1
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Chen M, Wang N, Yang H, Liu D, Gao Y, Duo L, Cui X, Hao F, Ye J, Gao F, Tu Q, Gui Y. Single-cell transcriptome analysis of the germ cells and somatic cells during mitotic quiescence stage in goats. FASEB J 2023; 37:e23244. [PMID: 37823602 DOI: 10.1096/fj.202301278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
The mitotic quiescence of prospermatogonia is the event known to occur during genesis of the male germline and is tied to the development of the spermatogenic lineage. The regulatory mechanisms and the functional importance of this process have been demonstrated in mice; however, regulation of this process in human and domestic animal is still largely unknown. In this study, we employed single-cell RNA sequencing to identify transcriptional signatures of prospermatogonia and major somatic cell types in testes of goats at E85, E105, and E125. We identified both common and specific Gene Ontology categories, transcription factor regulatory networks, and cell-cell interactions in cell types from goat testis. We also analyzed the transcriptional dynamic changes in prospermatogonia, Sertoli cells, Leydig cells, and interstitial cells. Our datasets provide a useful resource for the study of domestic animal germline development.
Collapse
Affiliation(s)
- Min Chen
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nan Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hang Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Dongjun Liu
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Lei Duo
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Xiuhong Cui
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fei Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, Inner Mongolia University, Hohhot, China
| | - Jing Ye
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Fei Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Tu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yaoting Gui
- Guangdong and Shenzhen Key Laboratory of Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| |
Collapse
|
3
|
Praxedes ÉA, Silva MB, Medeiros de Oliveira LR, da Silva Viana JV, Pereira AF. Interactions Among Sucrose and Concentrations of Serum Fetal Bovine on the Cryopreservation of Somatic Cells Derived from Red-Rumped Agoutis. CRYOLETTERS 2023. [DOI: 10.54680/fr23210110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND: The synergistic action among the different extracellular cryoprotectants could improve somatic cell quality after thawing and provide bases for the formation of biobanks for redrumped agoutis. OBJECTIVE: This study evaluated the interactions among sucrose (SUC)
and concentrations of serum fetal bovine (FBS) on the cryopreservation of somatic cells derived from redrumped agoutis. MATERIALS AND METHODS: Cells were cryopreserved with 10% dimethyl sulfoxide and different concentrations of FBS (10%, 40%, and 90%) with or without 0.2 M SUC, totaling
six comparison groups. Non-cryopreserved cells were used as a control. Cells were evaluated for viability, metabolic activity, proliferative activity, reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm) and apoptosis levels. RESULTS: No difference was observed
among cryopreserved with DMSO containing (10FBS, 10FBS-SUC, 40FBS, 40FBS-SUC, 90FBS, 90FBSSUC) and non-cryopreserved groups for viability, metabolic activity, proliferative activity, and ROS levels. Interestingly, only cells cryopreserved with 90% FBS and SUC maintained the ΔΨm like
the control. This indicates that at high concentrations of FBS, SUC contributes to the maintenance of this parameter in cryopreserved cells. Moreover, at concentrations of 10% and 40% of FBS, SUC contributed to the maintenance of viability evaluated by the levels of apoptosis evaluated after
thawing. In summary, we verified that 90% FBS and 0.2 M SUC promote greater ability of cells after thawing. Additionally, SUC positively acts in cryopreservation solutions containing 10% and 40% FBS. CONCLUSION: This information is essential to an understanding of the mechanisms involved
in the interactions of extracellular cryoprotectants in somatic cell cryopreservation solutions of red-rumped agoutis.
