1
|
Impact of spraying eggs with betaine after exposure to short-term thermal stress during early embryogenesis on pre and post-hatch performance of Japanese quail. J Therm Biol 2023; 111:103427. [PMID: 36585091 DOI: 10.1016/j.jtherbio.2022.103427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
It is essential to understand and manage environmental factors for good quail production and welfare. One of the most important environmental stressors that hinder quail productivity is heat stress. This study aimed to evaluate the impact of spraying Japanese quail (Coturnix coturnix japonica) eggs with betaine after exposure to short-term high temperature during early embryogenesis on pre and post-hatch performance of quail. A total of 750 eggs were equally divided into two groups. Eggs in the first group were incubated at normal incubation temperature (37.5 °C/NIT), while those in the second group were incubated at high incubation temperature (39.0 °C/HIT) for 3 h daily from day 4-6 of incubation. Eggs in both groups were subjected to five treatments, NC (negative control), PC sprayed distilled water (positive control), while B0.5, B1, and B2 treatments were sprayed with distilled water supplemented with 500, 1000, and 2000 mg betaine/L, respectively. The chick weight at hatch, slaughter weight, and first egg weight was significantly impaired by the HIT treatment. The HIT group revealed a significant increase in cloacal temperature, H/L ratio, liver enzymes, triglyceride, and cholesterol and a significant decrease in hatchability, T3 hormone, and blood protein levels than the NIT group. Regarding betaine effects, the embryonic mortality rates, hatchability, hatched chick weight, and oviduct percentage in groups treated with 1000 or 2000 mg betaine/L were significantly improved compared with the control. Also, spraying betaine at 1000 or 2000 mg/L significantly increased blood protein and triiodothyronine (T3) hormone levels and significantly decrease liver enzyme levels and total feed consumption compared with the untreated group. The right/total ventricle ratio (RV/TV) of quail in HIT group was significantly increased, while betaine treatment significantly decreased this ratio. Considering these results, it is strongly suggested that spraying of betaine on eggs at 2000 mg/L optimizes Japanese quail performance.
Collapse
|
2
|
Yang C, Chen Y, Yang M, Li J, Wu Y, Fan H, Kong X, Ning C, Wang S, Xiao W, Yuan Z, Yi J, Wu J. Betulinic acid alleviates zearalenone-induced uterine injury in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120435. [PMID: 36257561 DOI: 10.1016/j.envpol.2022.120435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.
Collapse
Affiliation(s)
- Chenglin Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Yunqin Chen
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Mengran Yang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jiayan Li
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - You Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Hui Fan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangyi Kong
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Can Ning
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Siqi Wang
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Wenguang Xiao
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Zhihang Yuan
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jine Yi
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China
| | - Jing Wu
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Hunan Agricultural University, Changsha, 410128, China; Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
3
|
Adhikari B, Lee CN, Khadka VS, Deng Y, Fukumoto G, Thorne M, Caires K, Odani J, Mishra B. RNA-Sequencing based analysis of bovine endometrium during the maternal recognition of pregnancy. BMC Genomics 2022; 23:494. [PMID: 35799127 PMCID: PMC9264496 DOI: 10.1186/s12864-022-08720-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/24/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Maternal recognition is the crucial step for establishing pregnancy in cattle. This study aims to identify endometrial genes and biological pathways involved in the maternal recognition of pregnancy. Caruncular endometrial tissues were collected from Day 15-17 of gestation (pregnant), non-pregnant (absence of conceptus), and cyclic (non-bred) heifers. RESULTS Total RNAs were isolated from the caruncular endometrial tissues of pregnant, non-pregnant, and cyclic heifers, and were subjected to high-throughput RNA-sequencing. The genes with at least two-fold change and Benjamini and Hochberg p-value ≤ 0.05 were considered differentially expressed genes and further confirmed with quantitative real-time PCR. A total of 107 genes (pregnant vs cyclic) and 98 genes (pregnant vs non-pregnant) were differentially expressed in the pregnant endometrium. The most highly up-regulated genes in the pregnant endometrium were MRS2, CST6, FOS, VLDLR, ISG15, IFI6, MX2, C15H11ORF34, EIF3M, PRSS22, MS4A8, and TINAGL1. Interferon signaling, immune response, nutrient transporter, synthesis, and secretion of proteins are crucial pathways during the maternal recognition of pregnancy. CONCLUSIONS The study demonstrated that the presence of conceptus at Day 15-17 of gestation affects the endometrial gene expression related to endometrial remodeling, immune response, nutrients and ion transporters, and relevant signaling pathways in the caruncular region of bovine endometrium during the maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Bindu Adhikari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Chin N Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Vedbar S Khadka
- Department of Quantitative Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Glen Fukumoto
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Mark Thorne
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Kyle Caires
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jenee Odani
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Birendra Mishra
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
4
|
Drum JN, Madureira G, Rosa CO, Seneda MM, Wiltbank MC, Sartori R, Ortega MS. Male Embryos Produced in vitro Deviate From Their in vivo Counterparts in Placental Gene Expression on Day 32 of Pregnancy. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.807217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study compared the gene expression of extraembryonic membranes (EEM) from in vitro produced (IVP) and in vivo (AI) derived pregnancies. A piece of conceptus (day 18) or chorioallantois (day 32) was used for DNA and RNA isolation and sex determination. Male and female ratios were analyzed by Chi-square. A total of three samples per sex and group (AI and IVP, days 18 and 32) were used for transcriptome analysis. Differentially expressed genes (DEGs) were determined using edgeR-robust. A false discovery rate (FDR) <0.05 was used for statistical significance. Sex ratio was similar on day 18 for AI and IVP groups. On day 32, the IVP group had a greater number of females than males (75 vs. 25%, P = 0.004). When comparing AI and IVP males vs. females, in both groups, genes upregulated in females on day 18 were related to placental function such as PAGs and TKDPs. On males on day 18, IFNT-related genes were upregulated. Comparing the techniques within sex, on day 18 female conceptuses, 50 genes were upregulated in IVP, and 21 in AI. IGF2, which is involved in placenta development, and APOA2, APOB, and APOE, involved in lipid metabolism, were upregulated in IVP conceptuses. On day 18, males had 15 upregulated genes in AI and 7 in IVP. On day 32, females had 21 upregulated genes in AI and 53 in IVP. Genes involved in lipid synthesis and metabolism were increased in the IVP group. Males on day 32 presented 899 DEGs, 564 upregulated in AI and 335 in IVP. Embryos from IVP had decreased expression of genes related to lipid and carbohydrate metabolism. Interestingly, pregnancy-associated glycoproteins (PAG) 7, 9, 10, and 19, were downregulated in IVP male. In conclusion, IVP-derived male embryos were more susceptible to alterations in gene expression and these effects extend to the peri-implantation period including genes associated with placental development and markers of placental function.
