1
|
Lai X, Liu R, Li M, Fan Y, Li H, Han G, Guo R, Ma H, Su H, Xing W. Participation of WD repeat-containing protein 54 (WDR54) in rat sperm-oocyte fusion through interaction with both IZUMO1 and JUNO. Theriogenology 2024; 214:286-297. [PMID: 37951137 DOI: 10.1016/j.theriogenology.2023.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Fertilization is a complex process that depends on the fusion of the cell membrane of sperm with that of oocyte, and it involves sperm-oocyte recognition, binding, and fusion, which are mediated by multiple proteins. Among those proteins, IZUMO1 and its receptor JUNO have been identified as essential factors for sperm-oocyte recognition and fusion. However, the interaction between IZUMO1 and JUNO alone does not lead to cell membrane fusion, suggesting the involvement of additional proteins in sperm-oocyte membrane fusion. In this study, we have discovered that a protein called WDR54, which consists of WD-repeat modules, is located on the cell membrane of sperm, as well as on the cell membrane and in the cytoplasm of the oocyte. We have found that WDR54 is involved in sperm-oocyte fertilization. When sperm and oocyte were treated with anti-WDR54 ascites, the in vitro fertilization (IVF) rate significantly decreased. Furthermore, our research has shown that WDR54 interacts with both IZUMO1 and JUNO, and it colocalizes with IZUMO1 on the surface of the sperm head and with JUNO on the oocyte surface. Through structural analysis of the putative complexes of WDR54-IZUMO1 and WDR54-JUNO, we infer that these three proteins could form a complex of JUNO-WDR54-IZUMO1-JUNO (referred to as the "JWIJ complex") on the oocyte surface. Our findings suggest that WDR54 is an important factor involved in sperm-oocyte adhesion and fusion. This discovery provides new insight into the mechanisms of mammalian sperm-oocyte adhesion and fusion.
Collapse
Affiliation(s)
- Xiong Lai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruizhuo Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Mengyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Yaochun Fan
- Inner Mongolia Comprehensive Center for Disease Control and Prevention, Hohhot, PR China
| | - Hongxia Li
- Inner Mongolia Key Laboratory of Molecular Pathology, School of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, PR China
| | - Guotao Han
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Ruijie Guo
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Hairui Ma
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot, PR China.
| |
Collapse
|
2
|
Xu K, Chen X, Yang H, Xu Y, He Y, Wang C, Huang H, Liu B, Liu W, Li J, Kou X, Zhao Y, Zhao K, Zhang L, Hou Z, Wang H, Wang H, Li J, Fan H, Wang F, Gao Y, Zhang Y, Chen J, Gao S. Maternal Sall4 Is Indispensable for Epigenetic Maturation of Mouse Oocytes. J Biol Chem 2016; 292:1798-1807. [PMID: 28031467 DOI: 10.1074/jbc.m116.767061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/09/2016] [Indexed: 12/24/2022] Open
Abstract
Sall4 (Splat-like 4) plays important roles in maintaining pluripotency of embryonic stem cells and in various developmental processes. Here, we find that Sall4 is highly expressed in oocytes and early embryos. To investigate the roles of SALL4 in oogenesis, we generated Sall4 maternal specific knock-out mice by using CRISPR/Cas9 system, and we find that the maternal deletion of Sall4 causes developmental arrest of oocytes at germinal vesicle stage with non-surrounded nucleus, and the subsequent meiosis resumption is prohibited. We further discover that the loss of maternal Sall4 causes failure in establishment of DNA methylation in oocytes. Furthermore, we find that Sall4 modulates H3K4me3 and H3K27me3 modifications by regulating the expression of key histone demethylases coding genes Kdm5b, Kdm6a, and Kdm6b in oocytes. Moreover, we demonstrate that the aberrant H3K4me3 and H3K27me3 cause mis-expression of genes that are critical for oocytes maturation and meiosis resumption. Taken together, our study explores a pivotal role of Sall4 in regulating epigenetic maturation of mouse oocytes.
Collapse
Affiliation(s)
- Kai Xu
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xia Chen
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hui Yang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yiwen Xu
- the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yuanlin He
- the State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Chenfei Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hua Huang
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baodong Liu
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqiang Liu
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jingyi Li
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaochen Kou
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Zhao
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kun Zhao
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Linfeng Zhang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhenzhen Hou
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hong Wang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hailin Wang
- the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Li
- the State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Hengyu Fan
- the Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Yawei Gao
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Zhang
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayu Chen
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Shaorong Gao
- From the Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|