Collapse
Affiliation(s)
- Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | - Maria Bárbara Silva
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoro, RN, Brazil
| | | | | | | |
Collapse
|
4
|
Ferreira-Silva JC, Oliveira Silva RL, Travassos Vieira JI, Silva JB, Tavares LS, Cavalcante Silva FA, Nunes Pena EP, Chaves MS, Moura MT, Junior TC, Benko-Iseppon AM, Figueirêdo Freitas VJ, Lemos Oliveira MA. Evaluation of quality and gene expression of goat embryos produced in vivo and in vitro after cryopreservation. Cryobiology 2021; 101:115-124. [PMID: 33964298 DOI: 10.1016/j.cryobiol.2021.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/26/2022]
Abstract
In the present study, we aimed to identify morphological and molecular changes of in vivo and in vitro-produced goat embryos submitted to cryopreservation. In vivo embryos were recovered by transcervical technique from superovulated goats, whereas in vitro produced embryos were produced from ovaries collected at a slaughterhouse. Embryos were frozen by two-steps slow freezing method, which is defined as freezing to -32 °C followed by transfer to liquid nitrogen. Morphological evaluation of embryos was carried out by assessing blastocoel re-expansion rate and the total number of blastomeres. The expression profile of candidate genes related to thermal and oxidative stress, apoptosis, epigenetic, and implantation control was measured using RT-qPCR based SYBR Green system. In silico analyses were performed to identify conserved genes in goat species and protein-protein interaction networks were created. In vivo-produced embryos showed greater blastocoel re-expansion and more blastomere cells (P < 0.05). The expression level of CTP2 and HSP90 genes from in vitro cryopreserved embryos was higher than their in vivo counterparts. Unlikely, no significant difference was observed in the transcription level of SOD gene between groups. The high similarity of CPT2 and HSP90 proteins to their orthologs among mammals indicates that they share conserved functions. In summary, cryopreservation negatively affects the morphology and viability of goat embryos produced in vitro and changes the CPT2 and HSP90 gene expression likely in response to the in vitro production process.
Collapse
Affiliation(s)
- José Carlos Ferreira-Silva
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Roberta Lane Oliveira Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Joane Isis Travassos Vieira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Jéssica Barboza Silva
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Lethicia Souza Tavares
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Elton Pedro Nunes Pena
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Maiana Silva Chaves
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil. maiana-@hotmail.com
| | - Marcelo Tigre Moura
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| | - Tercilio Calsa Junior
- Laboratory of Plant Genomics and Proteomics, Department of Genetics, Federal University of Pernambuco, Brazil.
| | - Ana Maria Benko-Iseppon
- Laboratory of Plant Genetics and Biotechnology, Department of Genetics, Federal University of Pernambuco, Brazil.
| | | | - Marcos Antonio Lemos Oliveira
- Laboratory of Reproductive Biotechniques, Department of Veterinary Medicine, Federal Rural University of Pernambuco, Brazil.
| |
Collapse
|
5
|
Strategies for cryopreservation of testicular cells and tissues in cancer and genetic diseases. Cell Tissue Res 2021; 385:1-19. [PMID: 33791878 DOI: 10.1007/s00441-021-03437-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
Cryopreservation of testicular cells and tissues is useful for the preservation and restoration of fertility in pre-pubertal males expecting gonadotoxic treatment for cancer and genetic diseases causing impaired spermatogenesis. A number of freezing and vitrification protocols have thus been tried and variable results have been reported in terms of cell viability spermatogenesis progression and the production of fertile spermatozoa. A few studies have also reported the production of live offspring from cryopreserved testicular stem cells and tissues in rodents but their replication in large animals and human have been lacking. Advancement in in vitro spermatogenesis system has improved the possibility of producing fertile spermatozoa from the cryopreserved testis and has reduced the dependency on transplantation. This review provides an update on various cryopreservation strategies for fertility preservation in males expecting gonadotoxic treatment. It also discusses various methods of assessing and ameliorating cryoinjuries. Newer developments on in vitro spermatogenesis and testicular tissue engineering for in vitro sperm production from cryopreserved SSCs and testicular tissue are also discussed.
Collapse
|
6
|
The roles of reactive oxygen species and antioxidants in cryopreservation. Biosci Rep 2019; 39:BSR20191601. [PMID: 31371631 PMCID: PMC6712439 DOI: 10.1042/bsr20191601] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation has facilitated advancement of biological research by allowing the storage of cells over prolonged periods of time. While cryopreservation at extremely low temperatures would render cells metabolically inactive, cells suffer insults during the freezing and thawing process. Among such insults, the generation of supra-physiological levels of reactive oxygen species (ROS) could impair cellular functions and survival. Antioxidants are potential additives that were reported to partially or completely reverse freeze-thaw stress-associated impairments. This review aims to discuss the potential sources of cryopreservation-induced ROS and the effectiveness of antioxidant administration when used individually or in combination.
