1
|
Liu J, Feng G, Guo C, Li Z, Liu D, Liu G, Zou X, Sun B, Guo Y, Deng M, Li Y. Identification of functional circRNAs regulating ovarian follicle development in goats. BMC Genomics 2024; 25:893. [PMID: 39342142 PMCID: PMC11439210 DOI: 10.1186/s12864-024-10834-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
BARKGROUND Circular RNAs (circRNAs) play important regulatory roles in a variety of biological processes in mammals. Multiple birth-traits in goats are affected by several factors, but the expression and function of circRNAs in follicular development of goats are not clear. In this study, we aimed to investigate the possible regulatory mechanisms of circRNA and collected five groups of large follicles (Follicle diameter > 6 mm) and small follicles (1 mm < Follicle diameter < 3 mm) from Leizhou goats in estrus for RNA sequencing. RESULTS RNA sequencing showed that 152 circRNAs were differentially expressed in small and large follicles. Among them, 101 circRNAs were up-regulated in large follicles and 51 circRNAs were up-regulated in small follicles. GO and KEGG enrichment analyses showed that parental genes of the differential circRNAs were significantly enriched in important pathways, such as ovarian steroidogenesis, GnRH signaling pathway, animal autophagy and oxytocin signalling pathway. BioSignal analysis revealed that 152 differentially expressed circRNAs could target 91 differential miRNAs including miR-101 family (chi-miR-101-3p, chi-miR-101-5p), miR-202 family (chi-miR-202-5p, chi-miR-202-3p),60 circRNAs with translation potential. Based on the predicted sequencing results, the ceRNA networks chicirc_008762/chi-miR-338-3p/ARHGAP18 and chicirc_040444/chi-miR-338-3p/STAR were constructed in this study. Importantly, the new gene circCFAP20DC was first discovered in goats. The EDU assay and flow cytometry results indicated that circCFAP20DC enhanced the proliferation of follicular granulosa cells(GCs). Real-time quantitative PCR and western blotting assays showed that circCFAP20DC activated the Retinoblastoma(RB) pathway and promoted the progression of granulosa cells from G1 to S phase. CONCLUSION Differential circRNAs in goat size follicles may have important biological functions for follicular development. The novel gene circCFAP20DC activates the RB pathway, promoting the progression of GCs from G1 to S phase. This, in turn, enhances the proliferation of follicular GCs in goats.
Collapse
Affiliation(s)
- Jie Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guanghang Feng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Conghui Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihan Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Dewu Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Guangbin Liu
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Zou
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Baoli Sun
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yongqing Guo
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Deng
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Yaokun Li
- Herbivore Laboratory, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- National Joint Engineering Research Center, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory of Agricultural Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li X, Yao X, Li K, Guo J, Deng K, Liu Z, Yang F, Fan Y, Yang Y, Zhu H, Wang F. CREB1 Is Involved in miR-134-5p-Mediated Endometrial Stromal Cell Proliferation, Apoptosis, and Autophagy. Cells 2023; 12:2554. [PMID: 37947633 PMCID: PMC10649013 DOI: 10.3390/cells12212554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The successful establishment of endometrial receptivity is a key factor in ensuring the fertility of ewes and their economic benefits. Hu sheep have attracted attention due to their high fecundity and year-round estrus. In this study, we found that in the luteal phase, the uterine gland density, uterine coefficient, and number of uterine caruncles of high-fertility Hu sheep were higher than those of low-fertility Hu sheep. Thousands of differentially expressed genes were identified in the endometrium of Hu sheep with different fertility potential using RNA sequencing (RNA-Seq). Several genes involved in endometrial receptivity were screened using bioinformatics analysis. The qRT-PCR analysis further revealed the differential expression of cAMP reactive element binding protein-1 (CREB1) in the Hu sheep endometrium during the estrous cycle. Functionally, our results suggested that CREB1 significantly affected the expression level of endometrial receptivity marker genes, promoted cell proliferation by facilitating the transition from the G1 phase to the S phase, and inhibited cell apoptosis and autophagy. Moreover, we observed a negative linear correlation between miR-134-5p and CREB1 in the endometrium. In addition, CREB1 overexpression prevented the negative effect of miR-134-5p on endometrial stromal cell (ESC) growth. Taken together, these data indicated that CREB1 was regulated by miR-134-5p and may promote the establishment of uterine receptivity by regulating the function of ESCs. Moreover, this study provides new theoretical references for identifying candidate genes associated with fertility.
Collapse
Affiliation(s)
- Xiaodan Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolei Yao
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Li
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahe Guo
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaiping Deng
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhipeng Liu
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Yang
- Hu Sheep Academy, Nanjing Agricultural University, Nanjing 210095, China; (X.L.)
