1
|
Kasimanickam V, Kastelic J, Kasimanickam R. Transcriptomics of bovine sperm and oocytes. Anim Reprod Sci 2024; 271:107630. [PMID: 39500235 DOI: 10.1016/j.anireprosci.2024.107630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024]
Abstract
Traditionally, sperm and embryos were studied using microscopy to assess morphology and motility. However, OMICS technologies, especially transcriptomic analysis, are now being used to screen the molecular dynamics of fertility markers at cellular and molecular levels, with high sensitivity. Transcriptomics is the study of the transcriptome - RNA transcripts produced by the genome - using high-throughput methods to understand how the RNAs are expressed. In this review, we have discussed gene contributions to sperm structure and function and their role in fertilization and early embryo development. Further, we identified miRNAs shared by sperm, oocytes, and early embryos and their roles in fertilization and early embryo development.
Collapse
Affiliation(s)
| | - John Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | | |
Collapse
|
2
|
Salmasi S, Heidar MS, Khaksary Mahabady M, Rashidi B, Mirzaei H. MicroRNAs, endometrial receptivity and molecular pathways. Reprod Biol Endocrinol 2024; 22:139. [PMID: 39529197 PMCID: PMC11552404 DOI: 10.1186/s12958-024-01304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
MicroRNAs (miRNAs) are a type of specific molecules that control the activities of the uterus, such as the process of cellular maturing and evolution. A lot of substances like growth factors, cytokines, and transcription factors play a role in embryo-endometrial interaction. MiRNAs could regulate various these factors by attaching to the 3' UTR of their mRNAs. Moreover, current research show that miRNAs participate in formation of blood vessels in endometrium (miR-206, miR-17-5p, miR-16-5p…), decidualization (miR-154, miR-181, miR-9…), epithelial-mesenchymal transition (miR-30a-3p), immune response (miR-888, miR-376a, miR-300…) embryo attachment (miR-145, miR-27a,451…) and pinopod formation (mir-223-3p, mir-449a, mir-200c). In this study, the focus is on the role of miRNAs in managing the uterus' receptivity to an embryo and its ability to facilitate attachment. More specifically, we are exploring the mechanisms by which miRNAs regulate the presence of specific molecules involved in this crucial physiological process.
Collapse
Affiliation(s)
- Soheila Salmasi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Saeed Heidar
- Faculty of life sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences & Cognitive Neuroscience, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
de Castro KR, Almeida GHDR, Matsuda M, de Paula Vieira R, Martins MG, Rici REG, Saldiva PHN, Veras MM. Exposure to urban ambient particles (PM2.5) before pregnancy affects the expression of endometrial receptive markers to embryo implantation in mice: Preliminary results. Tissue Cell 2024; 88:102368. [PMID: 38583225 DOI: 10.1016/j.tice.2024.102368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Air pollution (AP) is one of the main recent concerns in reproductive healthy due to its potential to promote negative outcomes during pregnancy and male and female fertility. Several studies have demonstrated that AP exposure has been linked to increased embryonic implantation failures, alterations in embryonic, fetal and placental development. For a well-succeeded implantation, both competent blastocyst and receptive endometrium are required. Based on the lack of data about the effect of AP in endometrial receptivity, this study aimed to evaluate he particulate matter (PM) exposure impact on uterine receptive markers in mice and associate the alterations to increased implantation failures due to AP. For this study, ten dams per group were exposed for 39 days to either filter (F) or polluted air (CAP). At fourth gestational day (GD4), females were euthanized. Morphological, ultrastructural, immunohistochemical and molecular analysis of uterine and ovarian samples were performed. CAP-exposed females presented a reduced number of corpus luteum; glands and epithelial cells were increased with pinopodes formation impairment. Immunohistochemistry analysis revealed decreased LIF protein levels. These preliminary data suggests that PM exposure may exert negative effects on endometrial receptivity by affecting crucial parameters to embryonic implantation as uterine morphological differentiation, corpus luteum quantity and LIF expression during implantation window.
