1
|
Álvarez-Rodríguez M, Roca J, Martínez EA, Rodríguez-Martínez H. Mating modifies the expression of crucial oxidative-reductive transcripts in the pig oviductal sperm reservoir: is the female ensuring sperm survival? Front Endocrinol (Lausanne) 2023; 14:1042176. [PMID: 37351104 PMCID: PMC10282951 DOI: 10.3389/fendo.2023.1042176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023] Open
Abstract
Background Mating induces large changes in the female genital tract, warranting female homeostasis and immune preparation for pregnancy, including the preservation of crucial oxidative status among its pathways. Being highly susceptible to oxidative stress, sperm survival and preserved function depend on the seminal plasma, a protection that is removed during sperm handling but also after mating when spermatozoa enter the oviduct. Therefore, it is pertinent to consider that the female sperm reservoir takes up this protection, providing a suitable environment for sperm viability. These aspects have not been explored despite the increasing strategies in modulating the female status through diet control and nutritional supplementation. Aims To test the hypothesis that mating modifies the expression of crucial oxidative-reductive transcripts across the entire pig female genital tract (cervix to infundibulum) and, particularly in the sperm reservoir at the utero-tubal junction, before ovulation, a period dominated by estrogen stimulation of ovarian as well as of seminal origin. Methods The differential expression of estrogen (ER) and progesterone (PR) receptors and of 59 oxidative-reductive transcripts were studied using a species-specific microarray platform, in specific segments of the peri-ovulatory sow reproductive tract in response to mating. Results Mating induced changes along the entire tract, with a conspicuous downregulation of both ER and PR and an upregulation of superoxide dismutase 1 (SOD1), glutaredoxin (GLRX3), and peroxiredoxin 1 and 3 (PRDX1, PRDX3), among other NADH Dehydrogenase Ubiquinone Flavoproteins, in the distal uterus segment. These changes perhaps helped prevent oxidative stress in the area adjacent to the sperm reservoir at the utero-tubal junction. Concomitantly, there were a downregulation of catalase (CAT) and NADH dehydrogenase (ubiquinone) oxidoreductases 1 beta subcomplex, subunit 1 (NDUFB1) in the utero-tubal junction alongside an overall downregulation of CAT, SOD1, and PRDX3 in the ampullar and infundibulum segments. Conclusions Natural mating is an inducer of changes in the expression of female genes commanding antioxidant enzymes relevant for sperm survival during sperm transport, under predominant estrogen influence through the bloodstream and semen. The findings could contribute to the design of new therapeutics for the female to improve oxidative-reductive balance.
Collapse
Affiliation(s)
- Manuel Álvarez-Rodríguez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
- Department of Animal Reproduction, Instituto Nacional de Investigación Agraria y Alimentaria (INIA)-CSIC, Madrid, Spain
| | - Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Emilio A. Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Medicine, University of Murcia, Murcia, Spain
| | - Heriberto Rodríguez-Martínez
- Department of Biomedical and Clinical Sciences (BKV), BKH/Obstetrics and Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
2
|
Parada-Bustamante A, Oróstica ML, Reuquen P, Zuñiga LM, Cardenas H, Orihuela PA. The role of mating in oviduct biology. Mol Reprod Dev 2018; 83:875-883. [PMID: 27371809 DOI: 10.1002/mrd.22674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/29/2016] [Indexed: 02/05/2023]
Abstract
The oviduct connects the ovary to the uterus, and is subject to changes that influence gamete transport, fertilization, and early embryo development. The ovarian steroids estradiol and progesterone are largely responsible for regulating oviduct function, although mating signals also affect the female reproductive tract, both indirectly, through sensory stimulation, and directly, through contact with seminal plasma or spermatozoa. The resulting alterations in gene and protein expression help establish a microenvironment that is appropriate for sperm storage and selection, embryo development, and gamete transport. Mating may also induce the switch from a non-genomic to a genomic pathway of estradiol-accelerated oviduct egg transport, reflecting a novel example of the functional plasticity in well-differentiated cells. This review highlights the physiological relevance of various aspects of mating to oviduct biology and reproductive success. Expanding our knowledge of the mating-associated molecular and cellular events in oviduct cells would undoubtedly facilitate new therapeutic strategies to treat infertility attributable to oviduct pathologies. Mol. Reprod. Dev. 83: 875-883, 2016 © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - María L Oróstica
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Patricia Reuquen
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Lidia M Zuñiga
- Laboratorio de Biología de la Reproducción, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Hugo Cardenas
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile
| | - Pedro A Orihuela
- Laboratorio de Inmunología de la Reproducción, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile. .,Centro Para el Desarrollo en Nanociencia y Nanotecnología-CEDENNA, Santiago, Chile.
