1
|
Chen DM, Mastromonaco GF. The Evolution of Conservation Biobanking: A Literature Review and Analysis of Terminology, Taxa, Location, and Strategy of Wildlife Biobanks Over Time. Biopreserv Biobank 2025. [PMID: 39937106 DOI: 10.1089/bio.2024.0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Nearly one-third of flora, fauna, and funga species on Earth are threatened with extinction. In response, the prevalence of repositories-often called "biobanks" or "genome resource banks"-for storing biological materials from threatened species has become more widespread. This research examined trends for the (1) terminology, (2) taxa representation, (3) global distribution, and (4) operational approach of biobanks versus genome resource banks relating to zoos and wildlife. Our literature search results indicate that although genome resource banking literature began earlier in the 1990s, biobanking has seen a surge in publications with over 3.5× more literature for biobanking since 2020. Genome resource bank articles were highly focused on mammals (68%), while biobanking literature focused more on multi-taxonomic overviews and less-studied taxa. Our search parameters found the largest number of wildlife biobanks in Europe (18) and the lowest number in South America (2), though results are likely impacted by the search being completed in English. Additionally, only 28% (7/25) of global biodiversity hotspots contain a wildlife biobank based on our methodology. While not all wildlife biobanking efforts are published or reported, these findings suggest that (1) "biobank" will likely be the more widely used term in the future, (2) more biobanking research is needed for non-mammalian taxa, (3) there are geographical gaps in wildlife biobanks, and (4) conservation biobanking programs should focus on storing biospecimens from a wide set of individuals and develop assisted reproductive technologies concomitantly with the goal of maintaining healthy, sustainable populations in the long term.
Collapse
Affiliation(s)
- Devin M Chen
- Reproductive Science, Toronto Zoo, Toronto, Canada
| | | |
Collapse
|
2
|
Tennenbaum SR, Bortner R, Lynch C, Santymire R, Crosier A, Santiestevan J, Marinari P, Pukazhenthi BS, Comizzoli P, Hawkins MTR, Maldonado JE, Koepfli K, vonHoldt BM, DeCandia AL. Epigenetic changes to gene pathways linked to male fertility in ex situ black-footed ferrets. Evol Appl 2024; 17:e13634. [PMID: 38283602 PMCID: PMC10818088 DOI: 10.1111/eva.13634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024] Open
Abstract
Environmental variation can influence the reproductive success of species managed under human care and in the wild, yet the mechanisms underlying this phenomenon remain largely mysterious. Molecular mechanisms such as epigenetic modifiers are important in mediating the timing and progression of reproduction in humans and model organisms, but few studies have linked epigenetic variation to reproductive fitness in wildlife. Here, we investigated epigenetic variation in black-footed ferrets (Mustela nigripes), an endangered North American mammal reliant on ex situ management for survival and persistence in the wild. Despite similar levels of genetic diversity in human-managed and wild-born populations, individuals in ex situ facilities exhibit reproductive problems, such as poor sperm quality. Differences across these settings suggest that an environmentally driven decline in reproductive capacity may be occurring in this species. We examined the role of DNA methylation, one well-studied epigenetic modifier, in this emergent condition. We leveraged blood, testes, and semen samples from male black-footed ferrets bred in ex situ facilities and found tissue-type specificity in DNA methylation across the genome, although 1360 Gene Ontology terms associated with male average litter size shared functions across tissues. We then constructed gene networks of differentially methylated genomic sites associated with three different reproductive phenotypes to explore the putative biological impact of variation in DNA methylation. Sperm gene networks associated with average litter size and sperm count were functionally enriched for candidate genes involved in reproduction, development, and its regulation through transcriptional repression. We propose that DNA methylation plays an important role in regulating these reproductive phenotypes, thereby impacting the fertility of male ex situ individuals. Our results provide information into how DNA methylation may function in the alteration of reproductive pathways and phenotypes in artificial environments. These findings provide early insights to conservation hurdles faced in the protection of this rare species.