Collapse
Affiliation(s)
- Karla Ribeiro de Castro
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | | | - Monique Matsuda
- Division of Ophthalmology and Laboratory of Investigation in Ophthalmology (LIM33), School of Medicine, University of São Paulo, São Paulo State, Brazil
| | - Rodolfo de Paula Vieira
- Human Movement and Rehabilitation Post-Graduation Program, Evangelical University of Goiás -UniEVANGÉLICA, Anápolis, GO, Brazil
| | - Marco Garcia Martins
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Rose Eli Grassi Rici
- Department of Surgery, Faculty of the Veterinary Medicine and Animal Science, University of São Paulo, São Paulo State, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marilia (UNIMAR), Marilia, São Paulo, Brazil
| | - Paulo Hilário Nascimento Saldiva
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil
| | - Mariana Matera Veras
- Laboratory of Experimental Air Pollution (LIM05), Department of Pathology, School of Medicine, University of São Paulo, São Paulo, São Paulo State, Brazil.
| |
Collapse
|
4
|
Rokhsartalab Azar P, Maleki Aghdam M, Karimi S, Haghtalab A, Sadeghpour S, Mellatyar H, Taheri-Anganeh M, Ghasemnejad-Berenji H. Uterine fluid microRNAs in repeated implantation failure. Clin Chim Acta 2024; 558:119678. [PMID: 38641194 DOI: 10.1016/j.cca.2024.119678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Recurrent implantation failure (RIF) is a significant obstacle in assisted reproductive procedures, primarily because of compromised receptivity. As such, there is a need for a dependable and accurate clinical test to evaluate endometrial receptiveness, particularly during embryo transfer. MicroRNAs (miRNAs) have diverse functions in the processes of implantation and pregnancy. Dysregulation of miRNAs results in reproductive diseases such as recurrent implantation failure (RIF). The endometrium secretes several microRNAs (miRNAs) during the implantation period, which could potentially indicate whether the endometrium is suitable for in vitro fertilization (IVF). The goal of this review is to examine endometrial miRNAs as noninvasive biomarkers that successfully predict endometrium receptivity in RIF.
Collapse
Affiliation(s)
| | - Mahdi Maleki Aghdam
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Sarmad Karimi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arian Haghtalab
- School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
He D, Song Y, Xiao H, Shi S, Song H, Cui T, Ni T, Wang J, Ren X, Wei A. Ligustilide enhances pregnancy outcomes via improvement of endometrial receptivity and promotion of endometrial angiogenesis in rats. J Nat Med 2024; 78:42-52. [PMID: 37698739 DOI: 10.1007/s11418-023-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 09/13/2023]
Abstract
Ligustilide (LIG) is the main active ingredient of Angelica sinensis (Oliv.) Diels, which could promote focal angiogenesis to exert neuroprotection. However, there was no report that verified the exact effects of LIG on endometrial angiogenesis and the pregnancy outcomes. To explore the effects of LIG on low endometrial receptivity (LER) and angiogenesis, pregnancy rats were assigned into Control (saline treatment), LER (hydroxyurea-adrenaline treatment), LIG 20 mg/kg and LIG 40 mg/kg groups. Hematoxylin and eosin (H&E) staining was performed to evaluate endometrial morphology. Quantitative real-time PCR, immunofluorescence staining, western blot and immunohistochemistry staining were employed to assess the expression of endometrial receptivity factors and angiogenesis-related gene/protein, respectively. RNA sequencing was used to analyze the effects of LIG on LER caused by Kidney deficiency and blood stasis. We found that endometrial thickness and the implanted embryo number were substantially reduced in the hydroxyurea-adrenaline-treated pregnancy rats. At the same time, the gene and protein expressions of ERα, LIF, VEGFA and CD31 in the endometrium were markedly reduced, while the expressions of MUC1, E-cadherin were increased in the LER group. Administration of LIG raised the endometrial thickness and implanted embryos, as well as reversed the expressions of these factors. Collectively, our findings revealed that LIG could facilitate embryo implantation via recovery of the endometrium receptivity and promotion of endometrial angiogenesis.
