1
|
Kalinderi K, Kalinderis M, Papaliagkas V, Fidani L. The Reproductive Lifespan of Ovarian Follicle. Reprod Sci 2024; 31:2604-2614. [PMID: 38816594 DOI: 10.1007/s43032-024-01606-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The functional unit within mammalian ovaries is the ovarian follicle. The development of the ovarian follicle is a lengthy process beginning from the time of embryogenesis, passing through multiple different stages of maturation. The purpose of this review is to describe the most basic events in the journey of ovarian follicle development, discussing the importance of ovarian reserve and highlighting the role of several factors that affect oocyte quality and quantity during aging including hormonal, genetic and epigenetic factors. Novel, promising anti-aging strategies are also discussed.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece.
| | - Michail Kalinderis
- Department of Obstetrics and Gynaecology, St George's University Hospital NHS Trust, Blackshaw Road, Tooting, London, SW17 0QT, UK
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, 57400, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, GR-54124, Greece
| |
Collapse
|
2
|
Babaei K, Azimi Nezhad M, Sedigh Ziabari SN, Mirzajani E, Mozdarani H, Sharami SH, Farzadi S, Mirhafez SR, Naghdipour Mirsadeghi M, Norollahi SE, Saadatian Z, Samadani AA. TLR signaling pathway and the effects of main immune cells and epigenetics factors on the diagnosis and treatment of infertility and sterility. Heliyon 2024; 10:e35345. [PMID: 39165943 PMCID: PMC11333914 DOI: 10.1016/j.heliyon.2024.e35345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Recurrent pregnancy loss (RPL), often known as spontaneous miscarriages occurring two or more times in a row, is a reproductive disease that affects certain couples. The cause of RPL is unknown in many cases, leading to difficulties in therapy and increased psychological suffering in couples. Toll-like receptors (TLR) have been identified as crucial regulators of inflammation in various human tissues. The occurrence of inflammation during parturition indicates that Toll-like receptor activity in tissues related to pregnancy may play a crucial role in the onset and continuation of normal function, as well as in various pregnancy complications like infection-related preterm. TLRs or their signaling molecules may serve as effective therapeutic targets for inhibiting premature activity. At the maternal-fetal interface, TLRs are found in both immune and non-immune cells, such as trophoblasts and decidual cells. TLR expression patterns are influenced by the phases of pregnancy. In this way, translational combinations like epigenetics, have indicated their impact on the TLRs.Importantly, abnormal DNA methylation patterns and histone alterations have an impressive performance in decreasing fertility by influencing gene expression and required molecular and cellular activities which are vital for a normal pregnancy and embryonic process. TLRs, play a central duty in the innate immune system and can regulate epigenetic elements by many different signaling pathways. The potential roles of TLRs in cells, epigenetics factors their ability to identify and react to infections, and their place in the innate immune system will all be covered in this narrative review essay.
Collapse
Affiliation(s)
- Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mohsen Azimi Nezhad
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- UMR INSERM U 1122, IGE-PCV, Interactions Gène-Environment En Physiopathologie Cardiovascular Université De Lorraine, Nancy, France
| | - Seyedeh Nafise Sedigh Ziabari
- BSC of Midwifery, Reproductive Health Research Center, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ebrahim Mirzajani
- Department of Biochemistry and Biophysics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Mozdarani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Seyedeh Hajar Sharami
- Reproductive Health Research Center, Department of Obstetrics and Gynecology, School of Medicine, Al-Zahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Farzadi
- Department of Gynecology, School of Medicine, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyed Reza Mirhafez
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Misa Naghdipour Mirsadeghi
- Department of Gynecology, School of Medicine, Reproductive Health Research Center, Alzahra Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Jueraitetibaike K, Tang T, Ma R, Zhao S, Wu R, Yang Y, Huang X, Cheng X, Zhou C, Zhang H, Zheng L, Ge X, Chen L, Yao B. MiR-425-5p suppression of Crebzf regulates oocyte aging via chromatin modification. GeroScience 2024; 46:3723-3742. [PMID: 37532927 PMCID: PMC11226420 DOI: 10.1007/s11357-023-00875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2023] [Indexed: 08/04/2023] Open
Abstract
Female infertility due to declining oocyte quality with age remains a significant challenge for patients and physicians, despite extensive research efforts. Recent studies suggest that microRNAs (miRNAs), which respond to various stressors in the aging process, may provide a promising solution. With the approval of small RNA drugs for clinical use, miRNA-based treatment of oocyte aging appears to be a viable option. Through high-throughput sequencing, miR-425-5p was identified as the only miRNA elevated under natural aging and oxidative stress. Microinjection of inhibitors to inhibit miR-425-5p effectively improved compromised phenotypes of old oocytes in vitro. Further investigation revealed that Crebzf acts as a mediator of miR-425-5p's age-related functions in old oocytes. In vivo treatment with miR-425-5p antagomirs significantly improved impaired oocyte development in reproductively old females by targeting Crebzf. Single-cell RNA sequencing revealed that Crebzf plays a vital role in regulating mRNAs targeting histone H3, trimethylated lysine 4 (H3K4me3), a crucial marker for transcriptional silencing. Overexpression of miR-425-5p could hinder oocyte maturation by downregulating Crebzf expression and disrupting transcriptional regulation. Our findings provide new insights into the potential of miR-425-5p antagomirs as a treatment for female infertility and highlight an elegant mechanism by which miR-425-5p inhibition of Crebzf inhibits a developmental switch in GV oocytes by regulating a group of histone methyltransferase mRNAs.
