1
|
Ducamp S, Sendamarai AK, Campagna DR, Chin DWL, Fujiwara Y, Schmidt PJ, Fleming MD. Murine models of erythroid 5ALA synthesis disorders and their conditional synthetic lethal dependency on pyridoxine. Blood 2024; 144:1418-1432. [PMID: 38900972 DOI: 10.1182/blood.2023023078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
ABSTRACT X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP) are uncommon diseases caused by loss-of-function and gain-of-function mutations, respectively, in the erythroid form of 5-aminolevulinic acid synthetase (ALAS), ALAS2, which encodes the first enzyme in heme biosynthesis. A related congenital sideroblastic anemia (CSA) is due to mutations in SLC25A38 (solute carrier family 25 member A38), which supplies mitochondrial glycine for ALAS2 (SLC25A38-CSA). The lack of viable animal models has limited the studies on pathophysiology and development of therapies for these conditions. Here, using CRISPR-CAS9 gene editing technology, we have generated knockin mouse models that recapitulate the main features of XLSA and XLPP; and using conventional conditional gene targeting in embryonic stem cells, we also developed a faithful model of the SLC25A38-CSA. In addition to examining the phenotypes and natural history of each disease, we determine the effect of restriction or supplementation of dietary pyridoxine (vitamin B6), the essential cofactor of ALAS2, on the anemia and porphyria. In addition to the well-documented response of XLSA mutations to pyridoxine supplementation, we also demonstrate the relative insensitivity of the XLPP/EPP protoporphyrias, severe sensitivity of the XLSA models, and an extreme hypersensitivity of the SLC25A38-CSA model to pyridoxine deficiency, a phenotype that is not shared with another mouse hereditary anemia model, Hbbth3/+ β-thalassemia intermedia. Thus, in addition to generating animal models useful for examining the pathophysiology and treatment of these diseases, we have uncovered an unsuspected conditional synthetic lethality between the heme synthesis-related CSAs and pyridoxine deficiency. These findings have the potential to inform novel therapeutic paradigms for the treatment of these diseases.
Collapse
Affiliation(s)
- Sarah Ducamp
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Anoop K Sendamarai
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Dean R Campagna
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | | | - Yuko Fujiwara
- Division of Hematology/Oncology at Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Seruggia D, Josa S, Fernández A, Montoliu L. The structure and function of the mouse tyrosinase locus. Pigment Cell Melanoma Res 2020; 34:212-221. [DOI: 10.1111/pcmr.12942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
- Division of Hematology/Oncology Boston Children's HospitalHarvard Medical School Boston MA USA
| | - Santiago Josa
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Almudena Fernández
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology National Centre for Biotechnology (CNB‐CSIC) Madrid Madrid Spain
- CIBERER‐ISCIII Madrid Spain
| |
Collapse
|
4
|
Seruggia D, Fernández A, Cantero M, Fernández-Miñán A, Gomez-Skarmeta JL, Pelczar P, Montoliu L. Boundary sequences flanking the mouse tyrosinase locus ensure faithful pattern of gene expression. Sci Rep 2020; 10:15494. [PMID: 32968154 PMCID: PMC7511308 DOI: 10.1038/s41598-020-72543-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Control of gene expression is dictated by cell-type specific regulatory sequences that physically organize the structure of chromatin, including promoters, enhancers and insulators. While promoters and enhancers convey cell-type specific activating signals, insulators prevent the cross-talk of regulatory elements within adjacent loci and safeguard the specificity of action of promoters and enhancers towards their targets in a tissue specific manner. Using the mouse tyrosinase (Tyr) locus as an experimental model, a gene whose mutations are associated with albinism, we described the chromatin structure in cells at two distinct transcriptional states. Guided by chromatin structure, through the use of Chromosome Conformation Capture (3C), we identified sequences at the 5' and 3' boundaries of this mammalian gene that function as enhancers and insulators. By CRISPR/Cas9-mediated chromosomal deletion, we dissected the functions of these two regulatory elements in vivo in the mouse, at the endogenous chromosomal context, and proved their mechanistic role as genomic insulators, shielding the Tyr locus from the expression patterns of adjacent genes.
Collapse
Affiliation(s)
- Davide Seruggia
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Almudena Fernández
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Marta Cantero
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain
- CIBERER-ISCIII, Madrid, Spain
| | - Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - José Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel, Switzerland
| | - Lluis Montoliu
- Department of Molecular and Cellular Biology, National Centre for Biotechnology (CNB-CSIC), Campus de Cantoblanco, Darwin 3, 28049, Madrid, Spain.