Collapse
|
5
|
Wei H, Liu S, Lian R, Huang C, Li Y, Chen L, Zeng Y. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage. Reprod Sci 2020; 27:1656-1664. [PMID: 32430712 DOI: 10.1007/s43032-020-00196-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), an immunosuppressive enzyme that mediates the conversion of tryptophan to kynurenine, was shown to play a key role in placental development during normal pregnancy. However, little is known about the pattern of IDO expression in the endometrium and its attendant functional significance in pregnancies complicated with recurrent miscarriage (RM). Immunohistochemical studies of IDO, Foxp3, CD56, and CD163 expression were performed in endometrial samples from women with RM and healthy fertile controls. Our study found that IDO was localized in glandular epithelial cells, surface epithelial cells, and a small number of cells within the stromal compartment (including stromal cells and leukocytes) in endometrium. Indoleamine 2, 3-dioxygenase expression in the RM group was significantly lower than control group. The Foxp3 and CD56 expression were significantly increased with the elevated IDO expression in controls but not in RM. The percentage of Foxp3 + Tregs was significantly correlated with the level of IDO expression in the control group. Comparatively, no correlation was found between the percentage of CD56 + cells, CD163 + cells, and the level of IDO expression, no matter in controls and RM patients. This study demonstrated that the downregulation of IDO expression and noncoordinated association between IDO and other endometrial immune cells were associated with RM. Our findings provide insights into the contribution of IDO in immune regulation to maintain normal pregnancy, which could be used to develop potential therapeutic methods for RM.
Collapse
Affiliation(s)
- Hongxia Wei
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Ruochun Lian
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Chunyu Huang
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Yuye Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Lanna Chen
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China
| | - Yong Zeng
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, No. 1001 Fuqiang Road, Futian District, Shenzhen, 518045, China.
| |
Collapse
|
6
|
Vitorino Carvalho A, Eozenou C, Richard C, Forde N, Healey GD, Giraud-Delville C, Mansouri-Attia N, Lonergan P, Sheldon IM, Sandra O. Bovine scavenger receptor class A (SR-A) exhibit specific patterns of regulation in the endometrium during the oestrous cycle and early pregnancy. Reprod Fertil Dev 2020; 31:1078-1090. [PMID: 30922439 DOI: 10.1071/rd18411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/14/2019] [Indexed: 01/04/2023] Open
Abstract
In mammals, tight regulation of maternal endometrial function is critical for pregnancy success. In bovine species, endometrial expression of members of the scavenger receptor class A (SR-A) has been listed in high-throughput analyses, but very little is known about the involvement of these immune factors during implantation in mammals. To provide first insights into the contribution of SR-A to endometrial physiology, we analysed the expression and regulation of all members of SR-A (SR-A1, SR-A3-SR-A6) during the oestrous cycle and early pregnancy in cattle. Levels of SR-A1 were increased on Day 20 of pregnancy, whereas SR-A3 levels were increased on Day 13 of the oestrous cycle and of the pregnancy. Although SR-A4 levels were reduced on Day 20 of the oestrous cycle, they remained high in pregnant animals. SR-A5 levels increased by Day 13 of the oestrous cycle and decreased on Day 20, but remained high in pregnant animals. Interferon-τ does not affect SR-A gene expression, whereas progesterone regulates the expression of the SR-A3 and SR-A5 transcripts. Endometrial SR-A3 appeared significantly higher in cows carrying invitro-produced embryos than in AI cows. Our data suggest that members of the SR-A family are involved in endometrial remodelling and regulation of endometrial gland physiology, both processes being critical for implantation in mammals.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: BOA, INRA, Université de Tours, 37380 Nouzilly, France; and Corresponding author.
| | - C Eozenou
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: Human Developmental Genetics, Institut Pasteur, Paris, 75724, France
| | - C Richard
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G D Healey
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - C Giraud-Delville
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| | - N Mansouri-Attia
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; and Present address: Braverman IVF and Reproductive Immunology, 888 Park Avenue, New York City, NY 10075, USA
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - I M Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - O Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France
| |
Collapse
|
7
|
Alauddin M, Salker MS, Umbach AT, Rajaxavier J, Okumura T, Singh Y, Wagner A, Brucker SY, Wallwiener D, Brosens JJ, Lang F. Annexin A7 Regulates Endometrial Receptivity. Front Cell Dev Biol 2020; 8:770. [PMID: 32923441 PMCID: PMC7456953 DOI: 10.3389/fcell.2020.00770] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
A limited window of receptivity is a prerequisite of reproductive success. Indispensable receptivity genes include cyclooxygenase 2 (COX2), an enzyme accomplishing formation of prostaglandin E2 (PGE2). A powerful regulator of PGE2 formation is Annexin A7 (ANXA7). The present study thus explored whether ANXA7 impacts on implantation and fertility. Here we show that ANXA7 is expressed in endometrial tissue and increases upon decidual transformation of human endometrial stromal cells (HESCs) in a time-dependent manner. Silencing ANXA7 significantly decreased the expression of PRL and IGFBP1, canonical decidual marker genes, but enhances COX2 and PGE2 levels. Genetic knockout of AnxA7 in mice significantly increases the number of implantation sites and litter sizes. Further, analysis of human endometrial biopsies showed that ANXA7 transcript and protein levels are decreased during the midluteal window of implantation in women suffering from recurrent pregnancy loss (RPL) when compared to subfertile patients. Taken together, the data indicate that ANXA7 has a conserved role in regulating endometrial receptivity and implantation.
