell, but significantly lower than that of human ESC, suggesting proper nuclear-cytoplasmic communication would not be established in tpES-like cells. Thus, the data suggest that (1) goat oocytes could reprogram human neural stem cells (hNSCs) into embryonic state and further support the inner cell mass (ICM) of iSCNT blastocyst to form tpES-like colony; (2) nuclear donor mtDNA could be replicated and maintain its original level during the reduction of recipient mitochondrial DNA copies, (3) nuclear-cytoplasmic communication and recipient mtDNA copies might affect the derivation of iSCNT-derived ES-like cells.
Collapse
Affiliation(s)
- Hong-ying Sha
- Department of Neurosurgery, Fudan University Huashan Hospital, National Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, People's Republic of China, 200040
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Yan ZH, Zhou YY, Fu J, Jiao F, Zhao LW, Guan PF, Huang SZ, Zeng YT, Zeng F. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC DEVELOPMENTAL BIOLOGY 2010; 10:31. [PMID: 20302653 PMCID: PMC2858029 DOI: 10.1186/1471-213x-10-31] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 03/19/2010] [Indexed: 12/21/2022]
Abstract
Background The interaction between the karyoplast and cytoplast plays an important role in the efficiency of somatic cell nuclear transfer (SCNT), but the underlying mechanism remains unclear. It is generally accepted that in nuclear transfer embryos, the reprogramming of gene expression is induced by epigenetic mechanisms and does not involve modifications of DNA sequences. In cattle, oocytes with various mitochondrial DNA (mtDNA) haplotypes usually have different ATP content and can further affect the efficiency of in vitro production of embryos. As mtDNA comes from the recipient oocyte during SCNT and is regulated by genes in the donor nucleus, it is a perfect model to investigate the interaction between donor nuclei and host oocytes in SCNT. Results We investigated whether the in vitro development of reconstructed bovine embryos produced by SCNT would be influenced by mtDNA haplotype compatibility between the oocytes and donor cells. Embryos from homotype A-A or B-B showed significantly higher developmental ability at blastocyst stages than the heterotype A-B or B-A combinations. Post-implantation development ability, pregnancy rate up to day 90 of gestation, as well as percent of term births were higher in the homotype SCNT groups than in the heterotype groups. In addition, homotype and heterotype SCNT embryos showed different methylation patterns of histone 3-lysine 9 (H3K9) genome-wide and at pluripotency-related genes (Oct-4, Sox-2, Nanog). Conclusion Both histone and DNA methylation show that homotype SCNT blastocysts have a more successful epigenetic asymmetry pattern than heterotype SCNT blastocysts, which indicates more complete nuclear reprogramming. This may result from variability in their epigenetic patterns and responses to nuclear reprogramming. This suggests that the compatibility of mtDNA haplotypes between donor cells and host oocytes can significantly affect the developmental competence of reconstructed embryos in SCNT, and may include an epigenetic mechanism.
Collapse
Affiliation(s)
- Zhong-hai Yan
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes. Mitochondrion 2010; 10:137-42. [DOI: 10.1016/j.mito.2009.12.144] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/15/2009] [Accepted: 12/03/2009] [Indexed: 11/22/2022]
|
36
|
Ferreira CR, Burgstaller JP, Perecin F, Garcia JM, Chiaratti MR, Méo SC, Müller M, Smith LC, Meirelles FV, Steinborn R. Pronounced Segregation of Donor Mitochondria Introduced by Bovine Ooplasmic Transfer to the Female Germ-Line1. Biol Reprod 2010; 82:563-71. [DOI: 10.1095/biolreprod.109.080564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
37
|
Chiaratti MR, Bressan FF, Ferreira CR, Caetano AR, Smith LC, Vercesi AE, Meirelles FV. Embryo Mitochondrial DNA Depletion Is Reversed During Early Embryogenesis in Cattle1. Biol Reprod 2010; 82:76-85. [DOI: 10.1095/biolreprod.109.077776] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
