1
|
Castro M, Aguila L, Arias ME, Felmer R. Production of bovine embryos by piezo-ICSI using capacitated spermatozoa selected by fluorescence-activated cell sorting (FACS-piezo-ICSI). Anim Reprod Sci 2024; 268:107560. [PMID: 39029370 DOI: 10.1016/j.anireprosci.2024.107560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/11/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Intracytoplasmic sperm injection (ICSI) remains inefficient in cattle. One reason could lie in the injection of oocytes with sperm that have not undergone molecular changes associated with in vivo capacitation and fertilizing ability. This study aimed to enhance the efficiency of bovine intracytoplasmic sperm injection (piezo-ICSI) by employing fluorescent-activated cell sorting (FACS) to select the sperm population before injection based on capacitation markers. First, we evaluated the effects of incubating thawed sperm for 2 hours with different capacitating inductors: heparin, methyl-beta-cyclodextrin (MβCD), and dibutyryl cyclic AMP (dbcAMP), alone or in combinations in a basal capacitating (C) medium (Sp-TALP). Sperm capacitation and quality markers were evaluated by flow cytometry, revealing heparin as the most effective inducer of sperm capacitation changes. It, therefore, this treatment was chosen as the sperm pretreatment for FACS-piezo-ICSI. Two cell populations showing high capacitating levels (Heparin-HCL) and low capacitating levels (Heparin-LCL) of the markers associated with sperm capacitation i(Ca2+) levels and acrosome integrity were selected by FACS and used for sperm injection. Pronuclear formation was significantly higher when ICSI was performed with Heparin-HCL sperm than with Heparin-LCL and the control group (Heparin unsorted) groups (50 %, 10 %, and 20 %, respectively). Furthermore, injecting Heparin-HCL sperm resulted in a higher blastocyst rate (22.5 %) than Heparin-LCL (10 %) and the control group (15.2 %). In conclusion, heparin treatment effectively induced changes associated with sperm capacitation. The combination of Heparin-HCL treatment and FACS enabled precise selection of capacitated sperm before ICSI, enhancing the efficiency of this technology in the bovine species.
Collapse
Affiliation(s)
- Macarena Castro
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Master of Science Program specializing in Biology of Reproduction, Universidad de La Frontera, Temuco, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Center of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de la Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Aguila L, Cabrera P, Arias ME, Silva M, Felmer R. Effect of sperm treatment with lysolecithin on in vitro outcomes of equine intracytoplasmic sperm injection. J Equine Vet Sci 2024; 138:105095. [PMID: 38810588 DOI: 10.1016/j.jevs.2024.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/03/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Intracytoplasmic sperm injection (ICSI) in horses is currently employed for clinical and commercial uses, but the protocol could be optimized to improve its efficiency. We have hypothesized that destabilization of plasma and acrosomal membranes prior to injection would positively impact the developmental potential of equine zygotes generated by ICSI. This study evaluated effects of the sperm treatment with lysolecithin on plasma and acrosomal membranes and on oocyte activation ability, initially following heterologous ICSI on bovine oocytes and subsequently employing equine oocytes. The effects of the lysolecithin -treatment on the efficiency of conventional and piezo-assisted equine ICSI were evaluated. To do this, the equine sperm were treated with different concentrations of lysolecithin and the sperm plasma membrane, acrosome and DNA integrity were evaluated by flow cytometry. The results showed that a lysolecithin concentration of 0.08 % destabilized the membranes of all sperm and affected DNA integrity within the range described for the species (8-30 %). In addition, the heterologous ICSI assay showed that lysolecithin treatment was detrimental to the sperm's ability to activate the oocyte, therefore, chemical oocyte activation was used after equine ICSI after injection with lysolecithin -treated sperm. This group showed similar developmental rate to the control group with and without exogenous activation. In conclusion, lysolecithin pre-treatment is not necessary when using ICSI to produce equine embryos in vitro. The results from the current study provide additional insight regarding the factors impacting ICSI in horses.
Collapse
Affiliation(s)
- L Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - P Cabrera
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Doctoral Program in Applied Cellular and Molecular Biology, Universidad de La Frontera, Temuco 4811322, Chile
| | - M E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Department of Agricultural Production, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile
| | - M Silva
- Departament of Veterinary Sciences and Public Health, Universidad Católica de Temuco, Temuco 4811322, Chile
| | - R Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Environmental Sciences, Universidad de La Frontera, Temuco 4811322, Chile.