Collapse
Affiliation(s)
| | - Robyn Bortner
- U.S. Fish & Wildlife Service National Black‐Footed Ferret Conservation CenterCarrColoradoUSA
| | | | - Rachel Santymire
- Biology DepartmentGeorgia State UniversityAtlantaGeorgiaUSA
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Adrienne Crosier
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Jenny Santiestevan
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Paul Marinari
- Center for Animal Care SciencesSmithsonian's National Zoo & Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Budhan S. Pukazhenthi
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Pierre Comizzoli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
| | - Melissa T. R. Hawkins
- Division of Mammals, Department of Vertebrate ZoologyNational Museum of Natural HistoryWashingtonDCUSA
| | - Jesús E. Maldonado
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
| | - Klaus‐Peter Koepfli
- Center for Species SurvivalSmithsonian's National Zoo and Conservation Biology InstituteFront RoyalVirginiaUSA
- Smithsonian‐Mason School of ConservationGeorge Mason UniversityFront RoyalVirginiaUSA
| | | | - Alexandra L. DeCandia
- Center for Conservation GenomicsSmithsonian's National Zoo and Conservation Biology InstituteWashingtonDCUSA
- BiologyGeorgetown UniversityWashingtonDCUSA
| |
Collapse
|
3
|
Holt WV. Biobanks, offspring fitness and the influence of developmental plasticity in conservation biology. Anim Reprod 2023; 20:e20230026. [PMID: 37700907 PMCID: PMC10494884 DOI: 10.1590/1984-3143-ar2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 09/14/2023] Open
Abstract
Mitigation of the widely known threats to the world's biodiversity is difficult, despite the strategies and actions proposed by international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC) and the Convention on Biological Diversity (CBD). Nevertheless, many scientists devote their time and effort to finding and implementing various solutions to the problem. One potential way forward that is gaining popularity involves the establishment of biobank programs aimed at preserving and storing germplasm from threatened species, and then using it to support the future viability and health of threatened populations. This involves developing and using assisted reproductive technologies to achieve their goals. Despite considerable advances in the effectiveness of reproductive technologies, differences between the reproductive behavior and physiology of widely differing taxonomic groups mean that this approach cannot be applied with equal success to many species. Moreover, evidence that epigenetic influences and developmental plasticity, whereby it is now understood that embryonic development, and subsequent health in later life, can be affected by peri-conceptional environmental conditions, is raising the possibility that cryopreservation methods themselves may have to be reviewed and revised when planning the biobanks. Here, I describe the benefits and problems associated with germplasm biobanking across various species, but also offer some realistic assessments of current progress and applications.
Collapse
Affiliation(s)
- William Vincent Holt
- Academic Unit of Reproductive and Developmental Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
4
|
Holt WV, Comizzoli P. Conservation Biology and Reproduction in a Time of Developmental Plasticity. Biomolecules 2022; 12:1297. [PMID: 36139136 PMCID: PMC9496186 DOI: 10.3390/biom12091297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The objective of this review is to ask whether, and how, principles in conservation biology may need to be revisited in light of new knowledge about the power of epigenetics to alter developmental pathways. Importantly, conservation breeding programmes, used widely by zoological parks and aquariums, may appear in some cases to reduce fitness by decreasing animals' abilities to cope when confronted with the 'wild side' of their natural habitats. Would less comfortable captive conditions lead to the selection of individuals that, despite being adapted to life in a captive environment, be better able to thrive if relocated to a more natural environment? While threatened populations may benefit from advanced reproductive technologies, these may actually induce undesirable epigenetic changes. Thus, there may be inherent risks to the health and welfare of offspring (as is suspected in humans). Advanced breeding technologies, especially those that aim to regenerate the rarest species using stem cell reprogramming and artificial gametes, may also lead to unwanted epigenetic modifications. Current knowledge is still incomplete, and therefore ethical decisions about novel breeding methods remain controversial and difficult to resolve.