38
|
Soto P, Smith LC. BH4 peptide derived from Bcl-xL and Bax-inhibitor peptide suppresses apoptotic mitochondrial changes in heat stressed bovine oocytes. Mol Reprod Dev 2009; 76:637-46. [PMID: 19062170 DOI: 10.1002/mrd.20986] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mitochondria play an important role in the integration and transmission of cell death signals mediated by the Bcl-2 family proteins. Experiments were conducted to determine whether the anti-apoptotic peptides BH4 domain of Bcl-xL (TAT-BH4) and Bax inhibitor peptide (BIP) suppresses heat stress (HS) injury in oocytes by reduction of apoptotic-like events. Cumulus-oocyte complexes (COCs) were matured at 39 degrees C (control) or 41 degrees C (HS) for 21 hr then placed in maturation medium containing 0 or 100 microM BIP in water and 0 or 1 microM TAT-BH4 in dimethyl sulfoxide (DMSO), or a combination of both peptides (BIP + BH4). Peptide effects on embryo development, DNA fragmentation, mitochondrial membrane potential (Delta(Psi)m), and mitochondrial DNA (mtDNA) copy number were measured. All groups were fertilized and cultured in vitro at 39 degrees C for 8 days. Compared to control, HS-treated oocytes induced a decrease in embryo development (P < 0.05), increase in proportion of TUNEL-positive chromatin in oocytes and blastocysts (P < 0.05), and loss of oocyte Delta(Psi)m (P < 0.001). In the presence of BIP or BIP + BH4, development of HS-treated oocytes into blastocysts was increased (P < 0.05). Conversely, COCs matured with TAT-BH4 at 41 degrees C showed reduced embryonic development (P < 0.05). Exposure of HS-treated to each or both peptides resulted in a reduction of TUNEL frequency in oocytes and blastocysts cells derived from these oocytes (P < 0.05). The loss of Delta(Psi)m in HS-treated oocytes was not restored by exposure to BIP + BH4 and there was no effect in mtDNA copy number. In conclusion, the present results show that HS-induced apoptosis in bovine oocytes involves Bax and BH4 domain-dependent pathways.
Collapse
Affiliation(s)
- Paolete Soto
- Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe, QC J2S7C6, Canada
| | | |
Collapse
|
39
|
Li J, Liu X, Wang H, Zhang S, Liu F, Wang X, Wang Y. Human embryos derived by somatic cell nuclear transfer using an alternative enucleation approach. CLONING AND STEM CELLS 2009; 11:39-50. [PMID: 19196043 DOI: 10.1089/clo.2008.0041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Somatic cell nuclear transfer (SCNT) was used to generate patient-specific embryonic stem cells (ESCs) from blastocysts cloned by nuclear transfer (ntESCs). In this study, a total of 135 oocytes were obtained from 12 healthy donors (30-35 years). Human oocytes, obtained within 2 h following transvaginal aspiration, were enucleated using a Spindle Imaging System to position the spindle and chromosomes that lay on the metaphase plate, and a Zona Infrared Laser Optical System was used to open a single hole in the zona pellucida at the ~ 2 o'clock position. Human fibroblasts and lymphocytes were used to construct SCNT embryos. Nearly half (26 of 58) of the oocytes were fused after electrofusion and embryo development rates were 96.2% (two-cell, 25 of 26), 92.3% (four-cell, 24 of 26), 61.5% (eight-cell, 16 of 26), 34.6% (16-cell, 9 of 26), 26.9% (morula, 7 of 26), and 19.2% (blastocyst, 5 of 26), respectively, following incubation in improved G-series sequential medium. One cloned blastocyst was used for STR-DNA identification and genetic polymorphism analysis of mtDNA, and STR-DNA analysis of all cloned blastocysts indicated they were derived from SCNT. Quantitative analysis showed that mtDNA of cloned embryos reflected the change tendency of those observed in human IVF embryos. Our research provides an alternative enucleation approach for producing human SCNT-derived blastocysts, and may aid in providing a new method for human therapeutic cloning.