| |
Collapse
|
3
|
Ribas-Maynou J, Novo S, Salas-Huetos A, Rovira S, Antich M, Yeste M. Condensation and protamination of sperm chromatin affect ICSI outcomes when gametes from healthy individuals are used. Hum Reprod 2023; 38:371-386. [PMID: 36539233 DOI: 10.1093/humrep/deac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Do defects in sperm chromatin protamination and condensation have an impact on ICSI outcomes? SUMMARY ANSWER Sperm protamination is related to fertilization rates in healthy donors, and the in vitro capacity of sperm to condense their chromatin is linked to blastocyst rates, both associations being more apparent in women <33 years of age. WHAT IS KNOWN ALREADY Previous data on how sperm chromatin damage affects ICSI outcomes are inconsistent. Revealing which sperm factors influence embryo development is necessary to understand the male contribution to ICSI success and to develop novel sperm selection techniques or male-based treatments. Sperm chromatin is mainly condensed in protamines, which are cross-linked through disulphide bridges. This study aimed to determine whether sperm protamination and the integrity of disulphide bonds (condensation) are related to embryo development after ICSI. STUDY DESIGN, SIZE, DURATION The design was a retrospective study with a blind analysis of sperm chromatin. Gametes were divided into two groups: double donation (DD) cohort and single donation (SD) cohort. Samples from 45 semen donors used in 55 ICSI cycles with oocyte donors (age range 19-33 years), generating 491 embryos, were included in the DD cohort. The SD cohort consisted of samples from 34 semen donors used in 41 ICSI cycles with oocytes from healthy females (single-parent families or lesbian couples, age range 20-44 years), generating a total of 378 embryos. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Donor sperm samples from DD and SD cohorts were used for standard ICSI, and embryo development was observed by time-lapse imaging. The incidence of thiol reduction (dibromobimane, DBB) and the degree of chromatin protamination (chromomycin A3, CMA3, indicating non-protaminated regions) in sperm were determined by flow cytometry at 0 and 4 h post-thawing. MAIN RESULTS AND THE ROLE OF CHANCE Percentages ± standard deviation of CMA3 were 21.08 ± 9.09 and 35.01 ± 14.68 at 0 and 4 h post-thawing, respectively, in the DD cohort and 22.57 ± 9.48 and 35.79 ± 12.58, at 0 and 4 h post-thawing, respectively, in the SD cohort. Percentages of DBB+ were 16.57 ± 11.10 and 10.51 ± 8.40 at 0 and 4 h post-thawing (P < 0.0001), respectively, in the DD cohort and 17.98 ± 10.19 and 12.72 ± 8.76 at 0 and 4 h post-thawing (P < 0.0001), respectively, in the SD cohort. Female age correlated with fertilization rates, and the relation between sperm chromatin and embryo development was determined through multiple linear regression. While CMA3 was associated with fertilization rates, with no influence of female age, in the DD cohort (β1 = -1.036, P < 0.001 for CMA3; β2 = 0.667, P = 0.304 for female age), this was not observed in the SD cohort, where female age had a significant effect, masking the effects of CMA3 (β1 = -0.066, P = 0.804 for CMA3; β 2 = -1.451, P = 0.003 for female age). The in vitro capacity of sperm to condense their chromatin after 4 h of incubation was associated with blastocyst rates, independent of female age (DD cohort: β1 = -0.238, P = 0.008 for %DBB+ variation; β2 = 0.404, P = 0.638 for female age; SD cohort: β1 = -0.278, P = 0.010 for %DBB+ variation; β2 = -0.292, P = 0.594 for female age). The in vitro capacity of sperm to condense their chromatin was also related to the time required for the embryo to reach blastocyst stage in the DD cohort (P = 0.007). Finally, multiple logistic regression showed that both chromatin protamination and condensation, together with the age of the oocyte donors and the embryo recipients, had an impact on pregnancy achievement (P < 0.01) and on live birth rates (P < 0.01). LIMITATIONS, REASONS FOR CAUTION The main limitation was the restrictive selection of couples, which led to a relatively small sample size and could influence the observed outcomes. For this reason, and to reduce Type I error, the level of significance was set at P ≤ 0.01. On the other hand, the use of cryopreserved samples could also be a limitation. WIDER IMPLICATIONS OF THE FINDINGS This research demonstrated that protamination and condensation of sperm chromatin are related to embryo development after ICSI, but female age could be a confounding factor when oocytes from older females are used. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the European Union's Horizon 2020 Research and Innovation scheme under the Marie Skłodowska-Curie grant agreement No 801342 (Tecniospring INDUSTRY; TECSPR-19-1-0003); La Marató de TV3 Foundation (214/857-202039); the Ministry of Science and Innovation, Spain (IJC2019-039615-I); the Catalan Agency for Management of University and Research Grants, Regional Government of Catalonia, Spain (2017-SGR-1229); and the Catalan Institution for Research and Advanced Studies, Spain (ICREA). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sergi Novo
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sergi Rovira
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Marta Antich
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
4
|
Bovine ICSI: limiting factors, strategies to improve its efficiency and alternative approaches. ZYGOTE 2022; 30:749-767. [PMID: 36082429 DOI: 10.1017/s0967199422000296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproductive technique mainly used to overcome severe infertility problems associated with the male factor, but in cattle its efficiency is far from optimal. Artificial activation treatments combining ionomycin (Io) with 6-dimethylaminopurine after piezo-ICSI or anisomycin after conventional ICSI have recently increased the blastocyst rate obtained. Compounds to capacitate bovine spermatozoa, such as heparin and methyl-β-cyclodextrin and compounds to destabilize sperm membranes such as NaOH, lysolecithin and Triton X-100, have been assessed, although they have failed to substantially improve post-ICSI embryonic development. Disulfide bond reducing agents, such as dithiothreitol (DTT), dithiobutylamine and reduced glutathione, have been assessed to decondense the hypercondensed head of bovine spermatozoa, the two latter being more efficient than DTT and less harmful. Although piezo-directed ICSI without external activation has generated high fertilization rates and modest rates of early embryo development, other studies have required exogenous activation to improve the results. This manuscript thoroughly reviews the different strategies used in bovine ICSI to improve its efficiency and proposes some alternative approaches, such as the use of extracellular vesicles (EVs) as 'biological methods of oocyte activation' or the incorporation of EVs in the in vitro maturation and/or culture medium as antioxidant defence agents to improve the competence of the ooplasm, as well as a preincubation of the spermatozoa in estrous oviductal fluid to induce physiological capacitation and acrosome reaction before ICSI, and the use of hyaluronate in the sperm immobilization medium.