Collapse
Affiliation(s)
- Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Ting Tang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Rujun Ma
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Shanmeizi Zhao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210002, People's Republic of China
| | - Ronghua Wu
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Yang Yang
- Basic Medical Laboratory, Institute of Clinical Laboratory Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xuan Huang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xi Cheng
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Cheng Zhou
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Hong Zhang
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Lu Zheng
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Xie Ge
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China
| | - Li Chen
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
| | - Bing Yao
- Department of Reproductive Medicine, Nanjing Jinling Hospital: East Region Military Command General Hospital, Medical School of Nanjing University, Nanjing, 210002, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| |
Collapse
|
4
|
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes. J Ovarian Res 2024; 17:118. [PMID: 38822408 PMCID: PMC11141068 DOI: 10.1186/s13048-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/30/2024] [Indexed: 06/03/2024] Open
Abstract
In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.
Collapse
Affiliation(s)
- Shenglan Bao
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Su Liu
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-Implantation, , Shenzhen Zhongshan Institute for Reproductive Medicine and Genetics, Shenzhen Zhongshan Obstetrics & Gynecology Hospital (Formerly Shenzhen Zhongshan Urology Hospital), Shenzhen, China.
| |
Collapse
|
5
|
Guo F, Wang L, Chen Y, Zhu H, Dai X, Zhang X. Nicotinamide Mononucleotide improves oocyte maturation of mice with type 1 diabetes. Nutr Diabetes 2024; 14:23. [PMID: 38653987 DOI: 10.1038/s41387-024-00280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.
Collapse
Affiliation(s)
- Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
| | - Haibo Zhu
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China
- Center of Reproductive Medicine & Center of Prenatal Diagnosis, First Hospital of Jilin University, Changchun, China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital of Jilin University, Changchun, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Camacho JA, Welch B, Sprando RL, Hunt PR. Reproductive-Toxicity-Related Endpoints in C. elegans Are Consistent with Reduced Concern for Dimethylarsinic Acid Exposure Relative to Inorganic Arsenic. J Dev Biol 2023; 11:18. [PMID: 37218812 PMCID: PMC10204422 DOI: 10.3390/jdb11020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Exposures to arsenic and mercury are known to pose significant threats to human health; however, the effects specific to organic vs. inorganic forms are not fully understood. Caenorhabditis elegans' (C. elegans) transparent cuticle, along with the conservation of key genetic pathways regulating developmental and reproductive toxicology (DART)-related processes such as germ stem cell renewal and differentiation, meiosis, and embryonic tissue differentiation and growth, support this model's potential to address the need for quicker and more dependable testing methods for DART hazard identification. Organic and inorganic forms of mercury and arsenic had different effects on reproductive-related endpoints in C. elegans, with methylmercury (meHgCl) having effects at lower concentrations than mercury chloride (HgCl2), and sodium arsenite (NaAsO2) having effects at lower concentrations than dimethylarsinic acid (DMA). Progeny to adult ratio changes and germline apoptosis were seen at concentrations that also affected gravid adult gross morphology. For both forms of arsenic tested, germline histone regulation was altered at concentrations below those that affected progeny/adult ratios, while concentrations for these two endpoints were similar for the mercury compounds. These C. elegans findings are consistent with corresponding mammalian data, where available, suggesting that small animal model test systems may help to fill critical data gaps by contributing to weight of evidence assessments.
Collapse
Affiliation(s)
- Jessica A. Camacho
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, Food and Drug Administration, 8301 Muirkirk Road, Laurel, MD 20708, USA
| | | | | | | |
Collapse
|
7
|
Mei N, Guo S, Zhou Q, Zhang Y, Liu X, Yin Y, He X, Yang J, Yin T, Zhou L. H3K4 Methylation Promotes Expression of Mitochondrial Dynamics Regulators to Ensure Oocyte Quality in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204794. [PMID: 36815388 PMCID: PMC10131798 DOI: 10.1002/advs.202204794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Significantly decreased H3K4 methylation in oocytes from aged mice indicates the important roles of H3K4 methylation in female reproduction. However, how H3K4 methylation regulates oocyte development remains largely unexplored. In this study, it is demonstrated that oocyte-specific expression of dominant negative mutant H3.3-K4M led to a decrease of the level of H3K4 methylation in mouse oocytes, resulting in reduced transcriptional activity and increased DNA methylation in oocytes, disturbed oocyte developmental potency, and fertility of female mice. The impaired expression of genes regulating mitochondrial functions in H3.3-K4M oocytes, accompanied by mitochondrial abnormalities, is further noticed. Moreover, early embryos from H3.3-K4M oocytes show developmental arrest and reduced zygotic genome activation. Collectively, these results show that H3K4 methylation in oocytes is critical to orchestrating gene expression profile, driving the oocyte developmental program, and ensuring oocyte quality. This study also improves understanding of how histone modifications regulate organelle dynamics in oocytes.