Collapse
Affiliation(s)
- Jianyuan Li
- Shandong Research Center of Stem Cell Engineering, China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Takeda K, Kaneyama K, Tasai M, Akagi S, Takahashi S, Yonai M, Kojima T, Onishi A, Tagami T, Nirasawa K, Hanada H. Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages. Mol Reprod Dev 2008; 75:759-65. [PMID: 18033682 DOI: 10.1002/mrd.20837] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In embryos derived by nuclear-transfer (NT), fusion of donor cells with recipient oocytes resulted in varying patterns of mitochondrial DNA (mtDNA) transmission in NT animals. Distribution of donor cell mtDNA (D-mtDNA) found in offspring of NT-derived founders may also vary from donor cell and host embryo heteroplasmy to host embryo homoplasmy. Here we examined the transmission of mtDNA from NT cows to G(1) offspring. Eleven NT founder cows were produced by fusion of enucleated oocytes (Holstein/Japanese Black) with Jersey/ Holstein oviduct epithelial cells, or Holstein/Japanese Black cumulus cells. Transmission of mtDNA was analyzed by PCR mediated single-strand conformation polymorphism of the D-loop region. In six of seven animals sampled postmortem, heteroplasmy were detected in various tissues, while D-mtDNA could not be detected in blood or hair samples from four live animals. The average proportion of D-mtDNA detected in one NT cow was 7.6%, and those in other cows were <5%. Heteroplasmic NT cows (n = 6) generated a total 12 G(1) offspring. Four of 12 G(1) offspring exhibited high percentages of D-mtDNA populations (range 17-51%). The remaining eight G(1) offspring had slightly or undetectable D-mtDNA (<5%). Generally, a genetic bottleneck in the female germ-line should favor a homoplasmic state. However, proportions of some G(1) offspring maintained heteroplasmy with a much higher percentage of D-mtDNA than their NT dams, which may also reflect a segregation distortion caused by the proposed mitochondrial bottleneck. These results demonstrate that D-mtDNA in NT cows is transmitted to G(1) offspring with varying efficiencies.
Collapse
Affiliation(s)
- Kumiko Takeda
- National Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Ferreira CR, Meirelles FV, Yamazaki W, Chiaratti MR, Méo SC, Perecin F, Smith LC, Garcia JM. The kinetics of donor cell mtDNA in embryonic and somatic donor cell-derived bovine embryos. CLONING AND STEM CELLS 2008; 9:618-29. [PMID: 18154521 DOI: 10.1089/clo.2006.0082] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanisms controlling the outcome of donor cell-derived mitochondrial DNA (mtDNA) in cloned animals remain largely unknown. This research was designed to investigate the kinetics of somatic and embryonic mtDNA in reconstructed bovine embryos during preimplantation development, as well as in cloned animals. The experiment involved two different procedures of embryo reconstruction and their evaluation at five distinct phases of embryo development to measure the proportion of donor cell mtDNA (Bos indicus), as well as the segregation of this mtDNA during cleavage. The ratio of donor cell (B. indicus) to host oocyte (B. taurus) mtDNA (heteroplasmy) from blastomere(NT-B) and fibroblast(NT-F) reconstructed embryos was estimated using an allele-specific PCR with fluorochrome-stained specific primers in each sampled blastomere, in whole blastocysts, and in the tissues of a fibroblast-derived newborn clone. NT-B zygotes and blastocysts show similar levels of heteroplasmy (11.0% and 14.0%, respectively), despite a significant decrease at the 9-16 cell stage (5.8%; p<0.05). Heteroplasmy levels in NT-F reconstructed zygotes, however, increased from an initial low level (4.7%), to 12.9% (p<0.05) at the 9-16 cell stage. The NT-F blastocysts contained low levels of heteroplasmy (2.2%) and no somatic-derived mtDNA was detected in the gametes or the tissues of the newborn calf cloned. These results suggest that, in contrast to the mtDNA of blastomeres, that of somatic cells either undergoes replication or escapes degradation during cleavage, although it is degraded later after the blastocyst stage or lost during somatic development, as revealed by the lack of donor cell mtDNA at birth.