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingnan Yang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Feng Wang
- Jiangsu Livestock Embryo Engineering Laboratory, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Liang S, Liu S, Song J, Lin Q, Zhao S, Li S, Li J, Liang S, Wang J. HMCDA: a novel method based on the heterogeneous graph neural network and metapath for circRNA-disease associations prediction. BMC Bioinformatics 2023; 24:335. [PMID: 37697297 PMCID: PMC10494331 DOI: 10.1186/s12859-023-05441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/08/2023] [Indexed: 09/13/2023] Open
Abstract
Circular RNA (CircRNA) is a type of non-coding RNAs in which both ends are covalently linked. Researchers have demonstrated that many circRNAs can act as biomarkers of diseases. However, traditional experimental methods for circRNA-disease associations identification are labor-intensive. In this work, we propose a novel method based on the heterogeneous graph neural network and metapaths for circRNA-disease associations prediction termed as HMCDA. First, a heterogeneous graph consisting of circRNA-disease associations, circRNA-miRNA associations, miRNA-disease associations and disease-disease associations are constructed. Then, six metapaths are defined and generated according to the biomedical pathways. Afterwards, the entity content transformation, intra-metapath and inter-metapath aggregation are implemented to learn the embeddings of circRNA and disease entities. Finally, the learned embeddings are used to predict novel circRNA-disase associations. In particular, the result of extensive experiments demonstrates that HMCDA outperforms four state-of-the-art models in fivefold cross validation. In addition, our case study indicates that HMCDA has the ability to identify novel circRNA-disease associations.
Collapse
Affiliation(s)
- Shiyang Liang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
- Department of Internal Medicine, The No. 944 Hospital of Joint Logistic Support Force of PLA, Xiongguan Road, Jiuquan, China
| | - Siwei Liu
- Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Junliang Song
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
| | - Qiang Lin
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
| | - Shihong Zhao
- Department of Respiratory Medicine, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
| | - Shuaixin Li
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
| | - Jiahui Li
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China
| | - Shangsong Liang
- Department of Machine Learning, Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
| | - Jingjie Wang
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University, Xinsi Road, Xi'an, China.
| |
Collapse
|
4
|
Zhou C, Cheng X, Meng F, Wang Y, Luo W, Zheng E, Cai G, Wu Z, Li Z, Hong L. Identification and characterization of circRNAs in peri-implantation endometrium between Yorkshire and Erhualian pigs. BMC Genomics 2023; 24:412. [PMID: 37488487 PMCID: PMC10364396 DOI: 10.1186/s12864-023-09414-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND One of the most critical periods for the loss of pig embryos is the 12th day of gestation when implantation begins. Recent studies have shown that non-coding RNAs (ncRNAs) play important regulatory roles during pregnancy. Circular RNAs (circRNAs) are a kind of ubiquitously expressed ncRNAs that can directly regulate the binding proteins or regulate the expression of target genes by adsorbing micro RNAs (miRNA). RESULTS We used the Illumina Novaseq6,000 technology to analyze the circRNA expression profile in the endometrium of three Erhualian (EH12) and three Yorkshire (YK12) pigs on day 12 of gestation. Overall, a total of 22,108 circRNAs were identified. Of these, 4051 circRNAs were specific to EH12 and 5889 circRNAs were specific to YK12, indicating a high level of breed specificity. Further analysis showed that there were 641 significant differentially expressed circRNAs (SDEcircRNAs) in EH12 compared with YK12 (FDR < 0.05). Functional enrichment of differential circRNA host genes revealed many pathways and genes associated with reproduction and regulation of embryo development. Network analysis of circRNA-miRNA interactions further supported the idea that circRNAs act as sponges for miRNAs to regulate gene expression. The prediction of differential circRNA binding proteins further explored the potential regulatory pathways of circRNAs. Analysis of SDEcircRNAs suggested a possible reason for the difference in embryo survival between the two breeds at the peri-implantation stage. CONCLUSIONS Together, these data suggest that circRNAs are abundantly expressed in the endometrium during the peri-implantation period in pigs and are important regulators of related genes. The results of this study will help to further understand the differences in molecular pathways between the two breeds during the critical implantation period of pregnancy, and will help to provide insight into the molecular mechanisms that contribute to the establishment of pregnancy and embryo loss in pigs.
Collapse
Affiliation(s)
- Chen Zhou
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Xinyan Cheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Fanming Meng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
| | - Yongzhong Wang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Wanyun Luo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| | - Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, 510642, China.