Collapse
|
7
|
Canesin HS, Brom-de-Luna JG, Choi YH, Ortiz I, Diaw M, Hinrichs K. Blastocyst development after intracytoplasmic sperm injection of equine oocytes vitrified at the germinal-vesicle stage. Cryobiology 2017; 75:52-59. [DOI: 10.1016/j.cryobiol.2017.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
8
|
Zhang XG, Li H, Hu JH. Effects of various cryoprotectants on the quality of frozen-thawed immature bovine (Qinchuan cattle) calf testicular tissue. Andrologia 2017; 49. [PMID: 28295478 DOI: 10.1111/and.12743] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2016] [Indexed: 01/09/2023] Open
Abstract
To investigate the effects of different concentrations of various cryoprotectants (CPs) on the cell viability as well as expression of spermatogenesis-related genes, such as CREM, Stra8 and HSP70-2 in frozen-thawed bovine calf testicular tissue, immature bovine (Qinchuan cattle) calf testicular tissue was collected and cryopreserved in the cryomedia containing different concentrations (5%, 10%, 15% and 20%) of the following three CPs: glycerol, ethylene glycol (EG) and dimethyl sulphoxide (DMSO) respectively. After 1 month cryopreservation in liquid nitrogen, cell viability was evaluated using Trypan blue exclusion under a bright-field microscope. The mRNA expression of the three genes was also evaluated using qRT-PCR. The results indicated that different concentrations of glycerol, EG and DMSO in cryomedia during cryopreservation could protect bovine calf testicular tissue in various ways to avoid freezing or cryopreservation-induced expression changes in spermatogenesis-related genes. The highest cell viability and the three spermatogenesis-related genes (CREM, Stra8 and HSP70-2) expression level came from the cryomedia containing glycerol, EG and DMSO at 10% concentration respectively (p < .05). Meanwhile, compared with the other CPs, the frozen-thawed bovine calf testicular tissue treated with 10% DMSO exhibited the highest cell viability and mRNA expression level of the spermatogenesis-related genes (CREM, Stra8 and HSP70-2).
Collapse
Affiliation(s)
- X-G Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - H Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - J-H Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
9
|
Zhu X, Bührer C, Wellmann S. Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold. Cell Mol Life Sci 2016; 73:3839-59. [PMID: 27147467 PMCID: PMC5021741 DOI: 10.1007/s00018-016-2253-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/22/2016] [Accepted: 04/26/2016] [Indexed: 12/21/2022]
Abstract
Cold-inducible RNA-binding protein (CIRP) and RNA-binding motif protein 3 (RBM3) are two evolutionarily conserved RNA-binding proteins that are transcriptionally upregulated in response to low temperature. Featuring an RNA-recognition motif (RRM) and an arginine-glycine-rich (RGG) domain, these proteins display many similarities and specific disparities in the regulation of numerous molecular and cellular events. The resistance to serum withdrawal, endoplasmic reticulum stress, or other harsh conditions conferred by RBM3 has led to its reputation as a survival gene. Once CIRP protein is released from cells, it appears to bolster inflammation, contributing to poor prognosis in septic patients. A variety of human tumor specimens have been analyzed for CIRP and RBM3 expression. Surprisingly, RBM3 expression was primarily found to be positively associated with the survival of chemotherapy-treated patients, while CIRP expression was inversely linked to patient survival. In this comprehensive review, we summarize the evolutionary conservation of CIRP and RBM3 across species as well as their molecular interactions, cellular functions, and roles in diverse physiological and pathological processes, including circadian rhythm, inflammation, neural plasticity, stem cell properties, and cancer development.
Collapse
Affiliation(s)
- Xinzhou Zhu
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland
| | - Christoph Bührer
- Department of Neonatology, Charité University Medical Center, Berlin, Germany
| | - Sven Wellmann
- University Children's Hospital Basel (UKBB), Spitalstrasse 33, 4056, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
10
|
Devi L, Goel S. Fertility preservation through gonadal cryopreservation. Reprod Med Biol 2016; 15:235-251. [PMID: 29259441 PMCID: PMC5715865 DOI: 10.1007/s12522-016-0240-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Fertility preservation is an area of immense interest in today's society. The most effective and established means of fertility preservation is cryopreservation of gametes (sperm and oocytes) and embryos. Gonadal cryopreservation is yet another means for fertility preservation, especially if the gonadal function is threatened by premature menopause, gonadotoxic cancer treatment, surgical castration, or diseases. It can also aid in the preservation of germplasm of animals that die before attaining sexual maturity. This is especially of significance for valuable, rare, and endangered animals whose population is affected by high neonatal/juvenile mortality because of diseases, poor management practices, or inbreeding depression. Establishing genome resource banks to conserve the genetic status of wild animals will provide a critical interface between ex-situ and in-situ conservation strategies. Cryopreservation of gonads effectively lengthens the genetic lifespan of individuals in a breeding program even after their death and contributes towards germplasm conservation of prized animals. Although the studies on domestic animals are quite promising, there are limitations for developing cryopreservation strategies in wild animals. In this review, we discuss different options for gonadal tissue cryopreservation with respect to humans and to laboratory, domestic, and wild animals. This review also covers recent developments in gonadal tissue cryopreservation and transplantation, providing a systematic view and the advances in the field with the possibility for its application in fertility preservation and for the conservation of germplasm in domestic and wild species.