Collapse
Affiliation(s)
- Md Alauddin
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anja T Umbach
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Janet Rajaxavier
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany.,Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Anna Wagner
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Diethelm Wallwiener
- Department of Women's Health, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jan J Brosens
- Division of Biomedical Sciences, Warwick Medical School, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, United Kingdom
| | - Florian Lang
- Department of Physiology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Eozenou C, Lesage-Padilla A, Mauffré V, Healey GD, Camous S, Bolifraud P, Giraud-Delville C, Vaiman D, Shimizu T, Miyamoto A, Sheldon IM, Constant F, Pannetier M, Sandra O. FOXL2 is a Progesterone Target Gene in the Endometrium of Ruminants. Int J Mol Sci 2020; 21:ijms21041478. [PMID: 32098259 PMCID: PMC7073057 DOI: 10.3390/ijms21041478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023] Open
Abstract
Forkhead Box L2 (FOXL2) is a member of the FOXL class of transcription factors, which are essential for ovarian differentiation and function. In the endometrium, FOXL2 is also thought to be important in cattle; however, it is not clear how its expression is regulated. The maternal recognition of pregnancy signal in cattle, interferon-Tau, does not regulate FOXL2 expression. Therefore, in the present study, we examined whether the ovarian steroid hormones that orchestrate implantation regulate FOXL2 gene expression in ruminants. In sheep, we confirmed that FOXL2 mRNA and protein was expressed in the endometrium across the oestrous cycle (day 4 to day 15 post-oestrus). Similar to the bovine endometrium, ovine FOXL2 endometrial expression was low during the luteal phase of the oestrous cycle (4 to 12 days post-oestrus) and at implantation (15 days post-oestrus) while mRNA and protein expression significantly increased during the luteolytic phase (day 15 post-oestrus in cycle). In pregnant ewes, inhibition of progesterone production by trilostane during the day 5 to 16 period prevented the rise in progesterone concentrations and led to a significant increase of FOXL2 expression in caruncles compared with the control group (1.4-fold, p < 0.05). Ovariectomized ewes or cows that were supplemented with exogenous progesterone for 12 days or 6 days, respectively, had lower endometrial FOXL2 expression compared with control ovariectomized females (sheep, mRNA, 1.8-fold; protein, 2.4-fold; cattle; mRNA, 2.2-fold; p < 0.05). Exogenous oestradiol treatments for 12 days in sheep or 2 days in cattle did not affect FOXL2 endometrial expression compared with control ovariectomized females, except at the protein level in both endometrial areas in the sheep. Moreover, treating bovine endometrial explants with exogenous progesterone for 48h reduced FOXL2 expression. Using in vitro assays with COS7 cells we also demonstrated that progesterone regulates the FOXL2 promoter activity through the progesterone receptor. Collectively, our findings imply that endometrial FOXL2 is, as a direct target of progesterone, involved in early pregnancy and implantation.
Collapse
Affiliation(s)
- Caroline Eozenou
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
- Institut Pasteur, UMR 3738, Biologie du Développement et Cellules Souches, Laboratoire de Génétique du Développement Humain, 25 rue du docteur roux, F75015 Paris, France
- Correspondence: (C.E.); (O.S.); Tel.: +33-144389136 (C.E.); +33-134642343 (O.S.)
| | - Audrey Lesage-Padilla
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Vincent Mauffré
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Gareth D. Healey
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (G.D.H.); (I.M.S.)
| | - Sylvaine Camous
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Philippe Bolifraud
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Corinne Giraud-Delville
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Daniel Vaiman
- Institut Cochin, INSERM U1016, UMR 8104 CNRS, Faculté René Descartes, 24 rue du Faubourg St Jacques, 75014 Paris, France;
| | - Takashi Shimizu
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (T.S.); (A.M.)
| | - Akio Miyamoto
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Japan; (T.S.); (A.M.)
| | - Iain Martin Sheldon
- Swansea University Medical School, Swansea University, Singleton Park, Swansea SA2 8PP, UK; (G.D.H.); (I.M.S.)
| | - Fabienne Constant
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Maëlle Pannetier
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
| | - Olivier Sandra
- Université Paris-Saclay, INRAE, ENVA, UVSQ, BREED, 78350 Jouy-en-Josas, France; (A.L.-P.); (V.M.); (S.C.); (P.B.); (C.G.-D.); (F.C.); (M.P.)
- Correspondence: (C.E.); (O.S.); Tel.: +33-144389136 (C.E.); +33-134642343 (O.S.)
| |
Collapse
|
9
|
Embryonic thermal manipulation has short and long-term effects on the development and the physiology of the Japanese quail. PLoS One 2020; 15:e0227700. [PMID: 31971994 PMCID: PMC6977749 DOI: 10.1371/journal.pone.0227700] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
In vertebrates, the embryonic environment is known to affect the development and the health of individuals. In broiler chickens, the thermal-manipulation (TM) of eggs during the incubation period was shown to improve heat tolerance at slaughter age (35 days of age) in association with several modifications at the molecular, metabolic and physiological levels. However, little is known about the Japanese quail (Coturnix japonica), a closely related avian species widely used as a laboratory animal model and farmed for its meat and eggs. Here we developed and characterized a TM procedure (39.5°C and 65% relative humidity, 12 h/d, from days 0 to 13 of incubation) in quails by analyzing its short and long-term effects on zootechnical, physiological and metabolic parameters. Heat-tolerance was tested by a heat challenge (36°C for 7h) at 35 days of age. TM significantly reduced the hatching rate of the animals and increased mortality during the first four weeks of life. At hatching, TM animals were heavier than controls, but lighter at 25 days of age for both sexes. Thirty-five days after hatching, TM decreased the surface temperature of the shank in females, suggesting a modulation of the blood flow to maintain the internal temperature. TM also increased blood partial pressure and oxygen saturation percentage at 35 days of age in females, suggesting a long-term modulation of the respiration physiology. Quails physiologically responded to the heat challenge, with a modification of several hematologic and metabolic parameters, including an increase in plasma corticosterone concentration. Several physiological parameters such as beak surface temperature and blood sodium concentration revealed that TM birds responded differently to the heat challenge compared to controls. Altogether, this first comprehensive characterization of TM in Japanese quail showed durable effects that may affect the response of TM quails to heat.
Collapse
|
10
|
Gibson C, de Ruijter-Villani M, Rietveld J, Stout TAE. Amino acid transporter expression in the endometrium and conceptus membranes during early equine pregnancy. Reprod Fertil Dev 2019; 30:1675-1688. [PMID: 29903343 DOI: 10.1071/rd17352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 05/07/2018] [Indexed: 12/29/2022] Open
Abstract
Maternally derived amino acids (AA) are essential for early conceptus development, and specific transporters enhance histotrophic AA content during early ruminant pregnancy. In the present study we investigated AA transporter expression in early equine conceptuses and endometrium, during normal pregnancy and after induction of embryo-uterus asynchrony. 'Normal' conceptuses and endometrium were recovered on Days 7, 14, 21 and 28 after ovulation. To investigate asynchrony, Day 8 embryos were transferred to recipient mares on Day 8 or Day 3, and conceptuses were recovered 6 or 11 days later. Endometrial expression of AA transporters solute carrier family 38 member 2 (SLC38A2), solute carrier family 1 members 4 and 5 (SLC1A4 and SLC1A5) increased during early pregnancy, whereas solute carrier family 7 member 8 (SLC7A8), solute carrier family 43 member 2 (SLC43A2) and solute carrier family 7 member 1 (SLC7A1) SLC7A8, SLC43A2 and SLC7A1 expression decreased and the expression of solute carrier family 1 member 1(SLC1A1) and solute carrier family 7 member 2 (SLC7A2) was unaffected. In conceptus membranes, most transporters studied were upregulated, either after Day 14 (solute carrier family 7 member 5 - SLC7A5, SLC38A2, SLC1A4, SLC1A5 and SLC7A1) or Day 21 (SLC43A2 and SLC7A2). Asynchronous ET indicated that endometrial SLC1A5, SLC1A1 and SLC7A8 are primarily regulated by conceptus factors and/or longer exposure to progesterone. In conclusion, AA transporters are expressed in early equine conceptus membranes and endometrium in specific spatiotemporal patterns. Because conceptuses express a wider range of transporters than the endometrium, we speculate that the equine yolk sac has recruited AA transporters to ensure adequate nutrient provision during an unusually long preimplantation period.