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou, 510640, China.
- Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, China.
| |
Collapse
|
5
|
Integrating Analysis to Identify Differential circRNAs Involved in Goat Endometrial Receptivity. Int J Mol Sci 2023; 24:ijms24021531. [PMID: 36675045 PMCID: PMC9865150 DOI: 10.3390/ijms24021531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Endometrial receptivity is one of the main factors underlying a successful pregnancy, with reports substantiating the fact that suboptimal endometrial receptivity accounts for two-thirds of early implantation event failures. The association between circRNAs and endometrial receptivity in the goat remains unclear. This study aims to identify potential circRNAs and regulatory mechanisms related to goat endometrial receptivity. Therefore, the endometrial samples on day 16 of pregnancy and day 16 of the estrous cycle were analyzed using high-throughput RNA-seq and bioinformatics. The results show that 4666 circRNAs were identified, including 7 downregulated and 11 upregulated differentially expressed circRNAs (DE-circRNAs). Back-splicing and RNase R resistance verified the identified circRNAs. We predicted the competing endogenous RNA (ceRNA) regulatory mechanism and potential target genes of DE-circRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of these predicted target genes suggest that DE-circRNAs were significantly involved in establishing endometrial receptivity. Furthermore, Sanger sequencing, qPCR, correlation analysis and Fluorescence in Situ Hybridization (FISH) show that circ_MYRF derived from the host gene myelin regulatory factor (MYRF) might regulate the expression of interferon stimulating gene 15 (ISG15), thereby promoting the formation of endometrial receptivity. These novel findings may contribute to a better understanding of the molecular mechanisms regulating endometrial receptivity and promoting the maternal recognition of pregnancy (MRP).
Collapse
|
6
|
Li CY, Ma W, Liu KP, Yang JW, Wang XB, Wu Z, Zhang T, Wang JW, Liu W, Liu J, Liang Y, Zhang XK, Li JJ, Guo JH, Li LY. CircRNA and miRNA expression profiles during remote ischemic postconditioning attenuate brain ischemia/reperfusion injury. Brain Res Bull 2022; 185:39-48. [PMID: 35452749 DOI: 10.1016/j.brainresbull.2022.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/14/2022] [Accepted: 04/17/2022] [Indexed: 12/14/2022]
Abstract
Remote ischemic postconditioning (RIPostC) is a protective procedure for brain damage caused by ischemia/reperfusion (IR), yet the mechanism of this treatment remains to be elucidated. Circular RNAs (circRNAs) are endogenous non-coding RNAs that have recently been recognized to play vital roles in ischemic brain injury. The aim of this study was to explore the role of circRNAs in the protective mechanism of RIPostC and to analyze the circRNA-microRNA (miRNA) regulation network in RIPostC. Nine rats were assigned randomly into three groups (three rats per group): sham, IR, and RIPostC. Their brain tissues were extracted for next-generation RNA sequencing and bioinformatics analysis was performed for two comparisons: sham vs. IR and IR vs. RIPostC. The expression patterns of selected circRNAs and miRNAs were validated by quantitative real-time PCR (qPCR). We detected 82 upregulated and 51 downregulated circRNAs and 137 upregulated and 127 downregulated miRNAs in the IR group compared with the sham group, and 41 upregulated and 100 downregulated circRNAs and 45 upregulated and 64 downregulated miRNAs in the RIPostC group compared with the IR group. The proposed competitive endogenous RNA (ceRNA) network, which included 24 circRNAs, 20 miRNAs, and 145 mRNAs, indicated that the dysregulated circRNAs played important roles in brain IR injury. On the basis of the expression patterns of selected circRNAs, miRNAs, and mRNAs obtained by qPCR, we proposed a circRNA_0002286-miR-124-3p-VLCAD pathway. In PC12 cell, the expression level of miR-124-3p was significantly upregulated when the expression of circRNA_0002286 was repressed and the expression level of VLCAD (very-long chain acyl-CoA dehydrogenase) was significantly downregulated, which suggested that circRNA_0002286 may act as a miRNA sponge for miR-124-3p to regulate the expression of VLCAD. We found that upregulation of circRNA_0002286 attenuated IR injury and was associated with downregulation of miR-124-3p and upregulation of VLCAD. This is the first time that circRNAs have been shown to be closely related to brain IR injury and RIPostC and suggests that targeting the circRNA_0002286-miR-124-3p-VLCAD pathway might attenuate brain IR injury.