Collapse
|
5
|
Kim SJ, Hwangbo Y, Park CK. Modulation of the inflammatory environment by spermatozoa through regulation of transforming growth factor beta in porcine uterine epithelial cells. Reprod Biol 2021; 21:100484. [PMID: 33601292 DOI: 10.1016/j.repbio.2021.100484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/11/2020] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
This study investigated the changes in the mRNA expression of transforming growth factor beta (TGF-β), plasminogen activators (PAs), and interleukin (IL) caused by sperm, as well as the regulatory mechanism of PA activity through TGF-β, in porcine uterine epithelial cells. The cells were isolated from the uterine horn of pig and co-incubated with Percoll-separated boar sperm (45% or 90%), or TGF-β for 24 h. The mRNA expression of TGF-β isoforms (TGF-β1, 2 and 3) and their receptors (TGF-β R1 and R2), PAs (urokinase-type, uPA; tissue-type, tPA; uPA receptor, uPAR; type 1 PA inhibitor, PAI-1), IL-6 and IL-8 was analyzed using real-time PCR. Supernatant was used to measure PA activity. Co-incubation with sperm from the 90% Percoll layer increased TGF-β1 mRNA, whereas TGF-β2 and TGF-β3 were decreased (P < 0.05). However, both TGF-βRs were not changed by the presence of the spermatozoa. Expression of tPA, PAI-1, IL-6, and IL-8 mRNA was down-regulated by 90% Percoll-separated sperm (P < 0.05), and sperm from 45% Percoll increased uPA expression (P < 0.05). TGF-β decreased tPA and IL-8 mRNA expression, and increased uPAR and PAI-1 mRNA (P < 0.05). The suppressive effect of TGF-β on PA activity was blocked by Smad2/3 and JNK1/2 signaling inhibitors (P < 0.05). In conclusion, sperm separated in 90% in porcine uterus could suppressed inflammation via modulation of TGF-β and down-regulation of PAs and ILs. Therefore, the regulatory mechanism of inflammation by sperm in the porcine uterus could be associated with interactions between numerous cytokines including TGF-β.
Collapse
Affiliation(s)
- Su-Jin Kim
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Yong Hwangbo
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Choon-Keun Park
- College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
6
|
Unnikrishnan V, Kastelic J, Thundathil J. Intracytoplasmic Sperm Injection in Cattle. Genes (Basel) 2021; 12:198. [PMID: 33572865 PMCID: PMC7911995 DOI: 10.3390/genes12020198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 10/30/2022] Open
Abstract
Intracytoplasmic sperm injection (ICSI) involves the microinjection of sperm into a matured oocyte. Although this reproductive technology is successfully used in humans and many animal species, the efficiency of this procedure is low in the bovine species mainly due to failed oocyte activation following sperm microinjection. This review discusses various reasons for the low efficiency of ICSI in cattle, potential solutions, and future directions for research in this area, emphasizing the contributions of testis-specific isoforms of Na/K-ATPase (ATP1A4) and phospholipase C zeta (PLC ζ). Improving the efficiency of bovine ICSI would benefit the cattle breeding industries by effectively utilizing semen from elite sires at their earliest possible age.
Collapse
Affiliation(s)
| | | | - Jacob Thundathil
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4N1, Canada; (V.U.); (J.K.)
| |
Collapse
|
7
|
Ressaissi Y, Anzalone DA, Palazzese L, Czernik M, Loi P. The impaired development of sheep ICSI derived embryos is not related to centriole dysfunction. Theriogenology 2020; 159:7-12. [PMID: 33113447 DOI: 10.1016/j.theriogenology.2020.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022]
Abstract
While intracytoplasmic sperm injection (ICSI) is an asset in human Assisted Reproduction Technologies (ART), its outcomes, in terms of blastocyst, is still unacceptably low in ruminants. The picture typically found in ICSI derived bovine and ovine embryos is an asymmetry between a high activation rate, marked by a pronuclear development, and a low first cleavage rate. Abnormal centriole function has been indicated as a possible factor which undermines embryonic development following ICSI, especially when Freeze Dried spermatozoa (FD) are used. In order to verify the hypothesis that centriole dysfunction might be responsible for low ICSI outcomes in sheep, we have investigated micro-tubular dynamics, markedly aster nucleation, in fertilized sheep zygotes by ICSI with frozen/thawed (FT) and FD spermatozoa; In Vitro Fertilized (IVF) sheep oocytes were used as control. The spermatozoa aster nucleation was assessed at different time points following ICSI and IVF by immune-detection of α-tubulin. Pronuclear stage, syngamy and embryo development were assessed. No difference was noticed in the timing of aster nucleation and microtubule elongation in ICSI-FT derived embryos with control IVF ones, while a delay was recorded in ICSI-FD ones. The proportion of 2-pronuclear stage zygotes was similar in ICSI-FT and ICSI-FD (47% and 53%, respectively), both much lower comparing the IVF ones (73%). Likewise, syngamy was observed in a minority of both ICSI groups (28.5% vs 12.5% in ICSI-FT/FD respectively) comparing to IVF controls (50%), with a high number of zygotes blocked at the 2-pronuclear stage (71.5% vs 87.5% respectively). While no significant differences were noticed in the cleavage rate between ICSI-FD, ICSI-FT and IVF groups (31%, 34% and 44%) respectively, development to blastocyst stage was markedly compromised in both ICSI groups, especially with FD spermatozoa (10% in ICIS-FD and 19% in ICSI-FT vs 33% in IVF (P < 0.005, ICSI-FD vs IVF and P < 0.05, IVF vs ICSI-FT, respectively). Hence, here we have demonstrated that the reduced cleavage, and the ensuing impaired development to blastocysts stage of ICSI derived sheep embryos is not related to centriole dysfunction, as suggested by other authors. The major recorded problem is the lack of syngamy in ICSI derived zygotes, an issue that should be addressed in further studies to improve ICSI procedure in sheep embryos.