Collapse
|
42
|
|
43
|
THONGPHAKDEE A, KOBAYASHI S, IMAI K, INABA Y, TASAI M, TAGAMI T, NIRASAWA K, NAGAI T, SAITO N, TECHAKUMPHU M, TAKEDA K. Interspecies Nuclear Transfer Embryos Reconstructed from Cat Somatic Cells and Bovine Ooplasm. J Reprod Dev 2008; 54:142-7. [DOI: 10.1262/jrd.19159] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Ampika THONGPHAKDEE
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University
- Embryo Transfer and In Vitro Fertilization Section, National Livestock Breeding Center
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| | - Shuji KOBAYASHI
- Embryo Transfer and In Vitro Fertilization Section, National Livestock Breeding Center
| | - Kei IMAI
- Embryo Transfer and In Vitro Fertilization Section, National Livestock Breeding Center
| | - Yasushi INABA
- Embryo Transfer and In Vitro Fertilization Section, National Livestock Breeding Center
| | - Mariko TASAI
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| | - Takahiro TAGAMI
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| | - Keijiro NIRASAWA
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| | - Takashi NAGAI
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| | - Norio SAITO
- Embryo Transfer and In Vitro Fertilization Section, National Livestock Breeding Center
| | - Mongkol TECHAKUMPHU
- Department of Obstetrics, Gynecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University
| | - Kumiko TAKEDA
- Department of Animal Breeding and Reproduction, National Institute of Livestock and Grassland Science
| |
Collapse
|
44
|
Burgstaller JP, Schinogl P, Dinnyes A, Müller M, Steinborn R. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC DEVELOPMENTAL BIOLOGY 2007; 7:141. [PMID: 18154666 PMCID: PMC2323970 DOI: 10.1186/1471-213x-7-141] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Accepted: 12/21/2007] [Indexed: 11/10/2022]
Abstract
Background The mitochondrial DNA (mtDNA) of the cloned sheep "Dolly" and nine other ovine clones produced by somatic cell nuclear transfer (SCNT) was reported to consist only of recipient oocyte mtDNA without any detectable mtDNA contribution from the nucleus donor cell. In cattle, mouse and pig several or most of the clones showed transmission of nuclear donor mtDNA resulting in mitochondrial heteroplasmy. To clarify the discrepant transmission pattern of donor mtDNA in sheep clones we analysed the mtDNA composition of seven fetuses and five lambs cloned from fetal fibroblasts. Results The three fetal fibroblast donor cells used for SCNT harboured low mtDNA copy numbers per cell (A: 753 ± 54, B: 292 ± 33 and C: 561 ± 88). The ratio of donor to recipient oocyte mtDNAs was determined using a quantitative amplification refractory mutation system (ARMS) PCR (i.e. ARMS-qPCR). For quantification of SNP variants with frequencies below 0.1% we developed a restriction endonuclease-mediated selective quantitative PCR (REMS-qPCR). We report the first cases (n = 4 fetuses, n = 3 lambs) of recipient oocyte/nuclear donor mtDNA heteroplasmy in SCNT-derived ovine clones demonstrating that there is no species-effect hindering ovine nucleus-donor mtDNA from being transmitted to the somatic clonal offspring. Most of the heteroplasmic clones exhibited low-level heteroplasmy (0.1% to 0.9%, n = 6) indicating neutral transmission of parental mtDNAs. High-level heteroplasmy (6.8% to 46.5%) was observed in one case. This clone possessed a divergent recipient oocyte-derived mtDNA genotype with three rare amino acid changes compared to the donor including one substitution at an evolutionary conserved site. Conclusion Our study using state-of-the-art techniques for mtDNA quantification, like ARMS-qPCR and the novel REMS-qPCR, documents for the first time the transmission of donor mtDNA into somatic sheep clones. MtDNA heteroplasmy was detected in seven of 12 clones tested, whereby all but one case revealed less than 1% mtDNA contribution from the nuclear donor cell suggesting neutral segregation.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria.
| | | | | | | | | |
Collapse
|
45
|
Jiao F, Yan JB, Yang XY, Li H, Wang Q, Huang SZ, Zeng F, Zeng YT. Effect of oocyte mitochondrial DNA haplotype on bovine somatic cell nuclear transfer efficiency. Mol Reprod Dev 2007; 74:1278-86. [PMID: 17290429 DOI: 10.1002/mrd.20698] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development capability of reconstructed bovine embryos via ovum pick-up (OPU)-somatic cell nuclear transfer (SCNT) technique has been influenced by the maternal lineage of oocyte cytoplasm, but the underlying mechanism remains unclear. Since mitochondria are the richest maternal-inherited organelle, in this study, we intended to clarify the effect of mtDNA haplotypes on cloning efficiency. By PCR-RFLP method, we identified mtDNA haplotypes A and B, differing in six restriction sites. Reconstructed embryos with haplotype A cytoplast achieved better fusion and blastocyst formation rate (64.6% and 39.4%), as compared with haplotype B (53.6% and 26.3%; P < 0.05). To further evaluate the role of mitochondria, the quantity of mtDNA, ATP content, and mRNA level of mtDNA-encoded COXI, COXIII in both oocytes were measured. Our data indicated that mtDNA copy number in haplotype A oocyte was significantly higher than that in haplotype B oocyte, both at the GV (10(5.03 +/- 0.69) vs. 10(4.81 +/- 0.86) copies/oocyte) and MII stages (10(5.31 +/- 0.71) vs. 10(5.13 +/- 0.63) copies/oocyte; logarithmically transformed values; P < 0.05). ATP content in type A oocyte was also greater at the GV (1.67 +/- 0.09 vs. 1.27 +/- 0.1 pmol) and MII stages (5.18 +/- 0.07 vs. 2.68 +/- 0.03 pmol; P < 0.05). Similarly, the mRNA expression level of mtDNA-encoded COXI and COXIII in haplotype A oocyte was significantly higher comparing to haplotype B oocyte (3.3 +/- 2.0 x 10(3) vs. 0.68 +/- 0.45 x 10(3); 24.9 +/- 10.5 x 10(3) vs. 9.4 +/- 3.3 x 10(3), respectively; P < 0.05). The data suggest that mitochondrial structure, quantity, and function may significantly affect the developmental competence of reconstructed embryos.