Collapse
Affiliation(s)
- Dongjie He
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Yanli Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Huidongzi Xiao
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Shaoqi Shi
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Hongyan Song
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tianwei Cui
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China
| | - Tingting Ni
- Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jing Wang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xingxing Ren
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| | - Aiwu Wei
- Department of Reproductive Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Goharitaban S, Abedelahi A, Hamdi K, Khazaei M, Esmaeilivand M, Niknafs B. Role of endometrial microRNAs in repeated implantation failure (mini-review). Front Cell Dev Biol 2022; 10:936173. [PMID: 36060804 PMCID: PMC9437697 DOI: 10.3389/fcell.2022.936173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022] Open
Abstract
MicroRNAs (miRNAs) play various roles in the implantation and pregnancy process. Abnormal regulation of miRNAs leads to reproductive disorders such as repeated implantation failure (RIF). During the window of implantation, different miRNAs are released from the endometrium, which can potentially reflect the status of the endometrium for in vitro fertilization (IVF). The focus of this review is to determine whether endometrial miRNAs may be utilized as noninvasive biomarkers to predict the ability of endometrium to implant and provide live birth during IVF cycles. The levels of certain miRNAs in the endometrium have been linked to implantation potential and pregnancy outcomes in previous studies. Endometrial miRNAs could be employed as non-invasive biomarkers in the assisted reproductive technology (ART) cycle to determine the optimal time for implantation. Few human studies have evaluated the association between ART outcomes and endometrial miRNAs in RIF patients. This review may pave the way for more miRNA transcriptomic studies on human endometrium and introduce a specific miRNA profile as a multivariable prediction model for choosing the optimal time in the IVF cycle.
Collapse
Affiliation(s)
- Sepide Goharitaban
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Ali Abedelahi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Kobra Hamdi
- Womens Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoumeh Esmaeilivand
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrooz Niknafs
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Behrooz Niknafs, , 0000-0003-4438-1880
| |
Collapse
|
7
|
Shekibi M, Heng S, Nie G. MicroRNAs in the Regulation of Endometrial Receptivity for Embryo Implantation. Int J Mol Sci 2022; 23:ijms23116210. [PMID: 35682889 PMCID: PMC9181585 DOI: 10.3390/ijms23116210] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/28/2022] [Indexed: 12/13/2022] Open
Abstract
Development of endometrial receptivity is crucial for successful embryo implantation and pregnancy initiation. Understanding the molecular regulation underpinning endometrial transformation to a receptive state is key to improving implantation rates in fertility treatments such as IVF. With microRNAs (miRNAs) increasingly recognized as important gene regulators, recent studies have investigated the role of miRNAs in the endometrium. Studies on miRNAs in endometrial disorders such as endometriosis and endometrial cancer have been reviewed previously. In this minireview, we aim to provide an up-to-date knowledge of miRNAs in the regulation of endometrial receptivity. Since endometrial remodelling differs considerably between species, we firstly summarised the key events of the endometrial cycle in humans and mice and then reviewed the miRNAs identified so far in these two species with likely functional significance in receptivity establishment. To date, 29 miRNAs have been reported in humans and 15 miRNAs in mice within various compartments of the endometrium that may potentially modulate receptivity; miRNAs regulating the Wnt signalling and those from the let-7, miR-23, miR-30, miR-200 and miR-183 families are found in both species. Future studies are warranted to investigate miRNAs as biomarkers and/or therapeutic targets to detect/improve endometrial receptivity in human fertility treatment.