Collapse
Affiliation(s)
- Yosra Ressaissi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini, Teramo, 1 - 64100, Italy
| | - Debora Agata Anzalone
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini, Teramo, 1 - 64100, Italy
| | - Luca Palazzese
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini, Teramo, 1 - 64100, Italy
| | - Marta Czernik
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini, Teramo, 1 - 64100, Italy
| | - Pasqualino Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Via R. Balzarini, Teramo, 1 - 64100, Italy.
| |
Collapse
|
8
|
Ribas-Maynou J, Yeste M, Salas-Huetos A. The Relationship between Sperm Oxidative Stress Alterations and IVF/ICSI Outcomes: A Systematic Review from Nonhuman Mammals. BIOLOGY 2020; 9:biology9070178. [PMID: 32708086 PMCID: PMC7408105 DOI: 10.3390/biology9070178] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022]
Abstract
Achieving high embryo quality following IVF and ICSI procedures is a key factor in increasing fertility outcomes in human infertile couples. While the male factor is known to underlie infertility in about 50% of cases, studies performed in human infertile couples have not been able to define the precise effect of sperm affectations upon embryo development. This lack of consistency is, in most cases, due to the heterogeneity of the results caused by the multiple male and female factors that mask the concrete effect of a given sperm parameter. These biases can be reduced with the use of animal gametes, being a good approach for basic researchers to design more homogeneous studies analyzing the specific consequences of a certain affectation. Herein, we conducted a systematic review (March 2020) that assessed the relationship between sperm oxidative stress alterations and IVF/ICSI outcomes in nonhumans mammals. The review was conducted according to PRISMA guidelines and using the MEDLINE-PubMed and EMBASE databases. Thirty articles were included: 11 performed IVF, 17 conducted ICSI, and two carried out both fertilization methods. Most articles were conducted in mouse (43%), cattle (30%) and pig models (10%). After IVF treatments, 80% of studies observed a negative effect of sperm oxidative stress on fertilization rates, and 100% of studies observed a negative effect on blastocyst rates. After ICSI treatments, a positive relationship of sperm oxidative stress with fertilization rates (75% of studies) and with blastocyst rates (83% of studies) was found. In conclusion, the present systematic review shows that sperm oxidative stress is associated with a significant reduction in fertilization rates and in vitro embryo development.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
- Correspondence: (J.R.-M.); (A.S.-H.); Tel.: +34-972-419-514 (J.R.-M.); +1-(385)-210-5534 (A.S.-H.)
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, 17003 Girona, Spain;
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, 17003 Girona, Spain
| | - Albert Salas-Huetos
- Andrology and IVF Laboratory, Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Correspondence: (J.R.-M.); (A.S.-H.); Tel.: +34-972-419-514 (J.R.-M.); +1-(385)-210-5534 (A.S.-H.)