- CIBERER-ISCIII, Madrid, Spain.
| |
Collapse
|
5
|
Qu P, Zhao Y, Wang R, Zhang Y, Li L, Fan J, Liu E. Extracellular vesicles derived from donor oviduct fluid improved birth rates after embryo transfer in mice. Reprod Fertil Dev 2019; 31:324-332. [PMID: 30196804 DOI: 10.1071/rd18203] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/07/2018] [Indexed: 12/15/2022] Open
Abstract
Embryo transfer (ET) is an important procedure for assisted reproduction. However, the relatively lower success rate of ET hampers its application potential. In this study we aimed to elucidate the effects of extracellular vesicles derived from donor oviduct fluid (EDOF) on embryo development after ET. Extracellular vesicles from the oviduct were isolated and purified using ultracentrifugation and identified using transmission electron microscopy, NanoSight, bicinchoninic acid (BCA) protein assay and western blotting. The results revealed that extracellular vesicles were present in donor oviduct fluid in higher concentrations (P<0.05) and contained more proteins (P<0.05) than extracellular vesicles derived from recipient oviduct fluid (EROF). EDOF or EROF were supplemented in an ET medium (ETM) and the results showed that EDOF significantly improved birth rate via resisting apoptosis and promoting differentiation. In conclusion, our study indicated that there are differences in EDOF and EROF and that supplementing EDOF to ETM can improve the efficiency of ET; improved ET efficiency promotes the use of gene editing and benefits assisted reproductive technology and animal welfare.
Collapse
Affiliation(s)
- Pengxiang Qu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| | - Yuelei Zhao
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| | - Yali Zhang
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| | - Lu Li
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Enqi Liu
- Laboratory Animal Centre, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, China
| |
Collapse
|
6
|
Moore SG, Hasler JF. A 100-Year Review: Reproductive technologies in dairy science. J Dairy Sci 2018; 100:10314-10331. [PMID: 29153167 DOI: 10.3168/jds.2017-13138] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 07/11/2017] [Indexed: 11/19/2022]
Abstract
Reproductive technology revolutionized dairy production during the past century. Artificial insemination was first successfully applied to cattle in the early 1900s. The next major developments involved semen extenders, invention of the electroejaculator, progeny testing, addition of antibiotics to semen during the 1930s and 1940s, and the major discovery of sperm cryopreservation with glycerol in 1949. The 1950s and 1960s were particularly productive with the development of protocols for the superovulation of cattle with both pregnant mare serum gonadotrophin/equine chorionic gonadotrophin and FSH, the first successful bovine embryo transfer, the discovery of sperm capacitation, the birth of rabbits after in vitro fertilization, and the development of insulated liquid nitrogen tanks. Improved semen extenders and the replacement of glass ampules with plastic semen straws followed. Some of the most noteworthy developments in the 1970s included the initial successes with in vitro culture of embryos, calves born after chromosomal sexing as embryos, embryo splitting resulting in the birth of twins, and development of computer-assisted semen analysis. The 1980s brought flow cytometric separation of X- and Y-bearing sperm, in vitro fertilization leading to the birth of live calves, clones produced by nuclear transfer from embryonic cells, and ovum pick-up via ultrasound-guided follicular aspiration. The 20th century ended with the birth of calves produced from AI with sexed semen, sheep and cattle clones produced by nuclear transfer from adult somatic cell nuclei, and the birth of transgenic cloned calves. The 21st century has seen the introduction of perhaps the most powerful biotechnology since the development of artificial insemination and cryopreservation. Quick, inexpensive genomic analysis via the use of single nucleotide polymorphism genotyping chips is revolutionizing the cattle breeding industry. Now, with the introduction of genome editing technology, the changes are becoming almost too rapid to fully digest.
Collapse
Affiliation(s)
- S G Moore
- Division of Animal Sciences, University of Missouri, Columbia 65211.
| | - J F Hasler
- Vetoquinol USA, Fort Worth, TX; 427 Obenchain Rd., Laporte, CO 80535
| |
Collapse
|
7
|
Tibary A. Grand Challenge Animal Reproduction-Theriogenology: From the Bench to Application to Animal Production and Reproductive Medicine. Front Vet Sci 2017; 4:114. [PMID: 28770218 PMCID: PMC5511824 DOI: 10.3389/fvets.2017.00114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ahmed Tibary
- Department of Veterinary Clinical Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|