Collapse
Affiliation(s)
- Ning‐hua Mei
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
- Reproductive Medical CenterRenmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Shi‐meng Guo
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Qi Zhou
- Reproductive Medical CenterRenmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Yi‐ran Zhang
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Xiao‐zhao Liu
- School of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Ying Yin
- School of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Ximiao He
- School of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| | - Jing Yang
- Reproductive Medical CenterRenmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Tai‐lang Yin
- Reproductive Medical CenterRenmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic DevelopmentWuhanHubei430060China
| | - Li‐quan Zhou
- Institute of Reproductive HealthTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei430030China
| |
Collapse
|
8
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
9
|
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing. Nat Rev Mol Cell Biol 2023; 24:27-44. [PMID: 36068367 DOI: 10.1038/s41580-022-00517-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 11/09/2022]
Abstract
During fertilization, the egg and the sperm are supposed to contribute precisely one copy of each chromosome to the embryo. However, human eggs frequently contain an incorrect number of chromosomes - a condition termed aneuploidy, which is much more prevalent in eggs than in either sperm or in most somatic cells. In turn, aneuploidy in eggs is a leading cause of infertility, miscarriage and congenital syndromes. Aneuploidy arises as a consequence of aberrant meiosis during egg development from its progenitor cell, the oocyte. In human oocytes, chromosomes often segregate incorrectly. Chromosome segregation errors increase in women from their mid-thirties, leading to even higher levels of aneuploidy in eggs from women of advanced maternal age, ultimately causing age-related infertility. Here, we cover the two main areas that contribute to aneuploidy: (1) factors that influence the fidelity of chromosome segregation in eggs of women from all ages and (2) factors that change in response to reproductive ageing. Recent discoveries reveal new error-causing pathways and present a framework for therapeutic strategies to extend the span of female fertility.
Collapse
Affiliation(s)
- Chloe Charalambous
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alexandre Webster
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
10
|
Qu J, Wang Q, Niu H, Sun X, Ji D, Li Y. Melatonin protects oocytes from cadmium exposure-induced meiosis defects by changing epigenetic modification and enhancing mitochondrial morphology in the mouse. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114311. [PMID: 36410142 DOI: 10.1016/j.ecoenv.2022.114311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is one major environmental pollutant that can cause detrimental impacts on human as well as animal reproductive systems as a result of oxidative stress. It is widely acknowledged that melatonin secreted principally by the pineal gland is not only a natural potent antioxidant but also a free radical scavenger, whereas concerning how to alleviate the toxic effects of Cd on oocyte maturation remains elusive. In this investigation, it was the first time to explore the protective effects and potential mechanism of melatonin on meiotic maturation of mouse oocytes exposed to Cd in vitro medium. We found that Cd exerts adverse effects on meiotic maturation progression by disrupting the normal function of mitochondrion combined with the aberrant mitochondrial distribution and decreased membrane potential and altering epigenetic modification, including H3K9me2 and H3K4me2. Additionally, it was observed that Cd exposure disrupted the morphology of spindle organization and caused chromosome misalignment, which might be through changing the level of acetylated tubulin, whereas melatonin administration alleviated the toxic impacts of Cd on oocytes. Furthermore, the mitochondrial morphology-related genes mRNA expression and protein expression of autophagy-related genes was also investigated. The results suggested that melatonin supplementation significantly altered the mRNA expression of mitochondrial dynamics-related genes, rather than the expression of mitophagy-related proteins. Taken together, our results validated that melatonin administration has a certain protective impact against oocytes meiosis maturation defects induced by cadmium through changing epigenetic modification and enhancing mitochondrial morphology rather than mitophagy.
Collapse
Affiliation(s)
- Jingwen Qu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; The department of Animal and Veterinary Science, University of Vermont, Burlington, VT 05405, USA.