Collapse
|
8
|
Kolanska K, Bendifallah S, Canlorbe G, Mekinian A, Touboul C, Aractingi S, Chabbert-Buffet N, Daraï E. Role of miRNAs in Normal Endometrium and in Endometrial Disorders: Comprehensive Review. J Clin Med 2021; 10:jcm10163457. [PMID: 34441754 PMCID: PMC8396961 DOI: 10.3390/jcm10163457] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular responses to hormonal stimuli in the endometrium are modulated at the transcriptional and post-transcriptional stages. Any imbalance in cellular and molecular endometrial homeostasis may lead to gynecological disorders. MicroRNAs (miRNAs) are involved in a wide variety of physiological mechanisms and their expression patterns in the endometrium are currently attracting a lot of interest. miRNA regulation could be hormone dependent. Conversely, miRNAs could regulate the action of sexual hormones. Modifications to miRNA expression in pathological situations could either be a cause or a result of the existing pathology. The complexity of miRNA actions and the diversity of signaling pathways controlled by numerous miRNAs require rigorous analysis and findings need to be interpreted with caution. Alteration of miRNA expression in women with endometriosis has been reported. Thus, a potential diagnostic test supported by a specific miRNA signature could contribute to early diagnosis and a change in the therapeutic paradigm. Similarly, specific miRNA profile signatures are expected for RIF and endometrial cancer, with direct implications for associated therapies for RIF and adjuvant therapies for endometrial cancer. Advances in targeted therapies based on the regulation of miRNA expression are under evaluation.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
- Correspondence:
| | - Sofiane Bendifallah
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Geoffroy Canlorbe
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Service de Chirurgie et Cancérologie Gynécologique et Mammaire, Hôpitaux Universitaires Pitié-Salpêtrière, Charles-Foix, Sorbonne Université, 47/83, Boulevard de l’Hôpital, 75013 Paris, France
| | - Arsène Mekinian
- Service de Médecine Interne, Hôpital Saint Antoine, AP-HP, 184 Rue du Faubourg Saint Antoine, Sorbonne Université, 75012 Paris, France;
| | - Cyril Touboul
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Selim Aractingi
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Faculté de Médecine Paris 5 Descartes, 12 Rue de l’Ecole de Médecine, 75006 Paris, France
| | - Nathalie Chabbert-Buffet
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| | - Emile Daraï
- Service de Gynécologie Obstétrique et Médecine de la Reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France; (S.B.); (C.T.); (N.C.-B.); (E.D.)
- INSERM UMRS 938, Sorbonne Université, Site Saint-Antoine, 27 Rue Chaligny, CEDEX 12, 75571 Paris, France; (G.C.); (S.A.)
- Centre Expert En Endométriose (C3E), Groupe de Recherche Clinique en Endométriose (GRC6), Sorbonne Université, 4 Rue de la Chine, 75020 Paris, France
| |
Collapse
|
9
|
Niknafs B, Hesam Shariati MB, Shokrzadeh N. miR223-3p, HAND2, and LIF expression regulated by calcitonin in the ERK1/2-mTOR pathway during the implantation window in the endometrium of mice. Am J Reprod Immunol 2021; 85:e13333. [PMID: 32869441 DOI: 10.1111/aji.13333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 08/11/2020] [Accepted: 08/22/2020] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Approximately one-third of infertility cases are related to the female partner, and implantation failure is the primary reason for female infertility. The current research was established to assess the impact of calcitonin on endometrial receptivity. METHODS OF STUDY 64 female BALB/c mice were assigned to 2 groups as follows: mice with regular ovarian cycle and mice with stimulated ovarian cycle. The two groups were further divided into four subgroups as follows: control (Ctrl), calcitonin (CT), pp242, and CT + pp242 groups. Calcitonin and pp242 were injected on days 3, 4, and 5 of pregnancy. On day 5 of gestation, all of the animals were sacrificed, and their uterine was removed for the morphological analysis, as well as the expression assessment genes and proteins. RESULTS The results demonstrated that ovarian stimulation increased the rate of phosphorylation of ERK1/2 and mTOR proteins, and resulted in the upregulation of miR-223-3p. The administration of calcitonin also elevated the expression levels of LIF and HAND2 gene in both regular ovarian and ovarian-stimulated cycles. In ovarian-stimulated groups, the administration of calcitonin led to a decrease in the expression of miR-223-3p. Calcitonin administration also markedly increased the phosphorylation of 4EBP1 and ERK1/2 in the regular ovarian cycle. CONCLUSION It seems that calcitonin is capable of enhancing the endometrial receptivity of the uterine, thereby the overexpression of HAND2 and LIF and downregulation of miR-223-3p through the ERK1/2-mTOR signaling pathway.