| |
Collapse
|
9
|
Improved embryo development using high cysteamine concentration during IVM and sperm co-culture with COCs previous to ICSI in bovine. Theriogenology 2018; 117:26-33. [PMID: 29807255 DOI: 10.1016/j.theriogenology.2018.05.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/25/2018] [Accepted: 05/15/2018] [Indexed: 11/23/2022]
Abstract
In contrast to other species, intracytoplasmic sperm injection (ICSI) in bovine remains inefficient, resulting in low embryo developmental rates. It is unclear whether such inefficiency is due to the poor response of bovine ooplasms to the injection stimulus, or to the inability of bull sperm to induce oocyte activation. In order to facilitate these events, two strategies were assessed: the use of high concentration of cysteamine [Cys] during IVM; and the selection of sperm attached to cumulus cells after incubation with COCs for ICSI. First, COCs were IVM with increasing [Cys] and subjected to IVF. Zygotes from all groups were cultured under different O2 tensions and development to blastocyst was evaluated. In a second experiment, sperm were co-cultured for 3 h with COCs and acrosome reaction was studied. Afterwards, the best IVM and IVC conditions determined on Experiment 1 were used for ICSI assay. COCs were matured for 21 h with 1 (Cys 1) or 0.1 mM Cys (Cys 0.1 groups, standard condition). In addition, COCs were incubated for ≥3 h with 16 × 106 sperm/ml and only sperm attached to cumulus cells were selected for ICSI (ICSI + Co-cult groups). After chemical activation, embryos were cultured in SOF medium under low O2 tension. Cleavage and blastocyst rates were evaluated at days 2 and 7 of IVC, respectively. Finally, the relative expression of eight genes indicators of embryo quality was compared between ICSI and IVF control blastocysts by qPCR. Cleavage rates were higher for Cys 0.1 ICSI + Co-cult and Cys 1 ICSI + Co-cult groups (n = 117, 92% and n = 116, 79%, respectively) compared to their controls (n = 132, 60% for Cys 0.1 ICSI and n = 108, 52% for Cys 1 ICSI) (p ≤ 0.05). Interestingly, the combined treatment (Cys 1 ICSI + Co-cult) showed higher blastocyst rates than all other ICSI groups (23 vs. 11, 18 and 14% for Cys 0.1 ICSI + Co-cult, Cys 1 ICSI, and Cys 0.1 ICSI, respectively) (p ≤ 0.05). Moreover, incubation with COCs increased the rates of live acrosome reacted sperm (p ≤ 0.05). The relative abundance of mRNAs coding for INFτ, CAT, DNMT1, OCT4, and HDAC3 did not differ between treatments (p ≤ 0.05). SOD2, HADC1 and HADC2 expression was higher for Cys 0.1 ICSI than for IVF embryos (p ≤ 0.05). Group Cys 1 ICSI did not differ from IVF for those three genes, neither did Cys 1 ICSI + Co-cult, except for HDAC1 (p ≤ 0.05). In conclusion, the use of 1 mM Cys during IVM and of sperm incubated with mature COCs might be a good strategy to improve ICSI outcomes in cattle.
Collapse
|
10
|
Águila L, Felmer R, Arias ME, Navarrete F, Martin-Hidalgo D, Lee HC, Visconti P, Fissore R. Defective sperm head decondensation undermines the success of ICSI in the bovine. Reproduction 2018; 154:307-318. [PMID: 28751536 DOI: 10.1530/rep-17-0270] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 12/25/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in the bovine is low compared to other species. It is unknown whether defective oocyte activation and/or sperm head decondensation limit the success of this technique in this species. To elucidate where the main obstacle lies, we used homologous and heterologous ICSI and parthenogenetic activation procedures. We also evaluated whether in vitro maturation negatively impacted the early stages of activation after ICSI. Here we showed that injected bovine sperm are resistant to nuclear decondensation by bovine oocytes and this is only partly overcome by exogenous activation. Remarkably, when we used heterologous ICSI, in vivo-matured mouse eggs were capable of mounting calcium oscillations and displaying normal PN formation following injection of bovine sperm, although in vitro-matured mouse oocytes were unable to do so. Together, our data demonstrate that bovine sperm are especially resistant to nuclear decondensation by in vitro-matured oocytes and this deficiency cannot be simply overcome by exogenous activation protocols, even by inducing physiological calcium oscillations. Therefore, the inability of a suboptimal ooplasmic environment to induce sperm head decondensation limits the success of ICSI in the bovine. Studies aimed to improve the cytoplasmic milieu of in vitro-matured oocytes and to replicate the molecular changes associated with in vivo capacitation and acrosome reaction will deepen our understanding of the mechanism of fertilization and improve the success of ICSI in this species.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile.,School of Veterinary Medicine, Faculty of Sciences, Universidad Mayor Sede Temuco, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - María Elena Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| | - Felipe Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - David Martin-Hidalgo
- Research Group of Intracellular Signaling and Technology of Reproduction, Research Institute INBIO G+C, University of Extremadura, Caceres, Spain.,Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hoi Chang Lee
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Pablo Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| | - Rafael Fissore
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Improved exogenous DNA uptake in bovine spermatozoa and gene expression in embryos using membrane destabilizing agents in ICSI-SMGT. ZYGOTE 2018; 26:104-109. [PMID: 29334034 DOI: 10.1017/s0967199417000727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sperm-mediated gene transfer (SMGT) is a simple, fast, and economical biotechnological tool for producing transgenic animals. However, transgene expression with this technique in bovine embryos is still inefficient due to low uptake and binding of exogenous DNA in spermatozoa. The present study evaluated the effects of sperm membrane destabilization on the binding capacity, location and quantity of bound exogenous DNA in cryopreserved bovine spermatozoa using Triton X-100 (TX-100), lysolecithin (LL) and sodium hydroxide (NaOH). Effects of these treatments were also evaluated by intracytoplasmic sperm injection (ICSI)-SMGT. Results showed that all treatments bound exogenous DNA to spermatozoa including the control. Spermatozoa treated with different membrane destabilizing agents bound the exogenous DNA throughout the head and tail of spermatozoa, compared with the control, in which binding occurred mainly in the post-acrosomal region and tail. The amount of exogenous DNA bound to spermatozoa was much higher for the different sperm treatments than the control (P < 0.05), most likely due to the damage induced by these treatments to the plasma and acrosomal membranes. Exogenous gene expression in embryos was also improved by these treatments. These results demonstrated that sperm membrane destabilization could be a novel strategy in bovine SMGT protocols for the generation of transgenic embryos by ICSI.