Collapse
Affiliation(s)
- Charlotte Gibson
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Marta de Ruijter-Villani
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Jolanda Rietveld
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| | - Tom A E Stout
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 114, 3584CM Utrecht, Netherlands
| |
Collapse
|
11
|
Biase FH, Hue I, Dickinson SE, Jaffrezic F, Laloe D, Lewin HA, Sandra O. Fine-tuned adaptation of embryo-endometrium pairs at implantation revealed by transcriptome analyses in Bos taurus. PLoS Biol 2019; 17:e3000046. [PMID: 30978203 PMCID: PMC6481875 DOI: 10.1371/journal.pbio.3000046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/24/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022] Open
Abstract
Interactions between embryo and endometrium at implantation are critical for the progression of pregnancy. These reciprocal actions involve exchange of paracrine signals that govern implantation and placentation. However, it remains unknown how these interactions between the conceptus and the endometrium are coordinated at the level of an individual pregnancy. Under the hypothesis that gene expression in endometrium is dependent on gene expression of extraembryonic tissues and genes expressed in extraembryonic tissues are dependent of genes expressed in the endometrium, we performed an integrative analysis of transcriptome profiles of paired extraembryonic tissue and endometria obtained from cattle (Bos taurus) pregnancies initiated by artificial insemination. We quantified strong dependence (|r| > 0.95, empirical false discovery rate [eFDR] < 0.01) in transcript abundance of genes expressed in the extraembryonic tissues and genes expressed in the endometrium. The profiles of connectivity revealed distinct coexpression patterns of extraembryonic tissues with caruncular and intercaruncular areas of the endometrium. Notably, a subset of highly coexpressed genes between extraembryonic tissue (n = 229) and caruncular areas of the endometrium (n = 218, r > 0.9999, eFDR < 0.001) revealed a blueprint of gene expression specific to each pregnancy. Gene ontology analyses of genes coexpressed between extraembryonic tissue and endometrium revealed significantly enriched modules with critical contribution for implantation and placentation, including “in utero embryonic development,” “placenta development,” and “regulation of transcription.” Coexpressing modules were remarkably specific to caruncular or intercaruncular areas of the endometrium. The quantitative association between genes expressed in extraembryonic tissue and endometrium emphasize a coordinated communication between these two entities in mammals. We provide evidence that implantation in mammalian pregnancy relies on the ability of the extraembryonic tissue and the endometrium to develop a fine-tuned adaptive response characteristic of each pregnancy. An integrative analysis of interactions between conceptus and endometrium, in cattle, reveals complex regulatory networks operating at the time of implantation, highlighting the unique transcriptional blueprint of conceptus-maternal communication Implantation in mammals requires a complex crosstalk between the conceptus (the embryo and associated membranes) and the uterus. An imbalanced regulation of the factors contributing to these interactions has negative impacts on the attachment of the fetus, the progression of the pregnancy, and the progeny. Focusing on paired conceptus–endometrium analyses of individual pregnancies in cows, we have determined that communication at implantation encompasses synchronized genome-wide coregulation of genes. Gene regulatory interactions between one conceptus and the surrounding maternal tissue vary between endometrial regions containing or lacking glands. Our data reveal new insights, to our knowledge, on the coordination of molecular mechanisms that contribute to implantation and pregnancy establishment in mammals. We conclude that the biological response of the endometrium is embryo-specific, a phenomenon that deserves further investigation in the context of assisted reproductive technologies.
Collapse
Affiliation(s)
- Fernando H. Biase
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail: (FB); (OS)
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
| | - Sarah E. Dickinson
- Department of Animal Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Florence Jaffrezic
- UMR1313 GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Denis Laloe
- UMR1313 GABI, INRA, AgroParisTech, Université Paris Saclay, Jouy-en-Josas, France
| | - Harris A. Lewin
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy-en-Josas, France
- * E-mail: (FB); (OS)
| |
Collapse
|
12
|
Wei H, Liu S, Lian R, Huang C, Li Y, Chen L, Zeng Y. Abnormal Expression of Indoleamine 2, 3-Dioxygenase in Human Recurrent Miscarriage. Reprod Sci 2019:1933719119833788. [PMID: 30832549 DOI: 10.1177/1933719119833788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Indoleamine 2, 3-dioxygenase (IDO), an immunosuppressive enzyme that mediates the conversion of tryptophan to kynurenine, was shown to play a key role in placental development during normal pregnancy. However, little is known about the pattern of IDO expression in the endometrium and its attendant functional significance in pregnancies complicated with recurrent miscarriage (RM). Immunohistochemical studies of IDO, Foxp3, CD56, and CD163 expression were performed in endometrial samples from women with RM and healthy fertile controls. Our study found that IDO was localized in glandular epithelial cells, surface epithelial cells, and a small number of cells within the stromal compartment (including stromal cells and leukocytes) in endometrium. Indoleamine 2, 3-dioxygenase expression in the RM group was significantly lower than control group. The Foxp3 and CD56 expression were significantly increased with the elevated IDO expression in controls but not in RM. The percentage of Foxp3+ Tregs was significantly correlated with the level of IDO expression in the control group. Comparatively, no correlation was found between the percentage of CD56+ cells, CD163+ cells, and the level of IDO expression, no matter in controls and RM patients. This study demonstrated that the downregulation of IDO expression and noncoordinated association between IDO and other endometrial immune cells were associated with RM. Our findings provide insights into the contribution of IDO in immune regulation to maintain normal pregnancy, which could be used to develop potential therapeutic methods for RM.