Collapse
Affiliation(s)
- Fei Jiao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Identification and expression analysis of genes associated with bovine blastocyst formation. BMC DEVELOPMENTAL BIOLOGY 2007; 7:64. [PMID: 17559642 PMCID: PMC1899496 DOI: 10.1186/1471-213x-7-64] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2006] [Accepted: 06/08/2007] [Indexed: 11/10/2022]
Abstract
BACKGROUND Normal preimplantation embryo development encompasses a series of events including first cleavage division, activation of the embryonic genome, compaction and blastocyst formation. First lineage differentiation starts at the blastocyst stage with the formation of the trophectoderm and the inner cell mass. The main objective of this study was the detection, identification and expression analysis of genes associated with blastocyst formation in order to help us better understand this process. This information could lead to improvements of in vitro embryo production procedures. RESULTS A subtractive cDNA library was constructed enriched for transcripts preferentially expressed at the blastocyst stage compared to the 2-cell and 8-cell stage. Sequence information was obtained for 65 randomly selected clones. The RNA expression levels of 12 candidate genes were determined throughout 3 stages of preimplantation embryo development (2-cell, 8-cell and blastocyst) and compared with the RNA expression levels of in vivo "golden standard" embryos using real-time PCR. The RNA expression profiles of 9 (75%) transcripts (KRT18, FN1, MYL6, ATP1B3, FTH1, HINT1, SLC25A5, ATP6V0B, RPL10) were in agreement with the subtractive cDNA cloning approach, whereas for the remaining 3 (25%) (ACTN1, COPE, EEF1A1) the RNA expression level was equal or even higher at the earlier developmental stages compared to the blastocyst stage. Moreover, significant differences in RNA expression levels were observed between in vitro and in vivo produced embryos. By immunofluorescent labelling, the protein expression of KRT18, FN1 and MYL6 was determined throughout bovine preimplantation embryo development and showed the same pattern as the RNA expression analyses. CONCLUSION By subtractive cDNA cloning, candidate genes involved in blastocyst formation were identified. For several candidate genes, important differences in gene expression were observed between in vivo and in vitro produced embryos, reflecting the influence of the in vitro culture system on the embryonic gene expression. Both RNA and protein expression analysis demonstrated that KRT18, FN1 and MYL6 are differentially expressed during preimplantation embryo development and those genes can be considered as markers for bovine blastocyst formation.
Collapse
|
47
|
Mastromonaco GF, Favetta LA, Smith LC, Filion F, King WA. The Influence of Nuclear Content on Developmental Competence of Gaur × Cattle Hybrid In Vitro Fertilized and Somatic Cell Nuclear Transfer Embryos1. Biol Reprod 2007; 76:514-23. [PMID: 17151347 DOI: 10.1095/biolreprod.106.058040] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In nondomestic and endangered species, the use of domestic animal oocytes as recipients for exotic donor nuclei causes the normal pattern of cytoplasmic inheritance to be disrupted, resulting in the production of nuclear-cytoplasmic hybrids. Evidence suggests that conflict between nuclear and cytoplasmic control elements leads to a disruption of normal cellular processes, including metabolic function and cell division. This study investigated the effects of nuclear-cytoplasmic interactions on the developmental potential of interspecies embryos produced by in vitro fertilization and somatic cell nuclear transfer: cattle x cattle, gaur x cattle, hybrid x cattle. Cattle control and hybrid embryos were examined for development to the blastocyst stage and blastocyst quality, as determined by cell number and allocation, apoptosis incidence, and expression patterns of mitochondria-related genes. These analyses demonstrated that a 100% gaur nucleus within a domestic cattle cytoplasmic environment was not properly capable of directing embryo development in the later preimplantation stages. Poor blastocyst development accompanied by developmental delay, decreased cell numbers, and aberrant apoptotic and related gene expression profiles, all signs of disrupted cellular processes associated with mitochondrial function, were observed. Developmental potential was improved when at least a portion of the nuclear genome corresponded to the inherited cytoplasm, indicating that recognition of cytoplasmic components by the nucleus is crucial for proper cellular function and embryo development. A better understanding of the influence of the cytoplasmic environment on embryonic processes is necessary before interspecies somatic cell nuclear transfer can be considered a viable alternative for endangered species conservation.