| |
Collapse
|
3
|
Cerny KL, Ribeiro RAC, Li Q, Matthews JC, Bridges PJ. Effect of lipopolysaccharide on the expression of inflammatory mRNAs and microRNAs in the mouse oviduct. Reprod Fertil Dev 2017; 30:600-608. [PMID: 28945983 DOI: 10.1071/rd17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 08/25/2017] [Indexed: 11/23/2022] Open
Abstract
Infection with Gram-negative bacteria is a major cause of aberrant inflammation in the oviduct; consequences can include tubal-based infertility and/or ectopic pregnancy. Understanding the inflammatory response is necessary for the development of novel treatment options that counter inflammation-induced infertility. The aim of the present study was to determine the effect of intraperitoneal (i.p.) administration of Escherichia coli-derived lipopolysaccharide (LPS) on the acute expression of inflammatory mRNAs and microRNAs (miRNAs) in the oviduct. On the day of oestrus, 6- to 8-week-old CD1 mice were injected i.p. with 0, 2 or 10µg LPS in 100μL phosphate-buffered saline. Mice were killed 24h later and the oviducts collected for gene expression analyses. The effect of treatment on the expression of mRNAs and miRNAs was evaluated by one-way analysis of variance (ANOVA), with treatment means of differentially expressed (P<0.05) transcripts separated using Scheffé's test. LPS treatment affected 49 of 179 targeted inflammatory mRNAs and 51 of 578 miRNAs (P<0.05). The identity of differentially expressed miRNAs predicted as regulators of chemokine and interleukin ligand mRNAs was then extracted using the microRNA.org database. The results of the present study indicate that systemic treatment with LPS induces a robust inflammatory response in the oviducts of mice, and identify key mRNAs and putative miRNAs modulating this effect.
Collapse
Affiliation(s)
- Katheryn L Cerny
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Rosanne A C Ribeiro
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Qing Li
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - James C Matthews
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
4
|
Ito S, Kobayashi Y, Yamamoto Y, Kimura K, Okuda K. Remodeling of bovine oviductal epithelium by mitosis of secretory cells. Cell Tissue Res 2016; 366:403-410. [PMID: 27256395 DOI: 10.1007/s00441-016-2432-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 05/09/2016] [Indexed: 10/21/2022]
Abstract
Two types of oviductal epithelial cells, secretory and ciliated, play crucial roles in the first days after fertilization in mammals. Secretory cells produce various molecules promoting embryo development, while ciliated cells facilitate transport of oocytes and zygotes by ciliary beating. The proportions of the two cell types change during the estrous cycle. The proportion of ciliated cells on the oviductal luminal surface is abundant at the follicular phase, whereas the proportion of secretory cells gradually increases with the formation of the corpus luteum. In the present study, we hypothesize that the proportions of ciliated and secretory epithelial cells are regulated by mitosis. The proportion of the cells being positive for FOXJ1 (a ciliated cell marker) or Ki67 (a mitosis marker) in epithelial cells during the estrous cycle were immunohistochemically examined. Ki67 and FOXJ1 or PAX8 (a secretory cell marker), were double-stained to clarify which types of epithelial cells undergo mitosis. In the ampulla, the percentage of FOXJ1-positive cells was highest at the day of ovulation (Day 0) and decreased by about 50 % by Days 8-12, while in the isthmus it did not change during the estrous cycle. The proportion of Ki67-positive cells was highest at around the time of ovulation in both the ampulla and isthmus. All the Ki67-positive cells were PAX8-positive and FOXJ1-negative in both the ampulla and isthmus. These findings suggest that epithelial remodeling, which is regulated by differentiation and/or proliferation of secretory cells of the oviduct, provides the optimal environment for gamete transport, fertilization and embryonic development.