Collapse
Affiliation(s)
- Hongxia Wei
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- These authors contributed equally to this work
| | - Su Liu
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
- These authors contributed equally to this work
| | - Ruochun Lian
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Chunyu Huang
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yuye Li
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Lanna Chen
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yong Zeng
- 1 Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Fertility Center, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| |
Collapse
|
13
|
Grazul-Bilska AT, Bairagi S, Kraisoon A, Dorsam ST, Reyaz A, Navanukraw C, Borowicz PP, Reynolds LP. Placental development during early pregnancy in sheep: nuclear estrogen and progesterone receptor mRNA expression in the utero-placental compartments. Domest Anim Endocrinol 2019; 66:27-34. [PMID: 30391829 PMCID: PMC6281792 DOI: 10.1016/j.domaniend.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/10/2018] [Accepted: 09/21/2018] [Indexed: 12/29/2022]
Abstract
Sex steroid hormones are major regulators of uterine and placental growth and functions, as well as many other biological processes. To examine the mRNA expression of nuclear estrogen (ESR1 and 2) and progesterone (PGRAB and B) receptors in different compartments of the uterus and placenta, tissues were collected in experiment 1 on days 16, 20, and 28 after natural mating (NAT) and on day 10 after estrus (nonpregnant controls [NP]); and in experiment 2 on day 22 of NAT, and pregnancies established after transfer of embryos generated through mating of FSH-treated ewes (NAT-ET), in vitro fertilization (IVF), or in vitro activation (parthenotes). In experiment 1, ESR1 expression in endometrial stroma (ES), endometrial glands (EGs), and myometrial blood vessels (MBVs), ESR2 in endometrial blood vessels (EBV), PGRAB in ES, and PGRB in ES, EG, and MBV was greater in pregnant than NP ewes depending on the day of pregnancy. The day of pregnancy affected the expression of ESR1 in MBV, ESR2 in EBV and MBV, and PGRAB in ES. In experiment 2, ESR1, PGRAB, and PGRB in EG, but not in other compartments, was greater in NAT-ET than NAT, and PGRB was greater for NAT-ET than IVF. These data demonstrate that ESR and PGR expression differ in pregnant versus NP ewes in selected compartments and was affected by pregnancy stage or embryo origin in selected utero-placental compartments. Thus, sex steroid hormone mRNA expression is differentially regulated in a spatiotemporal manner in the uterus and placenta and is affected by the application of assisted reproductive technology in sheep.
Collapse
Affiliation(s)
- Anna T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| | - Soumi Bairagi
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Aree Kraisoon
- Department of Animal Science, Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Sheri T Dorsam
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Arshi Reyaz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Chainarong Navanukraw
- Department of Animal Science, Agricultural Biotechnology Research Center for Sustainable Economy (ABRCSE), Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
| | - Pawel P Borowicz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P Reynolds
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
14
|
Khatib H, Gross N. Symposium review: Embryo survival-A genomic perspective of the other side of fertility. J Dairy Sci 2018; 102:3744-3753. [PMID: 30293848 DOI: 10.3168/jds.2018-15252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023]
Abstract
The majority of embryonic loss in cattle occurs within the first 3 to 4 wk of pregnancy, and there are currently no accurate predictors of pregnancy outcome. Existing embryo quality assessment methods include morphological evaluation and embryo biopsy. These methods are not accurate and carry some health risks to the developing embryo, respectively. Therefore, there is need to identify noninvasive biomarkers such as microRNA that can predict embryo quality and pregnancy outcome. Furthermore, researchers need a better understanding of the dynamic interaction between the mother and the embryo. The transcriptome of the uterus shows plasticity that depends on the embryo type so that the expression level of some genes for in vivo embryos would be different from that of in vitro-produced embryos. Similarly, the embryonic transcriptome and epigenome change in response to different environmental factors such as stress, diet, disease, and physiological status of the mother. This embryo-mother crosstalk could be better understood by investigating the molecular signaling that occurs at different stages of embryonic development. Although transcriptomics is a useful tool to assess the roles of genes and pathways in embryo quality and maternal receptivity, it does not provide the exact functions of these genes, and it shows correlation rather than causality. Therefore, an in-depth functional genomic analysis is needed for better understanding of the molecular mechanisms controlling embryo development. In this review, we discuss recent genomic technologies such as RNA interference, gapmer technology, and genome editing techniques used in humans and livestock to elucidate the molecular mechanisms of genes affecting embryo development.
Collapse
Affiliation(s)
- H Khatib
- Department of Animal Sciences, University of Wisconsin, Madison 53706.
| | - N Gross
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
15
|
Lesage-Padilla A, Forde N, Poirée M, Healey GD, Giraud-Delville C, Reinaud P, Eozenou C, Vitorino Carvalho A, Galio L, Raliou M, Oudin JF, Richard C, Sheldon IM, Charpigny G, Lonergan P, Sandra O. Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle. PLoS One 2017; 12:e0189942. [PMID: 29281695 PMCID: PMC5744954 DOI: 10.1371/journal.pone.0189942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered.
Collapse
Affiliation(s)
| | - Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Mélanie Poirée
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Gareth D. Healey
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | | | | | - Caroline Eozenou
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Mariam Raliou
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | | | | | - I. Martin Sheldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
- * E-mail:
| |
Collapse
|
16
|
Vitorino Carvalho A, Eozenou C, Healey GD, Forde N, Reinaud P, Chebrout M, Gall L, Rodde N, Padilla AL, Delville CG, Leveugle M, Richard C, Sheldon IM, Lonergan P, Jolivet G, Sandra O. Analysis of STAT1 expression and biological activity reveals interferon-tau-dependent STAT1-regulated SOCS genes in the bovine endometrium. Reprod Fertil Dev 2017; 28:459-74. [PMID: 25116692 DOI: 10.1071/rd14034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 07/12/2014] [Indexed: 01/24/2023] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are critical for the regulation of numerous biological processes. In cattle, microarray analyses identified STAT1 as a differentially expressed gene in the endometrium during the peri-implantation period. To gain new insights about STAT1 during the oestrous cycle and early pregnancy, we investigated STAT1 transcript and protein expression, as well as its biological activity in bovine tissue and cells of endometrial origin. Pregnancy increased STAT1 expression on Day 16, and protein and phosphorylation levels on Day 20. In cyclic and pregnant females, STAT1 was located in endometrial cells but not in the luminal epithelium at Day 20 of pregnancy. The expression of STAT1 during the oestrous cycle was not affected by progesterone supplementation. In vivo and in vitro, interferon-tau (IFNT) stimulated STAT1 mRNA expression, protein tyrosine phosphorylation and nuclear translocation. Using chromatin immunoprecipitation in IFNT-stimulated endometrial cells, we demonstrated an increase of STAT1 binding on interferon regulatory factor 1 (IRF1), cytokine-inducible SH2-containing protein (CISH), suppressor of cytokine signaling 1 and 3 (SOCS1, SOCS3) gene promoters consistent with the induction of their transcripts. Our data provide novel molecular insights into the biological functions of STAT1 in the various cells composing the endometrium during maternal pregnancy recognition and implantation.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Eozenou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - G D Healey
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - N Forde
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - P Reinaud
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Chebrout
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - L Gall
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - N Rodde
- INRA, UPR1258 Centre National des Ressources Génomiques Végétales, F-31326 Castanet Tolosan, France
| | - A Lesage Padilla
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - C Giraud Delville
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - M Leveugle
- INRA, UR1077 Unité Mathématique Informatique et Génome, Jouy-en-Josas, France
| | - C Richard
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - I M Sheldon
- Centre for Reproductive Immunology, Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| | - P Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - G Jolivet
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| | - O Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, France
| |
Collapse
|
17
|
The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model. J Dev Orig Health Dis 2017; 8:411-417. [PMID: 28260557 DOI: 10.1017/s2040174417000125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Medically assisted reproductive technologies, such as in vitro embryo production, are increasingly being used to palliate infertility. Eggs are produced following a hormonal regimen that stimulates the ovaries to produce a large number of oocytes. Collected oocytes are then fertilized in vitro and allowed to develop in vitro until they are either frozen or transferred to mothers. There are controversial reports on the adverse impacts of these technologies on early embryos and their potential long-term effects. Using newly developed technological platforms that enable global gene expression and global DNA methylation profiling, we evaluated gene perturbations caused by such artificial procedures. We know that cells in the early embryo produce all cells in the body and are able to respond to their in vitro environment. However, it is not known whether gene perturbations are part of a normal response to the environment or are due to distress and will have long-term impacts. While the mouse is an established genetic model used for quality control of culture media in clinics, the bovine is a large mono-ovulating mammal with similar embryonic kinetics as humans during the studied developmental window. These model systems are critical to understand the effects of assisted reproduction without the confounding impact of infertility and without the limitations imposed by the scarcity of donated human samples and ethical issues. The data presented in this review come mostly from our own experimentation, publications, and collaborations. Together they demonstrate that the in vitro environment has a significant impact on embryos at the transcriptomic level and at the DNA methylation level.