Collapse
Affiliation(s)
- Behrooz Niknafs
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | | | - Naser Shokrzadeh
- Department of Anatomical Sciences, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
10
|
Abeysinghe P, Turner N, Morean Garcia I, Mosaad E, Peiris HN, Mitchell MD. The Role of Exosomal Epigenetic Modifiers in Cell Communication and Fertility of Dairy Cows. Int J Mol Sci 2020; 21:ijms21239106. [PMID: 33266010 PMCID: PMC7731370 DOI: 10.3390/ijms21239106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Abnormal uterine function affects conception rate and embryo development, thereby leading to poor fertility and reproduction failure. Exosomes are a nanosized subclass of extracellular vesicles (EV) that have important functions as intercellular communicators. They contain and carry transferable bioactive substances including micro RNA (miRNA) for target cells. Elements of the cargo can provide epigenetic modifications of the recipient cells and may have crucial roles in mechanisms of reproduction. The dairy industry accounts for a substantial portion of the economy of many agricultural countries. Exosomes can enhance the expression of inflammatory mediators in the endometrium, which contribute to various inflammatory diseases in transition dairy cows. This results in reduced fertility which leads to reduced milk production and increased cow maintenance costs. Thus, gaining a clear knowledge of exosomal epigenetic modifiers is critical to improving the breeding success and profitability of dairy farms. This review provides a brief overview of how exosomal miRNA contributes to inflammatory diseases and hence to poor fertility, particularly in dairy cows.
Collapse
|
11
|
Çil N, Yaka M, Ünal MS, Dodurga Y, Tan S, Seçme M, Karagür ER, Mete GA. Adipose derived mesenchymal stem cell treatment in experimental asherman syndrome induced rats. Mol Biol Rep 2020; 47:4541-4552. [DOI: 10.1007/s11033-020-05505-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 10/24/2022]
|
12
|
Ferlita AL, Battaglia R, Andronico F, Caruso S, Cianci A, Purrello M, Pietro CD. Non-Coding RNAs in Endometrial Physiopathology. Int J Mol Sci 2018; 19:ijms19072120. [PMID: 30037059 PMCID: PMC6073439 DOI: 10.3390/ijms19072120] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 12/18/2022] Open
Abstract
The Human Genome Project led to the discovery that about 80% of our DNA is transcribed in RNA molecules. Only 2% of the human genome is translated into proteins, the rest mostly produces molecules called non-coding RNAs, which are a heterogeneous class of RNAs involved in different steps of gene regulation. They have been classified, according to their length, into small non-coding RNAs and long non-coding RNAs, or to their function, into housekeeping non-coding RNAs and regulatory non-coding RNAs. Their involvement has been widely demonstrated in all cellular processes, as well as their dysregulation in human pathologies. In this review, we discuss the function of non-coding RNAs in endometrial physiology, analysing their involvement in embryo implantation. Moreover, we explore their role in endometrial pathologies such as endometrial cancer, endometriosis and chronic endometritis.
Collapse
Affiliation(s)
- Alessandro La Ferlita
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Rosalia Battaglia
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Francesca Andronico
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Salvatore Caruso
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Antonio Cianci
- Department of General Surgery and Medical Surgical Specialties, University of Catania, 95123 Catania, Italy.
| | - Michele Purrello
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| | - Cinzia Di Pietro
- Department of Biomedical and Biotechnological Sciences, Biology and Genetics Section G. Sichel, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
13
|
Dietary Supplementation of Leucine in Premating Diet Improves the Within-Litter Birth Weight Uniformity, Antioxidative Capability, and Immune Function of Primiparous SD Rats. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1523147. [PMID: 29850484 PMCID: PMC5932505 DOI: 10.1155/2018/1523147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/13/2018] [Indexed: 11/18/2022]
Abstract
The high within-litter birth weight variation has become a big issue in multiparous animals. The present study was conducted to investigate the effects of leucine supplementation in premating diet on the reproductive performance, maternal antioxidative capability, and immune function in primiparous rats. Six-week-old female SD rats were assigned to basal diet or 0.6% leucine supplemented diet for two weeks. After mating during the eighth week of age, the rats were fed with regular gestation diet. Maternal blood samples were collected on the day before mating (day −1) and day 7 and day 20 of pregnancy, while ovaries and uteruses were obtained on day −1 and on day 7, respectively. The results indicate that, compared with control group, within-litter birth weight variation was significantly decreased, while birth weights were significantly increased in the leucine group (P < 0.01). Also, leucine improved the embryo distribution uniformity and the number of implantation sites in uterine. The ovarian gene expressions of LHR, CYP19A1, and VEGFA were upregulated, while Mucin-1 was decreased significantly (P < 0.05). Leucine also increased the maternal antioxidant capacity and immune function. Conclusively, leucine supplementation in premating diet could improve the reproductive performance, which could be attributed to the improved oxidative and immune status.