Collapse
Affiliation(s)
- Gabriela F Mastromonaco
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
48
|
Cao L, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi JI, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007; 39:386-90. [PMID: 17293866 DOI: 10.1038/ng1970] [Citation(s) in RCA: 240] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 01/02/2007] [Indexed: 11/08/2022]
Abstract
Observations of rapid shifts in mitochondrial DNA (mtDNA) variants between generations prompted the creation of the bottleneck theory. A prevalent hypothesis is that a massive reduction in mtDNA content during early oogenesis leads to the bottleneck. To test this, we estimated the mtDNA copy number in single germline cells and in single somatic cells of early embryos in mice. Primordial germ cells (PGCs) show consistent, moderate mtDNA copy numbers across developmental stages, whereas primary oocytes demonstrate substantial mtDNA expansion during early oocyte maturation. Some somatic cells possess a very low mtDNA copy number. We also demonstrated that PGCs have more than 100 mitochondria per cell. We conclude that the mitochondrial bottleneck is not due to a drastic decline in mtDNA copy number in early oogenesis but rather to a small effective number of segregation units for mtDNA in mouse germ cells. These results provide new information for mtDNA segregation models and for understanding the recurrence risks for mtDNA diseases.
Collapse
Affiliation(s)
- Liqin Cao
- Department of Laboratory Animal Science, Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kameyama Y, Filion F, Yoo JG, Smith LC. Characterization of mitochondrial replication and transcription control during rat early development in vivo and in vitro. Reproduction 2007; 133:423-32. [PMID: 17307910 DOI: 10.1530/rep-06-0263] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In vitroculture (IVC), used in assisted reproductive technologies, is a major environmental stress on the embryo. To evaluate the effect of IVC on mitochondrial transcription and the control of mtDNA replication, we measured the mtDNA copy number and relative amount of mRNA for mitochondrial-related genes in individual rat oocytes, zygotes and embryos using real-time PCR. The average mtDNA copy number was 147 600 (±3000) in metaphase II oocytes. The mtDNA copy number was stable throughoutin vivoearly development and IVC induced an increase in mtDNA copy number from the 8-cell stage onwards.GapdmRNA levels vary during early development and IVC did not change the patterns of these housekeeping gene transcripts.PolrmtmRNA levels did not vary during early development up to the morula stage but increased at the blastocyst stage. IVC induced the up-regulation ofPolrmtmRNA, one of the key genes regulating mtDNA transcription and replication, at the blastocyst stage. An increase inmt-Nd4mRNA preceded the blastocyst-related event observed in nuclear-encodedGapdandPolrmt, suggesting that the expression of mitochondrial encoded genes is controlled differently from nuclear encoded genes. We conclude that the IVC system can perturb mitochondrial transcription and the control of mtDNA replication in rat embryos. This perturbation of mtDNA regulation may be responsible for the abnormal physiology, metabolism and viability ofin vitro-derived embryos.
Collapse
Affiliation(s)
- Yuichi Kameyama
- Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction Animale, Université de Montréal, Saint-Hyacinthe, Québec, Canada J2S7C6 and Faculty of Bioindustry, Tokyo University of Agriculture, Abashiri, Hokkaido 099-2493, Japan
| | | | | | | |
Collapse
|
50
|
May-Panloup P, Chretien MF, Malthiery Y, Reynier P. Mitochondrial DNA in the Oocyte and the Developing Embryo. Curr Top Dev Biol 2007; 77:51-83. [PMID: 17222700 DOI: 10.1016/s0070-2153(06)77003-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Mitochondria play a primary role in cellular energetic metabolism, homeostasis, and death. They possess their own multicopy genome, which is maternally transmitted. Mitochondria are directly involved at several levels in the reproductive process since their functional status influences the quality of oocytes and contributes to the process of fertilization and embryonic development. This chapter discusses recent findings concerning mitochondrial DNA content and its expression during oogenesis, fertilization, and early embryonic development.
Collapse
|