Collapse
Affiliation(s)
- Chun-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China; Department of Neurology, Second Affiliated Hospital of Kunming Medical University, Yunnan Kunming 650101, China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Kuang-Pin Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jin-Wei Yang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Xian-Bin Wang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Zhen Wu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Tong Zhang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Jia-Wei Wang
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China
| | - Wei Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jie Liu
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Yu Liang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Xing-Kui Zhang
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jun-Jun Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Yunnan Kunming 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Yunnan Kunming 650500, China.
| |
Collapse
|
7
|
Cao X, Xu X, Dong J, Xue Y, Sun L, Zhu Y, Liu T, Jin Q. Genome-wide identification and functional analysis of circRNAs in Trichophyton rubrum conidial and mycelial stages. BMC Genomics 2022; 23:21. [PMID: 34983376 PMCID: PMC8725419 DOI: 10.1186/s12864-021-08184-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022] Open
Abstract
Background Circular RNAs (circRNAs) are a group of noncoding RNAs that participate in gene expression regulation in various pathways. The essential roles of circRNAs have been revealed in many species. However, knowledge of circRNAs in fungi is still not comprehensive. Results Trichophyton rubrum (T. rubrum) is considered a model organism of human pathogenic filamentous fungi and dermatophytes. In this study, we performed a genome-wide investigation of circRNAs in T. rubrum based on high-throughput sequencing and ultimately identified 4254 circRNAs. Most of these circRNAs were specific to the conidial or mycelial stage, revealing a developmental stage-specific expression pattern. In addition, 940 circRNAs were significantly differentially expressed between the conidial and mycelial stages. PCR experiments conducted on seven randomly selected differentially expressed (DE-) circRNAs confirmed the circularized structures and relative expression levels of these circRNAs. Based on their genome locations, most circRNAs originated from intergenic regions, unlike those in plants and animals. Furthermore, we constructed circRNA-miRNA-mRNA regulatory networks that included 661 DE-circRNAs targeting 140 miRNAs and further regulating 2753 mRNAs. The relative expression levels of two randomly selected circRNA-miRNA-mRNA axes were investigated by qRT-PCR, and the competing endogenous RNA (ceRNA) network theory was validated. Functional enrichment analysis of the target genes suggested that they were significantly involved in posttranscriptional processes and protein synthesis as well as some small-molecule metabolism processes. CircRNAs are relatively more conserved in closely related dermatophytes but rarely conserved in distantly related species. Tru_circ07138_001 is a highly conserved circRNA that was conserved in all ten dermatophytes analyzed in our study and three distantly related species. Its host gene TERG_07138 was also highly conserved in two of these distantly related species Gallus gallus and Caenorhabditis elegans. The specific role of this circRNA deserves further exploration. Conclusions Our study is the first to provide a global profile of circRNAs in T. rubrum as well as dermatophytes. These results could serve as valuable resources for research on circRNA regulatory mechanisms in fungi and reveal new insights for further investigation of the physical characteristics of these significant human fungal pathogens. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08184-y.
Collapse
Affiliation(s)
- Xingwei Cao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Xingye Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Ying Xue
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| | - Tao Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| | - Qi Jin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
8
|
Hui T, Zheng Y, Yue C, Wang Y, Bai Z, Sun J, Cai W, Zhang X, Bai W, Wang Z. Screening of cashmere fineness-related genes and their ceRNA network construction in cashmere goats. Sci Rep 2021; 11:21977. [PMID: 34753940 PMCID: PMC8578607 DOI: 10.1038/s41598-021-01203-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Competitive endogenous RNA (ceRNA) is a transcript that can be mutually regulated at the post-transcriptional level by competing shared miRNAs. The ceRNA network connects the function of protein-encoded mRNA with the function of non-coding RNA, such as microRNA (miRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). However, compared with the ceRNA, the identification and combined analysis of lncRNAs, mRNAs, miRNAs, and circRNAs in the cashmere fineness have not been completed. Using RNA-seq technology, we first identified the miRNAs presented in Liaoning Cashmere Goat (LCG) skin, and then analyzed the mRNAs, lncRNAs, circRNAs expressed in LCG and Inner Mongolia cashmere goat (MCG) skin. As a result, 464 known and 45 new miRNAs were identified in LCG skin. In LCG and MCG skin, 1222 differentially expressed mRNAs were identified, 170 differentially expressed lncRNAs and 32 differentially expressed circRNAs were obtained. Then, qRT-PCR was used to confirm further the representative lncRNAs, mRNAs, circRNAs and miRNAs. In addition, miRanda predicted the relationships of ceRNA regulatory network among lncRNAs, circRNAs, miRNAs and mRNAs, the potential regulatory effects were investigated by Go and KEGG analysis. Through the screening and analysis of the results, the ceRNA network regulating cashmere fineness was constructed. LncRNA MSTRG14109.1 and circRNA452 were competed with miRNA-2330 to regulated the expression of TCHH, KRT35 and JUNB, which may provide a potential basis for further research on the process of regulating the cashmere fineness.