Collapse
|
18
|
Abdoon AS, Giraud-Delville C, Kandil OM, Kerboeuf-Giraud A, Eozénou C, Carvalho AV, Julian S, Sandra O. Maternal recognition of pregnancy and implantation are not associated with an interferon response of the endometrium to the presence of the conceptus in dromedary camel. Theriogenology 2017; 90:301-308. [DOI: 10.1016/j.theriogenology.2016.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
19
|
Lonergan P, Forde N, Spencer T. Role of progesterone in embryo development in cattle. Reprod Fertil Dev 2017; 28:66-74. [PMID: 27062875 DOI: 10.1071/rd15326] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Progesterone (P4) from the corpus luteum is critical for the establishment and maintenance of pregnancy and plays a major role in regulating endometrial secretions essential for stimulating and mediating changes in conceptus growth and differentiation throughout early pregnancy in ruminants. Numerous studies have demonstrated an association between elevated systemic P4 and acceleration in conceptus elongation. A combination of in vivo and in vitro experiments found that the effects of P4 on conceptus elongation are indirect and mediated through P4-induced effects in the endometrium. Despite effects on elongation, data on the effects of post-insemination supplementation with P4 on pregnancy rates are conflicting. This review highlights the effects of P4 on conceptus development and examines strategies that have been undertaken to manipulate P4 concentrations to increase fertility.
Collapse
Affiliation(s)
- Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Niamh Forde
- Division of Reproduction and Early Development, Leeds Institute of Cardiovascular and Molecular Medicine, University of Leeds, Clarendon Way, Leeds, LS2 9JT, UK
| | - Thomas Spencer
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
20
|
Sandra O, Charpigny G, Galio L, Hue I. Preattachment Embryos of Domestic Animals: Insights into Development and Paracrine Secretions. Annu Rev Anim Biosci 2016; 5:205-228. [PMID: 27959670 DOI: 10.1146/annurev-animal-022516-022900] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In mammalian species, endometrial receptivity is driven by maternal factors independently of embryo signals. When pregnancy initiates, paracrine secretions of the preattachment embryo are essential both for maternal recognition and endometrium preparation for implantation and for coordinating development of embryonic and extraembryonic tissues of the conceptus. This review mainly focuses on domestic large animal species. We first illustrate the major steps of preattachment embryo development, including elongation in bovine, ovine, porcine, and equine species. We next highlight conceptus secretions that are involved in the communication between extraembryonic and embryonic tissues, as well as between the conceptus and the endometrium. Finally, we introduce experimental data demonstrating the intimate connection between conceptus secretions and endometrial activity and how adverse events perturbing this interplay may affect the progression of implantation that will subsequently impact pregnancy outcome, postnatal health, and expression of production traits in livestock offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Gilles Charpigny
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Laurent Galio
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| | - Isabelle Hue
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350, Jouy en Josas, France; , , ,
| |
Collapse
|
21
|
Forde N, Maillo V, O'Gaora P, Simintiras CA, Sturmey RG, Ealy AD, Spencer TE, Gutierrez-Adan A, Rizos D, Lonergan P. Sexually Dimorphic Gene Expression in Bovine Conceptuses at the Initiation of Implantation. Biol Reprod 2016; 95:92. [PMID: 27488033 PMCID: PMC5333939 DOI: 10.1095/biolreprod.116.139857] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/29/2016] [Indexed: 01/06/2023] Open
Abstract
In cattle, maternal recognition of pregnancy occurs on Day 16 via secretion of interferon tau (IFNT) by the conceptus. The endometrium can distinguish between embryos with different developmental competencies. In eutherian mammals, X-chromosome inactivation (XCI) is required to ensure an equal transcriptional level of most X-linked genes for both male and female embryos in adult tissues, but this process is markedly different in cattle than mice. We examined how sexual dimorphism affected conceptus transcript abundance and amino acid composition as well as the endometrial transcriptome during the peri-implantation period of pregnancy. Of the 5132 genes that were differentially expressed on Day 19 in male compared to female conceptuses, 2.7% were located on the X chromosome. Concentrations of specific amino acids were higher in the uterine luminal fluid of male compared to female conceptuses, while female conceptuses had higher transcript abundance of specific amino acid transporters (SLC6A19 and SLC1A35). Of note, the endometrial transcriptome was not different in cattle gestating a male or a female conceptus. These data support the hypothesis that, far from being a blastocyst-specific phenomenon, XCI is incomplete before and during implantation in cattle. Despite differences in transcript abundance and amino acid utilization in male versus female conceptuses, the sex of the conceptus itself does not elicit a different transcriptomic response in the endometrium.
Collapse
Affiliation(s)
- Niamh Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | | | - Peadar O'Gaora
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, Dublin, Ireland
| | - Constantine A Simintiras
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Roger G Sturmey
- Center for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Alan D Ealy
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Thomas E Spencer
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | | | | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
22
|
Sandra O. Hormonal control of implantation. ANNALES D'ENDOCRINOLOGIE 2016; 77:63-6. [DOI: 10.1016/j.ando.2016.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
|
23
|
Hue I. Determinant molecular markers for peri-gastrulating bovine embryo development. Reprod Fertil Dev 2016; 28:51-65. [DOI: 10.1071/rd15355] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Peri-gastrulation defines the time frame between blastocyst formation and implantation that also corresponds in cattle to elongation, pregnancy recognition and uterine secretion. Optimally, this developmental window prepares the conceptus for implantation, placenta formation and fetal development. However, this is a highly sensitive period, as evidenced by the incidence of embryo loss or early post-implantation mortality after AI, embryo transfer or somatic cell nuclear transfer. Elongation markers have often been used within this time frame to assess developmental defects or delays, originating either from the embryo, the uterus or the dam. Comparatively, gastrulation markers have not received great attention, although elongation and gastrulation are linked by reciprocal interactions at the molecular and cellular levels. To make this clearer, this peri-gastrulating period is described herein with a focus on its main developmental landmarks, and the resilience of the landmarks in the face of biotechnologies is questioned.