| | - Qiang Wang
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Haoyuan Niu
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Xiaomei Sun
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Dejun Ji
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| | - Yongjun Li
- Key Laboratory for Animal Genetics & Molecular Breeding of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
11
|
Bilmez Y, Talibova G, Ozturk S. Expression of the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 exhibits significant changes in the oocytes and granulosa cells of aged mouse ovaries. Histochem Cell Biol 2022; 158:79-95. [PMID: 35445296 DOI: 10.1007/s00418-022-02102-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Histone methylation is one of the main epigenetic mechanisms by which methyl groups are dynamically added to the lysine and arginine residues of histone tails in nucleosomes. This process is catalyzed by specific histone methyltransferase enzymes. Methylation of these residues promotes gene expression regulation through chromatin remodeling. Functional analysis and knockout studies have revealed that the histone lysine methyltransferases SETD1B, SETDB1, SETD2, and CFP1 play key roles in establishing the methylation marks required for proper oocyte maturation and follicle development. As oocyte quality and follicle numbers progressively decrease with advancing maternal age, investigating their expression patterns in the ovaries at different reproductive periods may elucidate the fertility loss occurring during ovarian aging. The aim of our study was to determine the spatiotemporal distributions and relative expression levels of the Setd1b, Setdb1, Setd2, and Cxxc1 (encoding the CFP1 protein) genes in the postnatal mouse ovaries from prepuberty to late aged periods. For this purpose, five groups based on their reproductive periods and histological structures were created: prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). We found that Setd1b, Setdb1, Setd2, and Cxxc1 mRNA levels showed significant changes among postnatal ovary groups (P < 0.05). Furthermore, SETD1B, SETDB1, SETD2, and CFP1 proteins exhibited different subcellular localizations in the ovarian cells, including oocytes, granulosa cells, stromal and germinal epithelial cells. In general, their levels in the follicles, oocytes, and granulosa cells as well as in the germinal epithelial and stromal cells significantly decreased in the aged groups when compared the other groups (P < 0.05). These decreases were concordant with the reduced numbers of the follicles at different stages and the luteal structures in the aged groups (P < 0.05). In conclusion, these findings suggest that altered expression of the histone methyltransferase genes in the ovarian cells may be associated with female fertility loss in advancing maternal age.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
12
|
Yang H, Kolben T, Kessler M, Meister S, Paul C, van Dorp J, Eren S, Kuhn C, Rahmeh M, Herbst C, Fink SG, Weimer G, Mahner S, Jeschke U, von Schönfeldt V. FAM111A Is a Novel Molecular Marker for Oocyte Aging. Biomedicines 2022; 10:257. [PMID: 35203468 PMCID: PMC8869572 DOI: 10.3390/biomedicines10020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Aging is the main cause of decline in oocyte quality, which can further trigger the failure of assisted reproductive technology (ART). Exploring age-related genes in oocytes is an important way to investigate the molecular mechanisms involved in oocyte aging. To provide novel insight into this field, we performed a pooled analysis of publicly available datasets, using the overlapping results of two statistical methods on two Gene Expression Omnibus (GEO) datasets. The methods utilized in the current study mainly include Spearman rank correlation, the Wilcoxon signed-rank test, t-tests, Venn diagrams, Gene Ontology (GO), Protein-Protein Interaction (PPI), Gene Set Enrichment Analysis (GSEA), Gene Set Variation Analysis (GSVA), and receiver operating characteristic (ROC) curve analysis. We identified hundreds of age-related genes across different gene expression datasets of in vitro maturation-metaphase II (IVM-MII) oocytes. Age-related genes in IVM-MII oocytes were involved in the biological processes of cellular metabolism, DNA replication, and histone modifications. Among these age-related genes, FAM111A expression presented a robust correlation with age, seen in the results of different statistical methods and different datasets. FAM111A is associated with the processes of chromosome segregation and cell cycle regulation. Thus, this enzyme is potentially an interesting novel marker for the aging of oocytes, and warrants further mechanistic study.
Collapse
Affiliation(s)
- Huixia Yang
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Thomas Kolben
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Mirjana Kessler
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sarah Meister
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Corinna Paul
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Julia van Dorp
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sibel Eren
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Christina Kuhn
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Martina Rahmeh
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Cornelia Herbst
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sabine Gabriele Fink
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Gabriele Weimer
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Sven Mahner
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| | - Udo Jeschke
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
- Department of Obstetrics and Gynecology, University Hospital Augsburg, 86156 Augsburg, Germany
| | - Viktoria von Schönfeldt
- Department of Obstetrics and Gynecology, University Hospital, Ludwig-Maximilians-University, 81377 Munich, Germany; (H.Y.); (T.K.); (M.K.); (S.M.); (C.P.); (J.v.D.); (S.E.); (C.K.); (M.R.); (C.H.); (S.G.F.); (G.W.); (S.M.); (V.v.S.)
| |
Collapse
|
13
|
Bilmez Y, Talibova G, Ozturk S. Dynamic changes of histone methylation in mammalian oocytes and early embryos. Histochem Cell Biol 2021; 157:7-25. [PMID: 34599660 DOI: 10.1007/s00418-021-02036-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Histone methylation is a key epigenetic mechanism and plays a major role in regulating gene expression during oocyte maturation and early embryogenesis. This mechanism can be briefly defined as the process by which methyl groups are transferred to lysine and arginine residues of histone tails extending from nucleosomes. While methylation of the lysine residues is catalyzed by histone lysine methyltransferases (KMTs), protein arginine methyltransferases (PRMTs) add methyl groups to the arginine residues. When necessary, the added methyl groups can be reversibly removed by histone demethylases (HDMs) by a process called histone demethylation. The spatiotemporal regulation of methylation and demethylation in histones contributes to modulating the expression of genes required for proper oocyte maturation and early embryonic development. In this review, we comprehensively evaluate and discuss the functional importance of dynamic histone methylation in mammalian oocytes and early embryos, regulated by KMTs, PRMTs, and HDMs.