Collapse
|
14
|
Li W, Xi Y, Xue S, Wang Y, Wu L, Liu H, Lei M. Sequence analysis of microRNAs during pre-implantation between Meishan and Yorkshire pigs. Gene 2017; 646:20-27. [PMID: 29287711 DOI: 10.1016/j.gene.2017.12.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/14/2017] [Accepted: 12/22/2017] [Indexed: 11/19/2022]
Abstract
Embryonic implantation in sows is a coordinated interaction between the implantation-competent blastocyst and receptive uterus. In addition, microRNAs are small endogenous non-coding RNAs which are involved in post-transcriptional gene regulation of several biological processes including embryonic implantation. However, the mechanisms of miRNAs involved in embryonic implantation of sows remain largely unknown. Here, we analyzed miRNAome of endometrium on day 9, 12 and 15 of pregnancy and on day 12 of non-pregnancy in Meishan and Yorkshire pigs by Illumina sequencing. From 24 libraries, we identified 312 known microRNAs and 211 potential novel miRNAs. Bioinformatics analysis showed that differentially expressed microRNAs on day 12 of pregnancy between the two breeds may play critical roles by involving "p53 signaling pathway" and "Wnt signaling pathway". Furthermore, our results demonstrated that ssc-miR-21, ssc-miR-451, ssc-miR-204, ssc-miR-199a-5p and ssc-miR-199b-5p would play crucial roles for implantation. The data generated in this study were expected to elucidate the influence of microRNAs during pre-implantation in pigs.
Collapse
Affiliation(s)
- Wenchao Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Yu Xi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Songyi Xue
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Yueying Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Lihang Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Huijing Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China
| | - Minggang Lei
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction, Ministry of Education and Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, PR China.
| |
Collapse
|
15
|
Abstract
Failure of embryo implantation is a major limiting factor in early pregnancy and assisted reproduction. Determinants of implantation include the embryo viability, the endometrial receptivity, and embryo-maternal interactions. Multiple molecules are involved in the regulation of implantation, but their specific regulatory mechanisms remain unclear. MicroRNA (miRNA), functioning as the transcriptional regulator of gene expression, has been widely reported to be involved in embryo implantation. Recent studies reveal that miRNAs not only act inside the cells, but also can be released by cells into the extracellular environment through multiple packaging forms, facilitating intercellular communication and providing indicative information associated with physiological and pathological conditions. The discovery of extracellular miRNAs shed new light on implantation studies. MiRNAs provide new mechanisms for embryo-maternal communication. Moreover, they may serve as non-invasive biomarkers for embryo selection and assessment of endometrial receptivity in assisted reproduction, which improves the accuracy of evaluation while reducing the mechanical damage to the tissue. In this review, we discuss the involvement of miRNAs in embryo implantation from several aspects, focusing on the role of extracellular miRNAs and their potential applications in assisted reproductive technologies (ART) to promote fertility efficiency.
Collapse
Affiliation(s)
- Jingjie Liang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Shaoyu Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| | - Zhengguang Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058 People’s Republic of China
| |
Collapse
|
16
|
Superovulation at a specific stage of the estrous cycle determines the reproductive performance in mice. Reprod Biol 2016; 16:279-286. [PMID: 27843090 DOI: 10.1016/j.repbio.2016.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 10/07/2016] [Accepted: 10/16/2016] [Indexed: 11/22/2022]
Abstract
Inconsistent reproductive performance has been reported in superovulated mice. Hence, the aim of this study was to analyze the effect and possible mechanism of superovulation timing on mouse reproductive performance. The results showed that mice superovulated at the metestrous (23.08±6.08%) and diestrous stages (33.33±11.45%) presented significantly lower pregnancy rates compared with those superovulated at the estrous stage (66.67±9.20%). After superovulation at the proestrous and estrous stages, mucin 1 (MUC1) and let-7a/let-7b microRNA (miRNA) expression levels were significantly attenuated and enhanced on embryonic day 3.5 (E3.5), respectively, whereas no significant differences in the expression level were found in mice superovulated at the other two stages. A higher number of developing and Graafian follicles was observed in the ovarian sections 48h after the administration of pregnant mare serum gonadotropin (PMSG) at the proestrous and estrous stages. The sections from mice treated at the metestrous and diestrous stages, however, presented more corpora lutea. Therefore, mice superovulated at the proestrous and estrous stages exhibited the best pregnancy rates. Furthermore, the disordered expression of MUC1 and let-7a/let-7b miRNA in mice superovulated at the metestrous and diestrous stages may impair reproduction performance.