Collapse
Affiliation(s)
- William V. Holt
- Department of Oncology & Metabolism, The Medical School Beech Hill Road, Sheffield S10 2RX, UK
| | - Pierre Comizzoli
- Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
| |
Collapse
|
5
|
Bolton RL, Mooney A, Pettit MT, Bolton AE, Morgan L, Drake GJ, Appeltant R, Walker SL, Gillis JD, Hvilsom C. Resurrecting biodiversity: advanced assisted reproductive technologies and biobanking. REPRODUCTION AND FERTILITY 2022; 3:R121-R146. [PMID: 35928671 PMCID: PMC9346332 DOI: 10.1530/raf-22-0005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
Biodiversity is defined as the presence of a variety of living organisms on the Earth that is essential for human survival. However, anthropogenic activities are causing the sixth mass extinction, threatening even our own species. For many animals, dwindling numbers are becoming fragmented populations with low genetic diversity, threatening long-term species viability. With extinction rates 1000-10,000 times greater than natural, ex situ and in situ conservation programmes need additional support to save species. The indefinite storage of cryopreserved (-196°C) viable cells and tissues (cryobanking), followed by assisted or advanced assisted reproductive technology (ART: utilisation of oocytes and spermatozoa to generate offspring; aART: utilisation of somatic cell genetic material to generate offspring), may be the only hope for species' long-term survival. As such, cryobanking should be considered a necessity for all future conservation strategies. Following cryopreservation, ART/aART can be used to reinstate lost genetics back into a population, resurrecting biodiversity. However, for this to be successful, species-specific protocol optimisation and increased knowledge of basic biology for many taxa are required. Current ART/aART is primarily focused on mammalian taxa; however, this needs to be extended to all, including to some of the most endangered species: amphibians. Gamete, reproductive tissue and somatic cell cryobanking can fill the gap between losing genetic diversity today and future technological developments. This review explores species prioritisation for cryobanking and the successes and challenges of cryopreservation and multiple ARTs/aARTs. We here discuss the value of cryobanking before more species are lost and the potential of advanced reproductive technologies not only to halt but also to reverse biodiversity loss. Lay summary The world is undergoing its sixth mass extinction; however, unlike previous events, the latest is caused by human activities and is resulting in the largest loss of biodiversity (all living things on Earth) for 65 million years. With an extinction rate 1000-10,000-fold greater than natural, this catastrophic decline in biodiversity is threatening our own survival. As the number of individuals within a species declines, genetic diversity reduces, threatening their long-term existence. In this review, the authors summarise approaches to indefinitely preserve living cells and tissues at low temperatures (cryobanking) and the technologies required to resurrect biodiversity. In the future when appropriate techniques become available, these living samples can be thawed and used to reinstate genetic diversity and produce live young ones of endangered species, enabling their long-term survival. The successes and challenges of genome resource cryopreservation are discussed to enable a move towards a future of stable biodiversity.
Collapse
Affiliation(s)
- Rhiannon L Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | | | - Matt T Pettit
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- IMT International Limited, Tattenhall, Chester, UK
| | - Anthony E Bolton
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
| | - Lucy Morgan
- Gemini Genetics, Chapel Field Stud, Ash Lane, Whitchurch, UK
| | | | - Ruth Appeltant
- Nuffield Department of Women’s and Reproductive Health, University of Oxford, Women’s Centre, Level 3, John Radcliffe Hospital, Oxford, UK
| | - Susan L Walker
- Nature’s SAFE, Chapel Field Stud, Ash Lane, Whitchurch, Shropshire, UK
- Chester Zoo, Upton-by-Chester, UK
| | - James D Gillis
- South-East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA
| | | |
Collapse
|
6
|
Skorupski J. Fifty Years of Research on European Mink Mustela lutreola L., 1761 Genetics: Where Are We Now in Studies on One of the Most Endangered Mammals? Genes (Basel) 2020; 11:E1332. [PMID: 33187363 PMCID: PMC7696698 DOI: 10.3390/genes11111332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/28/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The purpose of this review is to present the current state of knowledge about the genetics of European mink Mustela lutreola L., 1761, which is one of the most endangered mammalian species in the world. This article provides a comprehensive description of the studies undertaken over the last 50 years in terms of cytogenetics, molecular genetics, genomics (including mitogenomics), population genetics of wild populations and captive stocks, phylogenetics, phylogeography, and applied genetics (including identification by genetic methods, molecular ecology, and conservation genetics). An extensive and up-to-date review and critical analysis of the available specialist literature on the topic is provided, with special reference to conservation genetics. Unresolved issues are also described, such as the standard karyotype, systematic position, and whole-genome sequencing, and hotly debated issues are addressed, like the origin of the Southwestern population of the European mink and management approaches of the most distinct populations of the species. Finally, the most urgent directions of future research, based on the research questions arising from completed studies and the implementation of conservation measures to save and restore M. lutreola populations, are outlined. The importance of the popularization of research topics related to European mink genetics among scientists is highlighted.
Collapse
Affiliation(s)
- Jakub Skorupski
- Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza 16 St., 70-383 Szczecin, Poland; ; Tel.: +48-914-441-685
- Polish Society for Conservation Genetics LUTREOLA, Maciejkowa 21 St., 71-784 Szczecin, Poland
| |
Collapse
|
7
|
Herrick JR. Assisted reproductive technologies for endangered species conservation: developing sophisticated protocols with limited access to animals with unique reproductive mechanisms. Biol Reprod 2020; 100:1158-1170. [PMID: 30770538 DOI: 10.1093/biolre/ioz025] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/11/2019] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Assisted reproductive technologies (ARTs) have been proposed as a means of overcoming the significant challenges of managing small, isolated populations of endangered species in zoos. However, efficient protocols for ARTs do not exist for most endangered species. This review will focus on research efforts to characterize unique reproductive mechanisms and develop species-specific ARTs. Central to these studies are assays to measure steroid metabolites in urine or feces and/or training programs to allow unrestrained blood collections and ultrasound evaluations. The resulting information about estrous cycle dynamics, combined with studies of semen collection and processing, provides the foundation for the development of artificial insemination (AI). In vitro fertilization and embryo transfer are also discussed in relation to the advantages these techniques could provide relative to AI, as well as the significant challenges involved with technologies that require oocytes and embryos. Finally, an argument is made for additional research of nontraditional model species (e.g., domestic cats and dogs) and the development of novel models representing unique taxa. Whether these species are studied by zoo-based researchers with the expressed intent of developing ARTs for conservation or academic scientists interested in basic biology, the resulting information will provide a unique, evolutionary perspective on reproduction that could have wide-reaching benefits. The more information we have available, the better our chances will be of developing effective ARTs and making a difference in conservation efforts for endangered species.