Collapse
Affiliation(s)
- Yesim Bilmez
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Gunel Talibova
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey
| | - Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Campus, 07070, Antalya, Turkey.
| |
Collapse
|
14
|
SIRT1 reduces epigenetic and non-epigenetic changes to maintain the quality of postovulatory aged oocytes in mice. Exp Cell Res 2021; 399:112421. [PMID: 33412164 DOI: 10.1016/j.yexcr.2020.112421] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022]
Abstract
Postovulatory oocyte aging has a major influence on the development potential of embryos. Many antioxidants can delay oocyte aging by regulating the expression of SIRT1. However, there is a lack of knowledge on SIRT1 function in postovulatory oocyte aging. In vitro transcribed RNA of Sirt1 was injected into fresh oocytes to investigate the function of SIRT1 during postovulatory oocyte aging. In the present study, SIRT1 was found to be down-regulated in aged oocytes compared with fresh oocytes. Meanwhile the intensity of acetylation of H3K9 (H3K9ac) and H3K4 methylation increased in postovulatory aged oocytes. After the oocytes were injected with SIRT1 and aged for 12 h, the intensity of H3K9ac and H3K4 methylation markedly decreased compared with controls. Furthermore, SIRT1 overexpression also reduced the aging-induced oocyte morphological changes and reactive oxygen species accumulation, maintained the spindle normal morphology and attenuated the aging-associated abnormalities of mitochondrial function. The role of SIRT1 in protecting oocyte aging was diminished when oocytes with overexpressed SIRT1 were cultured with SIRT1 inhibitor EX-527. Briefly, these present results show that SIRT1 not only reduced the non-epigenetic changes such as abnormal oocyte morphology, ROS accumulation, spindle defects and mitochondrial dysfunctions but also regulated the epigenetic changes in order to maintain the quality of postovulatory aged oocytes.
Collapse
|
15
|
Wu X, Hu S, Wang L, Li Y, Yu H. Dynamic changes of histone acetylation and methylation in bovine oocytes, zygotes, and preimplantation embryos. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:245-256. [PMID: 32297418 DOI: 10.1002/jez.b.22943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 02/28/2020] [Accepted: 03/19/2020] [Indexed: 12/28/2022]
Abstract
Histone modifications play important roles in regulating chromatin dynamic changes. In this study, acetylated histone H3 lysine 9 and 18 (H3K9ac and H3K18ac), acetylated histone H4 lysine 5 and 8 (H4K5ac and H4K8ac), tri-methylation histone H3 lysine 4 (H3K4me3), di-methylation histone H3 lysine 9 (H3K9me2) are investigated in bovine oocytes, zygote, and preimplantation. During meiosis, H3K9ac and H3K18ac are erased after germinal vesicle breakdown, H4K8ac is erased after metaphase I (MI). Although H4K5ac is erased at MI, it is redetectable after this stage. However, histone methylations have no significant change during meiosis. During fertilization, intensive H4K5ac and H4K8ac are resumed on male and female chromatins at postfertilization 4 and 8 hr, respectively. H3K9ac and H3K18ac are resumed on both male and female chromatins at postfertilization 8 and 12 hr, respectively. H3K4me3 and H3K9me2 gradually increased on male chromatin after postfertilization 8 hr, while these two signals on female chromatin are detectable from postfertilization 2-18 hr. During embryo cleavage, H3K9ac, H3K18ac, and H3K4me3 are reduced at 8-cell stage, and then start to increase. H4K5ac, H4K8ac, and H3K9me2 increase after the 4-cell stage. At interphase, H4K5ac and H4K8ac are more intensive in nuclear periphery from 2- to 8-cell stages. During mitosis, the signal of H4K8ac is intensive at chromosome periphery. In summary, during both oocyte meiosis and fertilization, the dynamic changes of both histone acetylations and methylations happen in a process of lysine residue-specific and species-specific. During preimplantation development, the dynamic patterns of both H3K9ac and H3K18ac are similar to that of H3K4me3, while the dynamic pattern of H4K5ac is similar to that of H4K8ac. These results will be helpful for understanding the effect of histone posttranslational modifications on bovine reproduction and development.
Collapse
Affiliation(s)
- Xia Wu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China.,State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Shuxiang Hu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lingling Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yan Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Haiquan Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| |
Collapse
|
16
|
Chamani IJ, Keefe DL. Epigenetics and Female Reproductive Aging. Front Endocrinol (Lausanne) 2019; 10:473. [PMID: 31551923 PMCID: PMC6736555 DOI: 10.3389/fendo.2019.00473] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
With more women than ever waiting until a more advanced age to have children, there exists a newfound urgency to identify the various implications aging has on human reproduction, and understand the disrupted biological processes that result in these changes. In this review, we focus on one recent area of study: the age related epigenetic changes that have been found in female reproductive organs, and the effect these changes may contribute to reproductive outcomes.