Collapse
|
12
|
Salamone DF, Canel NG, Rodríguez MB. Intracytoplasmic sperm injection in domestic and wild mammals. Reproduction 2017; 154:F111-F124. [PMID: 29196493 DOI: 10.1530/rep-17-0357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 11/21/2017] [Accepted: 12/01/2017] [Indexed: 11/08/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) has become a useful technique for clinical applications in the horse-breeding industry. However, both ICSI blastocyst and offspring production continues to be limited for most farm and wild species. This article reviews technical differences of ICSI performance among species, possible biological and methodological reasons for the variable efficiency and potential strategies to improve the outcomes. One of the major applications of ICSI in animal production is the reproduction of high-value specimens. Unfortunately, some domestic species like the bovine show low rates of pronuclei formation after sperm injection, which led to the development of various artificial activation protocols and sperm pre-treatments that are discussed in this article. The impact of ICSI technique on equine breeding programs is considered in detail, since in contrast to other species, its use for elite horse reproduction has increased in recent years. ICSI has also been used to produce genetically modified animals; however, despite numerous attempts in several domestic species, only transgenic pigs have been consistently produced. Finally, the ICSI is a promising tool for genetic rescue of endangered and wild species. In conclusion, while ICSI has become a consistent ART for some species, it needs further development for others. The low results obtained for some domestic species, the high training needed and the equipment required have limited this technique to the production of elite specimens or for research purposes.
Collapse
Affiliation(s)
- Daniel F Salamone
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - Natalia G Canel
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| | - María Belén Rodríguez
- Laboratorio de Biotecnologia Animal, Facultad de Agronomia, Universidad de Buenos Aires-CONICETBuenos Aires, Argentina
| |
Collapse
|
13
|
Sepúlveda B, Arias ME, Aguila L, Zambrano F, Sánchez R, Felmer R. Gradient sperm selection for reproductive techniques in cattle: Is Isolate a suitable replacement for Percoll? Andrologia 2017; 50. [PMID: 29164653 DOI: 10.1111/and.12921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2017] [Indexed: 01/23/2023] Open
Abstract
In assisted reproductive techniques, it is essential to perform a sperm selection to obtain spermatozoa with high motility and membrane integrity for in vitro fertilisation (IVF) and high-DNA integrity for intracytoplasmic sperm injection (ICSI). In this study, we evaluated whether Isolate® was a suitable substitute for Percoll® for assisted reproductive techniques. Commercial cryopreserved bovine semen was used after selection in both gradients, and plasma and acrosome membrane integrity, reactive oxygen species (ROS) levels, DNA integrity and mitochondrial membrane potential (ΔΨm) were assessed by flow cytometry. Motility parameters were also evaluated by CASA system. A similar percentage of spermatozoa with intact plasma membrane, acrosome integrity and high ΔΨm was observed in both sperm selection methods, but only Percoll® showed higher percentage of spermatozoa with intact plasma and acrosome membrane compared to the post-thawing group. No differences were observed in the motility, ROS, DNA fragmentation and on the in vitro embryo production in all experimental groups. In conclusion, the selection of bovine spermatozoa with Isolate® generates spermatozoa with similar quality parameters and embryonic development compared to Percoll® providing a suitable alternative sperm selection method for assisted reproductive techniques in this species.
Collapse
Affiliation(s)
- B Sepúlveda
- Faculty of Medicine, Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Medicine, School of Obstetrics and Childcare, Universidad Mayor, Temuco, Chile
| | - M E Arias
- Faculty of Medicine, Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Animal Production, Universidad de La Frontera, Temuco, Chile
| | - L Aguila
- Faculty of Medicine, Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - F Zambrano
- Center of Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Center of Excellence in Translational Medicine (CEMT), Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Faculty of Medicine, Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
14
|
Águila L, Zambrano F, Arias ME, Felmer R. Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Mol Reprod Dev 2017; 84:649-659. [PMID: 28513911 DOI: 10.1002/mrd.22834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 05/02/2017] [Accepted: 05/11/2017] [Indexed: 11/08/2022]
Abstract
The efficiency of intracytoplasmic sperm injection (ICSI) in bovines is low compared to other species due in part to inadequate egg activation and sperm nucleus decondensation after injection. We hypothesized that this low efficiency is due to the lack of complete sperm capacitation, so we evaluated the effects of isobutylmethylxanthine (IBMX) and methyl-β-cyclodextrin (MβCD) on bovine sperm capacitation and on the preimplantation developmental potential of bovine embryos generated by ICSI. Treatment with IBMX and MβCD decreased sperm viability (between 13-30%); nevertheless, 0.4 mM IBMX and 1 mM MβCD increased (p < 0.05) capacitation metrics-that is, acrosome exocytosis, intracellular calcium level, plasma membrane fluidity, and tyrosine phosphorylation-compared to the control. After ICSI, embryos injected with IBMX- and MβCD-treated sperm showed similar cleavage to the untreated group (range 82-88%). Pronucleus formation rate was higher with MβCD-pretreatment (54%) compared to the control group (25%), and blastocyst rate was significantly improved with MβCD-pretreatment (24%) compared to the IBMX (18%) and control (17%) groups. Importantly, embryo quality-as assessed by the total number of cells, cell allocation, and apoptotic cell index-was not affected by the sperm treatments. In conclusion, MβCD pretreatment of sperm improved the efficiency of blastocyst production in bovine ICSI.