Collapse
Affiliation(s)
- Lalitha Devi
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular BiologyCouncil for Scientific and Industrial ResearchUppal Road500 007HyderabadIndia
| | - Sandeep Goel
- Laboratory for the Conservation of Endangered Species, Centre for Cellular and Molecular BiologyCouncil for Scientific and Industrial ResearchUppal Road500 007HyderabadIndia
| |
Collapse
|
11
|
Onofre J, Baert Y, Faes K, Goossens E. Cryopreservation of testicular tissue or testicular cell suspensions: a pivotal step in fertility preservation. Hum Reprod Update 2016; 22:744-761. [PMID: 27566839 PMCID: PMC5099994 DOI: 10.1093/humupd/dmw029] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/19/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Germ cell depletion caused by chemical or physical toxicity, disease or genetic predisposition can occur at any age. Although semen cryopreservation is the first reflex for preserving male fertility, this cannot help out prepubertal boys. Yet, these boys do have spermatogonial stem cells (SSCs) that able to produce sperm at the start of puberty, which allows them to safeguard their fertility through testicular tissue (TT) cryopreservation. SSC transplantation (SSCT), TT grafting and recent advances in in vitro spermatogenesis have opened new possibilities to restore fertility in humans. However, these techniques are still at a research stage and their efficiency depends on the amount of SSCs available for fertility restoration. Therefore, maintaining the number of SSCs is a critical step in human fertility preservation. Standardizing a successful cryopreservation method for TT and testicular cell suspensions (TCSs) is most important before any clinical application of fertility restoration could be successful. OBJECTIVE AND RATIONALE This review gives an overview of existing cryopreservation protocols used in different animal models and humans. Cell recovery, cell viability, tissue integrity and functional assays are taken into account. Additionally, biosafety and current perspectives in male fertility preservation are discussed. SEARCH METHODS An extensive PubMED and MEDline database search was conducted. Relevant studies linked to the topic were identified by the search terms: cryopreservation, male fertility preservation, (immature)testicular tissue, testicular cell suspension, spermatogonial stem cell, gonadotoxicity, radiotherapy and chemotherapy. OUTCOMES The feasibility of fertility restoration techniques using frozen-thawed TT and TCS has been proven in animal models. Efficient protocols for cryopreserving human TT exist and are currently applied in the clinic. For TCSs, the highest post-thaw viability reported after vitrification is 55.6 ± 23.8%. Yet, functional proof of fertility restoration in the human is lacking. In addition, few to no data are available on the safety aspects inherent to offspring generation with gametes derived from frozen-thawed TT or TCSs. Moreover, clarification is needed on whether it is better to cryopreserve TT or TCS. WIDER IMPLICATIONS Fertility restoration techniques are very promising and expected to be implemented in the clinic in the near future. However, inter-center variability needs to be overcome and the gametes produced for reproduction purposes need to be subjected to safety studies. With the perspective of a future clinical application, there is a dire need to optimize and standardize cryopreservation and safety testing before using frozen-thawed TT of TCSs for fertility restoration.
Collapse
Affiliation(s)
- J Onofre
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Y Baert
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - K Faes
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - E Goossens
- Biology of the Testis, Research Laboratory for Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
12
|
Enrichment and in vitro features of the putative gonocytes from cryopreserved testicular tissue of neonatal bulls. Andrology 2016; 4:1150-1158. [DOI: 10.1111/andr.12229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/29/2016] [Accepted: 05/06/2016] [Indexed: 12/16/2022]
|