Collapse
Affiliation(s)
- Jason R Herrick
- Department of Reproductive Sciences, Omaha's Henry Doorly Zoo and Aquarium, 3701 S. 10th St., Omaha, NE 68107, USA
| |
Collapse
|
8
|
Witt RR, Rodger JJ, Rodger JC. Breeding in the fat-tailed dunnart following ovarian suppression with the gonadotrophin-releasing hormone agonist Lucrin ® Depot. Reprod Fertil Dev 2018. [PMID: 29530196 DOI: 10.1071/rd16518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Lucrin Depot (AbbVie), a 1-month microsphere gonadotrophin-releasing hormone (GnRH) agonist preparation, was investigated as a potential agent to synchronise cycling in the fat-tailed dunnart (Sminthopsis crassicaudata). Forty-eight randomly selected females were treated with 5 or 10mgkg-1 Lucrin Depot (n=24 per dose). Eighteen females per treatment had their reproductive activity scored at 4, 8, 12 and 16 weeks using two ovarian (Graafian follicle and corpus luteum status) and two reproductive tract (uterine and vaginal muscularity and vascularity) parameters that formed a reproductive activity score. Six females per treatment were paired with a male at 4 weeks. Fertility was assessed between 8 and 16 weeks by pouch check, and thereafter by dissection. The effects of the 5 and 10mgkg-1 doses were statistically equivalent. Females showed suppression at 4-8 weeks, an increase in reproductive activity at 8-12 weeks and all were cycling normally at 16 weeks. Six pouch young were born at 12 weeks to two females treated with the 5mgkg-1 dose. Nine embryos were recovered at 16 weeks from two females treated with the 10mgkg-1 dose. In conclusion, Lucrin Depot can suppress breeding, and fertile mating can occur in subsequent cycles in the dunnart. There is potential for Lucrin Depot to be used as an assisted breeding tool, but it may need to be combined with ovarian stimulation treatment to achieve practical levels of synchronisation in the fat-tailed dunnart.
Collapse
Affiliation(s)
- Ryan R Witt
- FAUNA Research Alliance, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - John J Rodger
- FAUNA Research Alliance, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - John C Rodger
- FAUNA Research Alliance, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| |
Collapse
|
9
|
Witt RR, Rodger JC. Recent advances in tools and technologies for monitoring and controlling ovarian activity in marsupials. Theriogenology 2017; 109:58-69. [PMID: 29254685 DOI: 10.1016/j.theriogenology.2017.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 11/30/2022]
Abstract
Components of assisted reproduction technologies (ART), such as sperm cryopreservation, artificial insemination, superovulation and pouch young surrogacy, have been developed for a range of Australian and American marsupials. However, methods to effectively control ovarian function, arguably the key limiting factors in applying and integrating ART as a practical tool in conservation management, remain poorly developed. This is largely due to unique characteristics of the marsupial corpus luteum and its failure to respond to agents used to synchronize ovarian function in eutherian mammals. This paper presents an overview of relevant aspects of marsupial reproductive biology across marsupial taxonomic groups including information on the long-established technique of removal of suckling young to activate ovarian cycles. Ovarian monitoring tools for marsupials are reviewed and their usefulness for ART assessed (laparotomy, hormone cycling, vaginal cytology, laparoscopy and ultrasonography). We also discuss promising recent work examining the potential of manipulating hypothalamic-pituitary function using GnRH agonists and antagonists as the basis of ovarian control (female synchronization) strategies.
Collapse
Affiliation(s)
- Ryan R Witt
- FAUNA Research Alliance, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - John C Rodger
- FAUNA Research Alliance, School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
10
|
Herrick JR, Mastromonaco G, Songsasen N, Comizzoli P. Biomaterials repositories: the science and business of biobanking. Reprod Fertil Dev 2016. [DOI: 10.1071/rdv28n8_fo] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|