Collapse
|
17
|
Liu W, Niu Z, Li Q, Pang RTK, Chiu PCN, Yeung WSB. MicroRNA and Embryo Implantation. Am J Reprod Immunol 2015; 75:263-71. [PMID: 26707514 DOI: 10.1111/aji.12470] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/29/2015] [Indexed: 12/20/2022] Open
Abstract
PROBLEM In mammals, implantation involves interactions between an activated blastocyst and a receptive endometrium. There are controversies on the role of microRNAs in preimplantation embryo development. The actions of endometrial microRNAs on implantation are beginning to be understood. METHOD OF STUDY Review of literature on microRNAs in preimplantation embryos and endometrium. RESULTS Emerging evidence suggests a role of microRNAs in blastocyst activation and implantation. Differential expression of microRNAs is found between receptive and non-receptive endometria. Members of the let-7, miR-200, miR-30 families, and the miR-17-92 clusters are more commonly found to be associated with endometrial receptivity. Experimental studies show that the targets of the differentially expressed microRNAs affect endometrial receptivity, decidualization, and embryo implantation. Free and exosome/microvesicle containing microRNAs have been detected in human and ovine uterine luminal fluid (ULF). They may serve as mediators of embryo-endometrium dialog. Some observations suggest that the microRNAs in ULF may be used as biomarkers in infertility treatment. CONCLUSION MicroRNAs in endometrium and blastocysts are involved in the implantation process.
Collapse
Affiliation(s)
- Weimin Liu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Ziru Niu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Qian Li
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ronald T K Pang
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,ShenZhen Key Laboratory of Fertility Regulation, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| | - William Shu-Biu Yeung
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.,Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China.,ShenZhen Key Laboratory of Fertility Regulation, Shenzhen Hospital, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
18
|
Inyawilert W, Fu TY, Lin CT, Tang PC. Let-7-mediated suppression of mucin 1 expression in the mouse uterus during embryo implantation. J Reprod Dev 2015; 61:138-44. [PMID: 25739861 PMCID: PMC4410312 DOI: 10.1262/jrd.2014-106] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Mucin 1 (Muc1) is an integral transmembrane mucin glycoprotein expressed on the apical surface of most epithelia. It is considered to be a barrier to the regulation of embryo implantation by inhibiting attachment of the embryo to the endometrium. Therefore, loss of Muc1 on the surface of uterine epithelial cells is necessary for embryo implantation. Studies have demonstrated that microRNAs (miRNAs) play a key role in enhancing embryo implantation in mammals. In this study, we investigated the regulatory role of two miRNAs (let-7a and let-7b) on the expression of Muc1 in mouse uteri during implantation. Western blotting indicated that Muc1 expression was highest on day1 of pregnancy and constantly decreased thereafter until day 4. In contrast to Muc1 expression, increased expression of let-7a and let-7b was evident on day 4 of pregnancy as measured by real-time reverse transcription-polymerase chain reaction
(real-time RT-PCR). We demonstrated direct binding of let-7a and let-7b to the 3’untranslated region of muc1. Furthermore, Muc1 expression was suppressed after transfection of mouse uterine epithelial cells isolated from day 1 of pregnancy with let-7a and let-7b. In summary, the present study provides evidence that Muc1 is a direct target of let-7a and let-7b. Additionally, the current study suggests that miRNAs are novel targets which can be used to facilitate a successful pregnancy and repair implantation failure.
Collapse
Affiliation(s)
- Wilasinee Inyawilert
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|