Collapse
Affiliation(s)
| | - David L. Keefe
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, United States
- *Correspondence: David L. Keefe
| |
Collapse
|
17
|
Shan X, Roberts C, Lan Y, Percec I. Age Alters Chromatin Structure and Expression of SUMO Proteins under Stress Conditions in Human Adipose-Derived Stem Cells. Sci Rep 2018; 8:11502. [PMID: 30065345 PMCID: PMC6068198 DOI: 10.1038/s41598-018-29775-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
Adult stem cells play a critical role in tissue homeostasis and repair. Aging leads to a decline in stem cells’ regenerative capacity that contributes significantly to the maintenance of organ and tissue functions. Age-dependent genomic and epigenetic modifications together play a role in the disruption of critical cellular pathways. However, the epigenetic mechanisms responsible for the decline of adult stem cell functions remain to be well established. Here, we investigated age-dependent, genome-wide alterations in the chromatin accessibility of primary human adipose-derived stem cells (ASCs) in comparison to age-matched fibroblasts via ATAC-seq technology. Our results demonstrate that aging ASCs possess globally more stable chromatin accessibility profiles as compared to aging fibroblasts, suggesting that robust regulatory mechanisms maintain adult stem cell chromatin structure against aging. Furthermore, we observed age-dependent subtle changes in promoter nucleosome positioning in selective pathways during aging, concurrent with altered small ubiquitin-related modifier (SUMO) protein expression under stress conditions. Together, our data suggest a significant role for nucleosome positioning in sumoylation pathway regulation in stress response during adult stem cell aging. The differences described here between the chromatin structure of human ASCs and fibroblasts will further elucidate the mechanisms regulating gene expression during aging in both stem cells and differentiated cells.
Collapse
Affiliation(s)
- Xiaoyin Shan
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Cleresa Roberts
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ivona Percec
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Shao G, Wan X, Lai W, Wu C, Jin J, Liu X, Wei Y, Lin Q, Zhang L, Shao Q. Inhibition of lysine-specific demethylase 1 prevents proliferation and mediates cisplatin sensitivity in ovarian cancer cells. Oncol Lett 2018; 15:9025-9032. [PMID: 29928330 PMCID: PMC6004655 DOI: 10.3892/ol.2018.8511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Lysine-specific demethylase 1 (LSD1) functions as a transcriptional coregulator by modulating histone methylation and has been associated with numerous high-risk cancers. Previously, our group and others identified LSD1 as an upregulated gene in ovarian cancer, and reported that the upregulation of LSD1 was associated with poor prognosis of patients with ovarian cancer. However, the role of LSD1 in ovarian cancer requires further investigation. The present study revealed that the overexpression of LSD1 significantly promoted the proliferation of SKOV3 ovarian cancer cells, while knockdown of LSD1 markedly inhibited cell proliferation and potentiated cisplatin-induced cell apoptosis, supporting LSD1 as an oncogenic protein in ovarian cancer. Mechanistic studies have indicated that LSD1 modulates the expression of cyclin dependent kinase inhibitor 1, Survivin, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X genes, which are known regulators of cell proliferation. Furthermore, LSD1 knockdown plus cisplatin synergistically impaired cell migration via the induction of the epithelial marker E-cadherin and inhibition of the mesenchymal markers, snail family transcriptional repressor 1 and Vimentin. These data of the present study indicated LSD1 as a potential regulator of ovarian cancer cell progression and suggested an unfavorable role of LSD1 in cisplatin-based regimens.
Collapse
Affiliation(s)
- Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiaolei Wan
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China.,Department of Oncology, The Affiliated Jurong Hospital, Jiangsu University, Zhenjiang, Jiangsu 212400, P.R. China
| | - Wensheng Lai
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China.,Department of Oncology, The Affiliated Jurong Hospital, Jiangsu University, Zhenjiang, Jiangsu 212400, P.R. China
| | - Chaoyang Wu
- Department of Oncology, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, Jiangsu 212002, P.R. China
| | - Jie Jin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Xiuwen Liu
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Ye Wei
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qiong Lin
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Liuping Zhang
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Qixiang Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| |
Collapse
|
19
|
Liu Y, Wang YL, He SW, Chen MH, Zhang Z, Fu XP, Fu BB, Liao BQ, Lin YH, Qi ZQ, Wang HL. Protective effects of resveratrol against mancozeb induced apoptosis damage in mouse oocytes. Oncotarget 2018; 8:6233-6245. [PMID: 28031523 PMCID: PMC5351627 DOI: 10.18632/oncotarget.14056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/13/2016] [Indexed: 11/25/2022] Open
Abstract
Mancozeb, a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Mancozeb could lead to mitochondria dysfunction, cellular anti-oxidation enzymes depletion and apoptotic pathways activation. Previous studies indicated the exposure of mancozeb through mother would lead to irregular estrous cycles, decreased progesterone levels, reduced litter sizes, and more frequent delivery of dead fetuses. In this study, we investigated mancozeb inducing reproductive toxicity, especially focusing on its apoptotic effect and epigenetic modifications. We also showed that resveratrol, a kind of phytoalexin found in peanuts and grapes, can alleviate mancozeb's adverse effects, such as declined fertility, decreased ovary weight and primary follicles. Besides, mancozeb treated oocytes displayed suboptimal developmental competence and this can also be improved by treatment of resveratrol. More detailed investigation of these processes revealed that mancozeb increased reactive oxygen species, causing cell apoptosis and abnormal epigenetic modifications, and resveratrol can block these cytotoxic changes. Collectively, our results showed that resveratrol can alleviate mancozeb induced infertility and this was mainly through the correction of apoptotic tendency and the abnormity of cellular epigenetic modification.