Collapse
Affiliation(s)
- Luis Águila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Maria E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Faculty of Agriculture and Forestry Sciences, Department of Agricultural Sciences and Natural Resources, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
15
|
Zambrano F, Aguila L, Arias ME, Sanchez R, Felmer R. Effect of sperm pretreatment with glutathione and membrane destabilizing agents lysolecithin and Triton X-100, on the efficiency of bovine intracytoplasmic sperm injection. Reprod Domest Anim 2017; 52:305-311. [PMID: 28058759 DOI: 10.1111/rda.12906] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/12/2016] [Indexed: 11/26/2022]
Abstract
Intracytoplasmic sperm injection (ICSI) is an assisted reproduction tool with several applications. Its effectiveness in bovines is lower than that in other species, mainly because of difficulties in the decondensation of the sperm nucleus after injection, and the presence of the acrosome and the plasma membrane which remain intact in this procedure. In this study, we assessed the effect of lysolecithin (LL) and Triton X-100 (TX), in combination with glutathione (GSH) as sperm pretreatments prior to ICSI. The GSH-LL and GSH-TX groups showed 0% of spermatozoa with intact membrane (SYBR 14+/PI), in comparison with the control (63.3%) and GSH (65.7%) groups. The proportions of spermatozoa with damaged acrosome membrane in the GSH-LL, GSH-TX, GSH and control groups were 46%, 35.9%, 10.5% and 7.5%, respectively. Sperm chromatin decondensation analysis showed that the groups incubated for 3 hr with GSH presented greater decondensation (p < .05). Although fertilization was improved in all treatment groups evaluated, no differences were observed in the cleavage rate 72 hr after activation in the GSH (73.7%), GSH-LL (80.2%) and GSH-TX (77.8%) groups compared to the control (66.3%), neither in the blastocyst rate on day 8 (24.0%, 26.2%, 27.1% and 28.4% for the control, GSH, GSH-LL and GSH-TX groups, respectively). No differences were also observed in the total number of cells in all groups. In conclusion, although these sperm treatments promoted nuclear decondensation and induced plasma membrane disruption, these effects were not sufficient to improve bovine embryonic development after ICSI.
Collapse
Affiliation(s)
- F Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - L Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Animal Production, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| | - R Sanchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
16
|
Effect of transfection and co-incubation of bovine sperm with exogenous DNA on sperm quality and functional parameters for its use in sperm-mediated gene transfer. ZYGOTE 2016; 25:85-97. [PMID: 27928970 DOI: 10.1017/s096719941600037x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sperm-mediated gene transfer (SMGT) is based on the capacity of sperm to bind exogenous DNA and transfer it into the oocyte during fertilization. In bovines, the progress of this technology has been slow due to the poor reproducibility and efficiency of the production of transgenic embryos. The aim of the present study was to evaluate the effects of different sperm transfection systems on the quality and functional parameters of sperm. Additionally, the ability of sperm to bind and incorporate exogenous DNA was assessed. These analyses were carried out by flow cytometry and confocal fluorescence microscopy, and motility parameters were also evaluated by computer-assisted sperm analysis (CASA). Transfection was carried out using complexes of plasmid DNA with Lipofectamine, SuperFect and TurboFect for 0.5, 1, 2 or 4 h. The results showed that all of the transfection treatments promoted sperm binding and incorporation of exogenous DNA, similar to sperm incorporation of DNA alone, without affecting the viability. Nevertheless, the treatments and incubation times significantly affected the motility parameters, although no effect on the integrity of DNA or the levels of reactive oxygen species (ROS) was observed. Additionally, we observed that transfection using SuperFect and TurboFect negatively affected the acrosome integrity, and TurboFect affected the mitochondrial membrane potential of sperm. In conclusion, we demonstrated binding and incorporation of exogenous DNA by sperm after transfection and confirmed the capacity of sperm to spontaneously incorporate exogenous DNA. These findings will allow the establishment of the most appropriate method [intracytoplasmic sperm injection (ICSI) or in vitro fertilization (IVF)] of generating transgenic embryos via SMGT based on the fertilization capacity of transfected sperm.
Collapse
|
17
|
Zambrano F, Aguila L, Arias ME, Sánchez R, Felmer R. Improved preimplantation development of bovine ICSI embryos generated with spermatozoa pretreated with membrane-destabilizing agents lysolecithin and Triton X-100. Theriogenology 2016; 86:1489-1497. [PMID: 27325573 DOI: 10.1016/j.theriogenology.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 11/18/2022]
Abstract
In cattle, intracytoplasmic sperm injection (ICSI) has a low efficiency. The acrosome content may be responsible for this effect because of the large amount of hydrolytic enzymes that are released within the oocyte. With the aim of removing the acrosome and destabilize the membranes, cryopreserved bovine spermatozoa were treated with lysolecithin (LL) and Triton X-100 (TX) at different concentrations. We evaluated the membrane integrity, the acrosome integrity, DNA integrity, and the variation of phospholipase C zeta. The rates of development (cleavage and blastocysts) were also evaluated along with pronuclear formation and the embryo quality. Spermatozoa incubated with LL and TX (0.01%, 0.02%, 0.03%, and 0.04%) decreased (P < 0.0001) sperm viability in a dose-dependent manner. The acrosome reaction was also increased (P < 0.0001) in all tested concentrations of LL and TX achieving 100% at 0.05% concentration in both treatments. Terminal deoxynucleotidyl transferase dUTP nick-end labeling assay reported an increase (P < 0.05) in DNA fragmentation only with the highest concentration of LL (0.06%), whereas all concentrations assessed of TX reported an increased respect to the control. Phospholipase C zeta expression decreased (P < 0.05) in spermatozoa treated with LL and TX at all concentrations tested. A higher cleavage rate was observed in ICSI-TX (66%) and ICSI-LL (65%) groups compared with the untreated control group (51%) and the blastocyst formation rate significantly increased in the ICSI-LL group (29%) compared with the control (21%). No differences were observed in the pronuclear formation and quality of the embryos. In conclusion, the destabilization of the plasma membrane and the release of the acrosomal content with LL and TX before ICSI improve the rate of embryonic development, without affecting the quality of the embryos produced by this technique.