Collapse
|
24
|
Sandra O, Constant F, Vitorino Carvalho A, Eozénou C, Valour D, Mauffré V, Hue I, Charpigny G. Maternal organism and embryo biosensoring: insights from ruminants. J Reprod Immunol 2015; 108:105-13. [PMID: 25617112 DOI: 10.1016/j.jri.2014.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/01/2022]
Abstract
In terms of contribution to pregnancy, the mother not only produces gametes, but also hosts gestation, whose progression in the uterus is conditioned by early events during implantation. In ruminants, this period is associated with elongation of the extra-embryonic tissues, gastrulation of the embryonic disk and cross-talk with the endometrium. Recent data have prompted the need for accurate staging of the bovine conceptus and shown that asynchrony between elongation and gastrulation processes may account for pregnancy failure. Data mining of endometrial gene signatures has allowed the identification of molecular pathways and new factors regulated by the conceptus (e.g. FOXL2, SOCS6). Interferon-tau has been recognised to be the major signal of pregnancy recognition, but prostaglandins and lysophospholipids have also been demonstrated to be critical players at the conceptus-endometrium interface. Interestingly, up-regulation of interferon-regulated gene expression has been identified in circulating immune cells during implantation, making these factors a potential source of non-invasive biomarkers for early pregnancy. Distinct endometrial responses have been shown to be elicited by embryos produced by artificial insemination, in vitro fertilisation or somatic cell nuclear transfer. These findings have led to the concept that endometrium is an early biosensor of embryo quality. This biological property first demonstrated in cattle has been recently extended and associated with embryo selection in humans. Hence, compromised or suboptimal endometrial quality can subtly or deeply affect embryo development, with visible and sometimes severe consequences for placentation, foetal development, pregnancy outcome and the long-term health of the offspring.
Collapse
Affiliation(s)
- Olivier Sandra
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France.
| | - Fabienne Constant
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Anais Vitorino Carvalho
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Caroline Eozénou
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Damien Valour
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Vincent Mauffré
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Isabelle Hue
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| | - Gilles Charpigny
- INRA, UMR1198 Biologie du Développement et Reproduction, F-78352 Jouy-en-Josas, France; ENVA, UMR1198 Biologie du Développement et Reproduction, F-94704 Maisons Alfort, France
| |
Collapse
|
25
|
Valour D, Michot P, Eozenou C, Lefebvre R, Bonnet A, Capitan A, Uzbekova S, Sellem E, Ponsart C, Schibler L. Dairy cattle reproduction is a tightly regulated genetic process: Highlights on genes, pathways, and biological processes. Anim Front 2015. [DOI: 10.2527/af.2015-0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- D. Valour
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - P. Michot
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - C. Eozenou
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - R. Lefebvre
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - A. Bonnet
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| | - A. Capitan
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- UMR INRA 85-CNRS 7247-Université de Tours, Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France
| | - S. Uzbekova
- INRA, UMR1313 Génétique Animale et Biologie Intégrative, F-78352 Jouy en Josas, France
| | - E. Sellem
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
- INRA, UMR1198 Biologie du Développement et de la Reproduction, F-78350 Jouy en Josas, France
| | - C. Ponsart
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| | - L. Schibler
- UNCEIA, 149 rue de Bercy, 75012 Paris, France
| |
Collapse
|
26
|
Carvalho AV, Reinaud P, Forde N, Healey GD, Eozenou C, Giraud-Delville C, Mansouri-Attia N, Gall L, Richard C, Lonergan P, Sheldon IM, Lea RG, Sandra O. SOCS genes expression during physiological and perturbed implantation in bovine endometrium. Reproduction 2014; 148:545-57. [PMID: 25187621 DOI: 10.1530/rep-14-0214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In mammals, suppressor of cytokine signalling (CISH, SOCS1 to SOCS7) factors control signalling pathways involved in the regulation of numerous physiological processes including pregnancy. In order to gain new insights into the biological functions of SOCS in the endometrium, a comprehensive analysis of SOCS gene expression was carried out in bovine caruncular (CAR) and intercaruncular (ICAR) tissues collected i) during the oestrous cycle, ii) at the time of maternal recognition of pregnancy and at implantation in inseminated females, iii) following uterine interferon-tau (IFNT) infusion at day 14 post-oestrus, iv) following a period of controlled intravaginal progesterone release and v) following transfer of embryos by somatic-cell nuclear transfer (SCNT). The regulatory effects of IFNT on in vitro cultured epithelial and stromal cells were also examined. Altogether, our data showed that CISH, SOCS4, SOCS5 and SOCS7 mRNA levels were poorly affected during luteolysis and pregnancy. In contrast, SOCS1, SOCS2, SOCS3 and SOCS6 mRNA levels were strongly up-regulated at implantation (day 20 of pregnancy). Experimental in vitro and in vivo models demonstrated that only CISH, SOCS1, SOCS2 and SOCS3 were IFNT-induced genes. Immunohistochemistry showed an intense SOCS3 and SOCS6 staining in the nucleus of luminal and glandular epithelium and of stromal cells of pregnant endometrium. Finally, SOCS3 expression was significantly increased in SCNT pregnancies in keeping with the altered immune function previously reported in this model of compromised implantation. Collectively, our data suggest that spatio-temporal changes in endometrial SOCS gene expression reflect the acquisition of receptivity, maternal recognition of pregnancy and implantation.