Collapse
Affiliation(s)
- Sayaka Ito
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshihiko Kobayashi
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Yamamoto
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Koji Kimura
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Kiyoshi Okuda
- Laboratory of Reproductive Physiology, Graduate School of Environmental and Life Science, Okayama University, 1-1-1, Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan. .,Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, 080-8555, Hokkaido, Japan.
| |
Collapse
|
5
|
Maillo V, de Frutos C, O'Gaora P, Forde N, Burns GW, Spencer TE, Gutierrez-Adan A, Lonergan P, Rizos D. Spatial differences in gene expression in the bovine oviduct. Reproduction 2016; 152:37-46. [PMID: 27069007 DOI: 10.1530/rep-16-0074] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/08/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to compare the transcriptome of the oviductal isthmus of pregnant heifers with that of cyclic heifers as well as to investigate spatial differences between the transcriptome of the isthmus and ampulla of the oviduct in pregnant heifers. After synchronizing crossbred beef heifers, those in standing oestrus (=Day 0) were randomly assigned to cyclic (non-bred, n=6) or pregnant (artificially inseminated, n=11) groups. They were slaughtered on Day 3 and both oviducts from each animal were isolated and cut in half to separate ampulla and isthmus. Each portion was flushed to confirm the presence of an oocyte/embryo and was then opened longitudinally and scraped to obtain epithelial cells which were snap-frozen. Oocytes and embryos were located in the isthmus of the oviduct ipsilateral to the corpus luteum Microarray analysis of oviductal cells revealed that proximity to the corpus luteum did not affect the transcriptome of the isthmus, irrespective of pregnancy status. However, 2287 genes were differentially expressed (P<0.01) between the ampulla and isthmus of the oviduct ipsilateral to the corpus luteum in pregnant animals. Gene ontology revealed that the main biological processes overrepresented in the isthmus were synthesis of nitrogen, lipids, nucleotides, steroids and cholesterol as well as vesicle-mediated transport, cell cycle, apoptosis, endocytosis and exocytosis, whereas cell motion, motility and migration, DNA repair, calcium ion homeostasis, carbohydrate biosynthesis, and regulation of cilium movement and beat frequency were overrepresented in the ampulla. In conclusion, large differences in gene expression were observed between the isthmus and ampulla of pregnant animals at Day 3 after oestrus.
Collapse
Affiliation(s)
- Veronica Maillo
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Celia de Frutos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Peadar O'Gaora
- School of Biomolecular and Biomedical SciencesUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early DevelopmentLeeds Institute of Cardiovascular and Molecular Medicine, School of Medicine, University of Leeds, Clarendon Way, Leeds, UK
| | - Gregory W Burns
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Thomas E Spencer
- Division of Animal Sciences and Department of Obstetrics, Gynecology and Women's HealthUniversity of Missouri, Columbia, Missouri
| | - Alfonso Gutierrez-Adan
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| | - Patrick Lonergan
- School of Agriculture and Food ScienceUniversity College Dublin, Belfield, Dublin 4, Ireland
| | - Dimitrios Rizos
- Departamento de Reproduccion AnimalInstituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
6
|
Murta D, Batista M, Trindade A, Silva E, Mateus L, Duarte A, Lopes-da-Costa L. Dynamics of Notch signalling in the mouse oviduct and uterus during the oestrous cycle. Reprod Fertil Dev 2015; 28:RD15029. [PMID: 25940784 DOI: 10.1071/rd15029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022] Open
Abstract
The oviduct and uterus undergo extensive cellular remodelling during the oestrous cycle, requiring finely tuned intercellular communication. Notch is an evolutionarily conserved cell signalling pathway implicated in cell fate decisions in several tissues. In the present study we evaluated the quantitative real-time polymerase chain reaction (real-time qPCR) and expression (immunohistochemistry) patterns of Notch components (Notch1-4, Delta-like 1 (Dll1), Delta-like 4 (Dll4), Jagged1-2) and effector (hairy/enhancer of split (Hes) 1-2, Hes5 and Notch-Regulated Ankyrin Repeat-Containing Protein (Nrarp)) genes in the mouse oviduct and uterus throughout the oestrous cycle. Notch genes are differentially transcribed and expressed in the mouse oviduct and uterus throughout the oestrous cycle. The correlated transcription levels of Notch components and effector genes, and the nuclear detection of Notch effector proteins, indicate that Notch signalling is active. The correlation between transcription levels of Notch genes and progesterone concentrations, and the association between expression of Notch proteins and progesterone receptor (PR) activation, indicate direct progesterone regulation of Notch signalling. The expression patterns of Notch proteins are spatially and temporally specific, resulting in unique expression combinations of Notch receptor, ligand and effector genes in the oviduct luminal epithelium, uterus luminal and glandular epithelia and uterine stroma throughout the oestrous cycle. Together, the results of the present study imply a regulatory role for Notch signalling in oviduct and uterine cellular remodelling occurring throughout the oestrous cycle.
Collapse
|
7
|
Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival. Food Chem Toxicol 2013; 60:488-96. [PMID: 23941772 DOI: 10.1016/j.fct.2013.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/02/2013] [Accepted: 08/04/2013] [Indexed: 01/03/2023]
Abstract
Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.