Collapse
Affiliation(s)
- Fabiola Zambrano
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - María E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Raúl Sánchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile
| | - Ricardo Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco, Chile; Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry Sciences, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
18
|
Effect of anisomycin, a protein synthesis inhibitor, on the in vitro developmental potential, ploidy and embryo quality of bovine ICSI embryos. ZYGOTE 2016; 24:724-32. [PMID: 27140503 DOI: 10.1017/s0967199416000034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Increasing the efficiency of intracytoplasmic sperm injection (ICSI) in domestic animals has been attempted by many researchers, however embryonic development to the blastocyst stage remains low compared with that of in vitro fertilization (IVF) embryos. One of the main problems observed in cattle is inadequate oocyte activation after ICSI. The present study compared the effect of cycloheximide (CHX), 6-dimethylaminopurine (DMAP), and anisomycin (ANY) on the fertilization rate, development, ploidy and quality of bovine embryos generated by ICSI. Although no differences were observed between treatments in terms of cleavage, higher blastocyst rates were observed for ANY (37.3%) compared with CHX (21.8%, P 0.05) treatments. No differences were observed in the quality of embryos as assessed by the total number of cells, their distribution to the different embryo compartments [inner cell mass (ICM) and trophectoderm (TE)], the proportion of ICM cells to the total cell numbers and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL)-positive cells. Similarly, no differences were observed in the normal ploidy of embryos (56, 67, and 55%) for ANY, CHX and DMAP, respectively. However, higher fertilization rates were observed for ANY (75%) and CHX (87%) treatments compared with DMAP (35%). In conclusion, ANY showed a superior developmental rate compared with CHX treatment. Although no significant differences were observed compared with an improved protocol of DMAP (2Io-DMAP), the lower fertilization rate recorded with DMAP strongly suggests that ANY could be a better alternative for oocyte activation than traditional chemical compounds used currently in ICSI.
Collapse
|
19
|
Águila L, Arias ME, Vargas T, Zambrano F, Felmer R. Methyl-β-Cyclodextrin Improves Sperm Capacitation Status Assessed by Flow Cytometry Analysis and Zona Pellucida-Binding Ability of Frozen/Thawed Bovine Spermatozoa. Reprod Domest Anim 2015; 50:931-8. [DOI: 10.1111/rda.12611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 08/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- L Águila
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - ME Arias
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - T Vargas
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - F Zambrano
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
| | - R Felmer
- Laboratory of Reproduction; Centre of Reproductive Biotechnology (CEBIOR-BIOREN); Universidad de La Frontera; Temuco Chile
- Department of Agricultural Sciences and Natural Resources; Faculty of Agriculture and Forestry; Universidad de La Frontera; Temuco Chile
| |
Collapse
|
20
|
Pérez L, Arias ME, Sánchez R, Felmer R. N-acetyl-L-cysteine pre-treatment protects cryopreserved bovine spermatozoa from reactive oxygen species without compromising the in vitro developmental potential of intracytoplasmic sperm injection embryos. Andrologia 2015; 47:1196-201. [PMID: 25771838 DOI: 10.1111/and.12412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2015] [Indexed: 11/29/2022] Open
Abstract
Excess of reactive oxygen species (ROS) on in vitro embryo production systems negatively affects the quality and developmental potential of embryos, as result of a decreased sperm quality and increased DNA fragmentation. This issue is of major importance in assisted fertilisation procedures such as intracytoplasmic sperm injection (ICSI), because this technique does not allow the natural selection of competent spermatozoa, and therefore, DNA-damaged spermatozoa might be used to fertilise an egg. The aim of this study was to investigate a new strategy to prevent the potential deleterious effect of ROS on cryopreserved bovine spermatozoa. We evaluated the effect of a sperm pre-treatment with different concentrations of N-acetyl-L-cysteine (NAC) on ROS production, viability and DNA fragmentation and assessed the effect of this treatment on the in vitro developmental potential and quality of embryos generated by ICSI. The results show a strong scavenging effect of 1 and 10 mm NAC after exposure of spermatozoa to a ROS inducer, without compromising the viability and DNA integrity. Importantly, in vitro developmental potential and quality of embryos generated by ICSI with spermatozoa treated with NAC were not affected, confirming the feasibility of using this treatment before an ICSI cycle.
Collapse
Affiliation(s)
- L Pérez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - M E Arias
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - R Sánchez
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - R Felmer
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Department of Agricultural Sciences and Natural Resources, Faculty of Agriculture and Forestry, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|