Collapse
Affiliation(s)
- A Vitorino Carvalho
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - P Reinaud
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - N Forde
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - G D Healey
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - C Eozenou
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - C Giraud-Delville
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - N Mansouri-Attia
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - L Gall
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - C Richard
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - P Lonergan
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - I M Sheldon
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - R G Lea
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - O Sandra
- INRAUMR1198 Biologie du Développement et Reproduction, F-78350 Jouy-en-Josas, FranceSchool of Agriculture and Food ScienceUniversity College Dublin, Dublin, IrelandCentre for Reproductive ImmunologyInstitute of Life Science, College of Medicine, Swansea University, Swansea SA28PP, UKDepartment of Pathology and ImmunologyBaylor College of Medicine, Houston, Texas, USASchool of Veterinary Medicine and ScienceUniversity of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| |
Collapse
|
27
|
Wang F, Tian X, Zhou Y, Tan D, Zhu S, Dai Y, Liu G. Melatonin improves the quality of in vitro produced (IVP) bovine embryos: implications for blastocyst development, cryotolerance, and modifications of relevant gene expression. PLoS One 2014; 9:e93641. [PMID: 24695534 PMCID: PMC3973586 DOI: 10.1371/journal.pone.0093641] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 03/05/2014] [Indexed: 11/23/2022] Open
Abstract
To evaluate the potential effects of melatonin on the kinetics of embryo development and quality of blastocyst during the process of in vitro bovine embryo culture. Bovine cumulus–oocyte complexes (COCs) were fertilized after in vitro maturation. The presumed zygotes were cultured in in vitro culture medium supplemented with or without 10−7 M melatonin. The cleavage rate, 8-cell rate and blastocyst rate were examined to identify the kinetics of embryo development. The hatched blastocyst rate, mortality rate after thawing and the relevant transcript abundance were measured to evaluate the quality of blastocyst. The results showed that melatonin significantly promoted the cleavage rate and 8-cell embryo yield of in vitro produced bovine embryo. In addition, significantly more blastocysts were observed by Day 7 of embryo culture at the presence of melatonin. These results indicated that melatonin accelerated the development of in vitro produced bovine embryos. Following vitrification at Day 7 of embryo culture, melatonin (10−7 M) significantly increased the hatched blastocyst rate from 24 h to 72 h and decreased the mortality rate from 48 h to 72 h after thawing. The presence of melatonin during the embryo culture resulted in a significant increase in the gene expressions of DNMT3A, OCC, CDH1 and decrease in that of AQP3 after thawing. In conclusion, melatonin not only promoted blastocyst yield and accelerated in vitro bovine embryo development, but also improved the quality of blastocysts which was indexed by an elevated cryotolerance and the up-regulated expressions of developmentally important genes.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - XiuZhi Tian
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YanHua Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - DunXian Tan
- Department of Cellular & Structural Biology, The University of Texas Health Science Center, San Antonio, Texas, United States of America
| | - ShiEn Zhu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - YunPing Dai
- State Key Laboratories of Agro-biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - GuoShi Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Zenclussen ML, Casalis PA, Jensen F, Woidacki K, Zenclussen AC. Hormonal Fluctuations during the Estrous Cycle Modulate Heme Oxygenase-1 Expression in the Uterus. Front Endocrinol (Lausanne) 2014; 5:32. [PMID: 24659985 PMCID: PMC3952397 DOI: 10.3389/fendo.2014.00032] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/27/2014] [Indexed: 12/26/2022] Open
Abstract
Deletion of the heme oxygenase-1 (HO-1) (Hmox1) locus in mice results in intrauterine lethality. The expression of the heme catabolizing enzyme encoded by this gene, namely HO-1, is required to successfully support reproductive events. We have previously observed that HO-1 acts at several key events in reproduction ensuring pregnancy. HO-1 defines ovulation, positively influences implantation and placentation, and ensures fetal growth and survival. Here, we embarked on a study aimed to determine whether hormonal changes during the estrous cycle in the mouse define HO-1 expression that may influence receptivity. We analyzed the serum levels of progesterone and estrogen by ELISA and HO-1 mRNA expression in uterus by real time RT-PCR at the metestrus, proestrus, estrus, and diestrus phases of the estrous cycle. Further, we studied the HO-1 protein expression by western blot upon hormone addition to cultured uterine AN3 cells. We observed that HO-1 variations in uterine tissue correlated to changes in hormonal levels at different phases of the estrus cycle. In vitro, HO-1 protein levels in AN3 cells augmented after the addition of physiological concentrations of progesterone and estradiol, which confirmed our in vivo observations. Our data suggest an important role for hormones in HO-1 regulation in uterus during receptivity, a process known to have a significant impact in receptivity and later on blastocyst implantation.
Collapse
Affiliation(s)
- Maria Laura Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Pablo Ariel Casalis
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Federico Jensen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- Present address: Federico Jensen, Research Laboratory, Department of Obstetrics and Gynecology, Medical Faculty, University of Greifswald, Greifswald, Germany
| | - Katja Woidacki
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Ana Claudia Zenclussen
- Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
- *Correspondence: Ana Claudia Zenclussen, Department of Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Gerhart-Hauptmann-Str. 35, Magdeburg 39108, Germany e-mail:
| |
Collapse
|
29
|
Maternal-embryo interaction leading up to the initiation of implantation of pregnancy in cattle. Animal 2014; 8 Suppl 1:64-9. [DOI: 10.1017/s1751731114000470] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
30
|
Gómez E, Caamaño JN, Corrales FJ, Díez C, Correia-Álvarez E, Martín D, Trigal B, Carrocera S, Mora MI, Pello-Palma J, Moreno JF, Muñoz M. Embryonic sex induces differential expression of proteins in bovine uterine fluid. J Proteome Res 2013; 12:1199-210. [PMID: 23379789 DOI: 10.1021/pr300845e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The bovine endometrium recognizes early embryos and reacts differently depending on the developmental potential of the embryo. However, it is unknown whether the endometrium can distinguish embryonic sex. Our objective was to analyze sexual dimorphism in the uterus in response to male and female embryos. Differentially expressed (DE) proteins, different levels of hexoses, and other embryotrophic differences were analyzed in uterine fluid (UF). Proteomic analysis of day-8 UF recovered from heifers after the transfer of day-5 male or female embryos identified 23 DE proteins. Regulated proteasome/immunoproteasome protein subunits indicated differences in antigen processing between UF carrying male embryos (male-UF) or female embryos (female-UF). Several enzymes involved in glycolysis/gluconeogenesis and antioxidative/antistress responses were up-regulated in female-UF. Fructose concentration was increased in female-UF versus male-UF, while glucose levels were similar. In vitro cultures with molecules isolated from male-UF were found to improve male embryo development compared to female embryos cultured with molecules isolated from female-UF. We postulated that, in vivo, male embryos induce changes in the endometrium to help ensure their survival. In contrast, female embryos do not appear to induce these changes.
Collapse
Affiliation(s)
- Enrique Gómez
- Centro de Biotecnología Animal-SERIDA, Camino de Rioseco 1225, La Olla-Deva, 33394 Gijón, Asturias, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Valour D, Hue I, Degrelle SA, Déjean S, Marot G, Dubois O, Germain G, Humblot P, Ponter AA, Charpigny G, Grimard B. Pre- and Post-Partum Mild Underfeeding Influences Gene Expression in the Reproductive Tract of Cyclic Dairy Cows. Reprod Domest Anim 2012; 48:484-99. [DOI: 10.1111/rda.12113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/20/2012] [Indexed: 12/01/2022]
Affiliation(s)
| | | | | | - S Déjean
- Institut de Mathématiques; UMR5219 Université de Toulouse et CNRS; F-31062; Toulouse; France
| | - G Marot
- INRA; UR337 Station de Génétique Quantitative et Appliquée; F-78352; Jouy-en-Josas; France
| | | | | | - P Humblot
- UNCEIA; Recherche et Développement; F-94704; Maisons-Alfort; France
| | | | | | | |
Collapse
|