Collapse
Affiliation(s)
- Yu Liu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Ya-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Shu-Wen He
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Ming-Huang Chen
- Department of Gynaecology and Obstetrics, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - Zhen Zhang
- Xiamen Institute for Food and Drug Quality Control, Xiamen City, Fujian Province, China
| | - Xian-Pei Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Bin-Bin Fu
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Bao-Qiong Liao
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Yan-Hong Lin
- Department of Gynecology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Zhong-Quan Qi
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| | - Hai-Long Wang
- Organ Transplantation Institute, Medical College, Xiamen University, Xiamen City, Fujian Province, China.,Fujian Key Laboratory of Organ and Tissue Regeneration, Xiamen City, Fujian Province, China
| |
Collapse
|
20
|
Marshall KL, Rivera RM. The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Mol Reprod Dev 2018; 85:90-105. [PMID: 29280527 DOI: 10.1002/mrd.22951] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/26/2022]
Abstract
A societal preference of delaying maternal age at first childbirth has increased reliance on assisted reproductive technologies/therapies (ART) to conceive a child. Oocytes that have undergone physiologic aging (≥35 years for humans) are now commonly used for ART, yet evidence is building that suboptimal reproductive environments associated with aging negatively affect oocyte competence and embryo development-although the mechanisms underlying these relationship are not yet well understood. Epigenetic programming of the oocyte occurs during its growth within a follicle, so the ovarian stimulation protocols that administer exogenous hormones, as part of the first step for all ART procedures, may prevent the gamete from establishing an appropriate epigenetic state. Therefore, understanding how oocyte. Therefore, understanding how hormone stimulation and oocyte physiologic age independently and synergistically physiologic age independently and synergistically affect the epigenetic programming of these gametes, and how this may affect their developmental competence, are crucial to improved ART outcomes. Here, we review studies that measured the developmental outcomes affected by superovulation and aging, focusing on how the epigenome (i.e., global and imprinted DNA methylation, histone modifications, and epigenetic modifiers) of gametes and embryos acquired from females undergoing physiologic aging and exogenous ovarian stimulation is affected.
Collapse
Affiliation(s)
- Kira L Marshall
- Division of Animal Sciences, University of Missouri, Columbia, Missouri
| | | |
Collapse
|
21
|
Phillips TC, Wildt DE, Comizzoli P. Incidence of methylated histones H3K4 and H3K79 in cat germinal vesicles is regulated by specific nuclear factors at the acquisition of developmental competence during the folliculogenesis. J Assist Reprod Genet 2016; 33:783-94. [PMID: 27059775 PMCID: PMC4889483 DOI: 10.1007/s10815-016-0706-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/21/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE This study aims to characterize the regulations of histone methylations, key epigenetic markers of oocyte competence, in germinal vesicle (GV) from different follicles (preantral, early, small, or large antral stage) using the domestic cat model. METHODS In Experiment 1, the incidence of H3K4me3 or H3K79me2 was determined in GVs from the diverse follicle stages directly or after exposure to (1) a methyltransferase inhibitor, (2) sonication to fracture the cytoplasmic membranes and wash away the cytoplasmic content, or (3) methyltransferase inhibitor followed by sonication. In Experiment 2, the presence and maintenance of nuclear methyltransferases SMYD3 and DOT1L (regulating H3K4me3 and H3K79me2, respectively) was characterized in separate GV stages before and after sonication. Functionality of GVs from the various follicle stages (with or without transient isolation from the cytoplasm) then was assessed in Experiment 3 by transfer into recipient competent oocytes. RESULTS The incidence of histones H3K4me3 and H3K79me2 within the GV were influenced by the cytoplasmic environment at all stages except at the transition to the early antral stage where nuclear regulating factors appeared to be mainly involved. The methyltransferase SMYD3 and DOT1L also appeared tightly bound to the nucleus at that transition. Interestingly, oocytes reconstructed with a GV isolated from the cytoplasm for a prolonged period had the capacity to form an embryo after fertilization which proved that communication between the donor GV and the host cytoplasm (likely including the regulation of epigenetic factors) could be restored. CONCLUSIONS Histone methylation apparently becomes regulated by specific nuclear factors at the acquisition of competence during the folliculogenesis and does not seem to be disrupted by prolonged isolation from the surrounding cytoplasm.