Collapse
|
8
|
Oviductal, endometrial and embryonic gene expression patterns as molecular clues for pregnancy establishment. Anim Reprod Sci 2012; 134:9-18. [PMID: 22925402 DOI: 10.1016/j.anireprosci.2012.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In higher animals, the beginning of new life and transfer of genetic material to the next generation occurs in the oviduct when two distinct gametes cells unite resulting in the formation of a zygote. The zygote then undergoes serial developmental processes in the oviduct and enters into the uterus where it faces challenges and scrutiny from the endometrial ecosystem. Thus, embryos that are able to establish an appropriate embryo-maternal dialogue are capable of developing to term whereas the incompetent ones can perish any time during the gestation period. Although several lines of evidences indicated that pregnancy loss is a multi-factorial phenomenon, the biochemical composition of the embryo and maternal environment are the main players to determine pregnancy outcome. Indeed, expression patterns of the genes are the driving forces that induce biochemical composition changes in embryo, oviduct and uterine environment. Thus, examining the molecular signals that are associated with oviductal or endometrial receptivity and embryo implantation is essential for establishing strategies to improve pregnancy success. Therefore, this review focuses on the contribution of oviduct and its transcriptome profile on early stage embryo development and the impact of endometrium and its transcriptome changes on peri and post embryo implantation. In addition, this paper integrates established facts about hormonal and molecular signatures associated with endometrial receptivity. Finally, the blastocyst and pre-conception endometrial gene expression profiles have been discussed in relation to the pregnancy outcome to highlight the potentials of blastocyst and pre-transfer endometrial transcriptome profile approach for selecting appropriate recipient and developmentally competent embryo.
Collapse
|
9
|
Bridges PJ, Jeoung M, Shim S, Park JY, Lee JE, Sapsford LA, Trudgen K, Ko C, Gye MC, Jo M. Hematopoetic prostaglandin D synthase: an ESR1-dependent oviductal epithelial cell synthase. Endocrinology 2012; 153:1925-35. [PMID: 22374975 PMCID: PMC3320253 DOI: 10.1210/en.2011-1900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Oviductal disease is a primary cause of infertility, a problem that largely stems from excessive inflammation of this key reproductive organ. Our poor understanding of the mechanisms regulating oviductal inflammation restricts our ability to diagnose, treat, and/or prevent oviductal disease. Using mice, our objective was to determine the spatial localization, regulatory mechanism, and functional attributes of a hypothesized regulator of oviductal inflammation, the hematopoietic form of prostaglandin D synthase (HPGDS). Immunohistochemistry revealed specific localization of HPGDS to the oviduct's epithelium. In the isthmus, expression of HPGDS was consistent. In the ampulla, expression of HPGDS appeared dependent upon stage of the estrous cycle. HPGDS was expressed in the epithelium of immature and cycling mice but not in the oviducts of estrogen receptor α knockouts. Two receptor subtypes bind PGD₂: PGD₂ receptor and G protein-coupled receptor 44. Expression of mRNA for Ptgdr was higher in the epithelial cells (EPI) than in the stroma (P < 0.05), whereas mRNA for Gpr44 was higher in the stroma than epithelium (P < 0.05). Treatment of human oviductal EPI with HQL-79, an inhibitor of HPGDS, decreased cell viability (P < 0.05). Treatment of mice with HQL-79 increased mRNA for chemokine (C-C motif) ligands 3, 4, and 19; chemokine (C-X-C motif) ligands 11 and 12; IL-13 and IL-17B; and TNF receptor superfamily, member 1b (P < 0.02 for each mRNA). Overall, these results suggest that HPGDS may play a role in the regulation of inflammation and EPI health within the oviduct.
Collapse
Affiliation(s)
- Phillip J Bridges
- Department of Animal and Food Sciences, University of Kentucky, Lexington, Kentucky 40546, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Weems YS, Bridges PJ, Jeoung M, Arreguin-Arevalo JA, Nett TM, Vann RC, Ford SP, Lewis AW, Neuendorff DA, Welsh TH, Randel RD, Weems CW. In vivo intra-luteal implants of prostaglandin (PG) E1 or E2 (PGE1, PGE2) prevent luteolysis in cows. II: mRNA for PGF2α, EP1, EP2, EP3 (A–D), EP3A, EP3B, EP3C, EP3D, and EP4 prostanoid receptors in luteal tissue. Prostaglandins Other Lipid Mediat 2012; 97:60-5. [DOI: 10.1016/j.prostaglandins.2011.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022]
|