Collapse
Affiliation(s)
- Tameka C Phillips
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - David E Wildt
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, 20008, USA.
- Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, 22630, USA.
| |
Collapse
|
22
|
LI YUANXIA, WAN XIAOLEI, WEI YE, LIU XIUWEN, LAI WENSHENG, ZHANG LIUPING, JIN JIE, WU CHAOYANG, SHAO QIXIANG, SHAO GENBAO, LIN QIONG. LSD1-mediated epigenetic modification contributes to ovarian cancer cell migration and invasion. Oncol Rep 2016; 35:3586-92. [DOI: 10.3892/or.2016.4729] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
|
23
|
Lysine-specific demethylase 1 mediates epidermal growth factor signaling to promote cell migration in ovarian cancer cells. Sci Rep 2015; 5:15344. [PMID: 26489763 PMCID: PMC4614681 DOI: 10.1038/srep15344] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic abnormalities play a vital role in the progression of ovarian cancer. Lysine-specific demethylase 1 (LSD1/KDM1A) acts as an epigenetic regulator and is overexpressed in ovarian tumors. However, the upstream regulator of LSD1 expression in this cancer remains elusive. Here, we show that epidermal growth factor (EGF) signaling upregulates LSD1 protein levels in SKOV3 and HO8910 ovarian cancer cells overexpressing both LSD1 and the EGF receptor. This effect is correlated with a decrease in the dimethylation of H3K4, a major substrate of LSD1, in an LSD1-dependent manner. We also show that inhibition of PI3K/AKT, but not MEK, abolishes the EGF-induced upregulation of LSD1 and cell migration, indicating that the PI3K/PDK1/AKT pathway mediates the EGF-induced expression of LSD1 and cell migration. Significantly, LSD1 knockdown or inhibition of LSD1 activity impairs both intrinsic and EGF-induced cell migration in SKOV3 and HO8910 cells. These results highlight a novel mechanism regulating LSD1 expression and identify LSD1 as a promising therapeutic target for treating metastatic ovarian cancer driven by EGF signaling.
Collapse
|
24
|
Epigenetic regulation of ageing: linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 2015; 16:593-610. [PMID: 26373265 DOI: 10.1038/nrm4048] [Citation(s) in RCA: 396] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is affected by both genetic and non-genetic factors. Here, we review the chromatin-based epigenetic changes that occur during ageing, the role of chromatin modifiers in modulating lifespan and the importance of epigenetic signatures as biomarkers of ageing. We also discuss how epigenome remodelling by environmental stimuli affects several aspects of transcription and genomic stability, with important consequences for longevity, and outline epigenetic differences between the 'mortal soma' and the 'immortal germ line'. Finally, we discuss the inheritance of characteristics of ageing and potential chromatin-based strategies to delay or reverse hallmarks of ageing or age-related diseases.
Collapse
|
25
|
Clarke HJ, Vieux KF. Epigenetic inheritance through the female germ-line: The known, the unknown, and the possible. Semin Cell Dev Biol 2015; 43:106-116. [DOI: 10.1016/j.semcdb.2015.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/04/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
|
26
|
Abstract
It has become a current social trend for women to delay childbearing. However, the quality of oocytes from older females is compromised and the pregnancy rate of older women is lower. With the increased rate of delayed childbearing, it is becoming more and more crucial to understand the mechanisms underlying the compromised quality of oocytes from older women, including mitochondrial dysfunctions, aneuploidy and epigenetic changes. Establishing proper epigenetic modifications during oogenesis and early embryo development is an important aspect in reproduction. The reprogramming process may be influenced by external and internal factors that result in improper epigenetic changes in germ cells. Furthermore, germ cell epigenetic changes might be inherited by the next generations. In this review, we briefly summarise the effects of ageing on oocyte quality. We focus on discussing the relationship between ageing and epigenetic modifications, highlighting the epigenetic changes in oocytes from advanced-age females and in post-ovulatory aged oocytes as well as the possible underlying mechanisms.
Collapse
Affiliation(s)
- Zhao-Jia Ge
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Heide Schatten
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Cui-Lian Zhang
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| | - Qing-Yuan Sun
- Reproductive Medicine CenterHenan Provincial People's Hospital, #7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province 450003, People's Republic of ChinaState Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, #1 Beichen West Road, Chaoyang District, Beijing 100101, People's Republic of ChinaReproductive Medicine CenterPeople's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, People's Republic of ChinaDepartment of Veterinary PathobiologyUniversity of Missouri, Columbia, Missouri 65211, USA
| |
Collapse
|