Collapse
Affiliation(s)
- Taiyu Hui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuanyuan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chang Yue
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanru Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhixian Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaming Sun
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinjiang Zhang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenlin Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
9
|
Li Z, He X, Zhang X, Zhang J, Guo X, Sun W, Chu M. Analysis of Expression Profiles of CircRNA and MiRNA in Oviduct during the Follicular and Luteal Phases of Sheep with Two Fecundity ( FecB Gene) Genotypes. Animals (Basel) 2021; 11:ani11102826. [PMID: 34679847 PMCID: PMC8532869 DOI: 10.3390/ani11102826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
CircRNA and miRNA, as classes of non-coding RNA, have been found to play pivotal roles in sheep reproduction. There are many reports of circRNA and miRNA in the ovary and uterus, but few in the oviduct. In this study, RNA-Seq was performed to analyze the expression profile of circRNA and miRNA in the oviduct during the follicular phase and luteal phase of sheep with FecBBB and FecB++ genotypes. The results showed that a total of 3223 circRNAs and 148 miRNAs were identified. A total of 15 DE circRNAs and 40 DE miRNAs were found in the comparison between the follicular phase and luteal phase, and 1 DE circRNA and 18 DE miRNAs were found in the comparison between the FecBBB genotype and FecB++ genotype. GO and KEGG analyses showed that the host genes of DE circRNAs were mainly enriched in the Rap1 signaling pathway, PI3K-Akt signaling pathway and neuroactive ligand-receptor interactions. Novel_circ_0004065, novel_circ_0005109, novel_circ_0012086, novel_circ_0014274 and novel_circ_0001794 were found to be possibly involved in the oviductal reproduction process. GO and KEGG analyses showed that the target genes of DE miRNAs were mainly enriched in insulin secretion, the cAMP signaling pathway, the cGMP-PKG signaling pathway, the Rap1 signaling pathway and the TGF-β signaling pathway, and the target genes LPAR1, LPAR2, FGF18, TACR3, BMP6, SMAD4, INHBB, SKP1 and TGFBR2 were found to be associated with the reproductive process. Miranda software was used to identify 27 miRNAs that may bind to 13 DE circRNAs, including miR-22-3p (target to novel_circ_0004065), miR-127, miR-136 (target to novel_circ_0000417), miR-27a (target to novel_circ_0014274) and oar-miR-181a (target to novel_circ_ 0017815). The results of this study will help to elucidate the regulatory mechanisms of circRNAs and miRNAs in sheep reproduction. Our study, although not establishing direct causal relationships of the circRNA and miRNA changes, enriches the sheep circRNA and miRNA database and provides a basis for further studies on sheep reproduction.
Collapse
Affiliation(s)
- Zhifeng Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Xiaofei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China; (X.Z.); (J.Z.); (X.G.)
| | - Wei Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.L.); (X.H.)
- Correspondence: (W.S.); (M.C.); Tel.: +86-0514-8797-9213 (W.S.); +86-010-6281-9850 (M.C.)
| |
Collapse
|
10
|
Mao X, Cao Y, Guo Z, Wang L, Xiang C. Biological roles and therapeutic potential of circular RNAs in osteoarthritis. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:856-867. [PMID: 34026329 PMCID: PMC8131397 DOI: 10.1016/j.omtn.2021.04.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The regulatory functions of non-coding RNAs (long non-coding RNAs, microRNAs [miRNAs], and circular RNAs [circRNAs]) in OA progression have attracted considerable attention, and the function of circular RNAs in the context of OA has been an increasingly popular research topic in the last 6 years. Recent studies have reported that various circRNAs can delay or aggravate diverse aspects of the OA process, including extracellular matrix formation, apoptosis, proliferation, inflammation, and autophagy, via circRNA/miRNA/mRNA pathways. Thus, circRNAs and related pathways are potential therapeutic targets for OA. Our review provides comprehensive information about circRNAs, including their biogenesis, functions, and characteristics, and it reveals their critical roles in the pathogenesis of OA via a large regulatory network of sponges. Considering their regulatory functions and characteristics, we hypothesize that circRNAs not only can be transferred through bodily fluids to serve as diagnostic biomarkers, but they can also be released from mesenchymal stem cell-derived exosomes and delivered to OA chondrocytes acting as therapeutic circRNAs. Further investigations of the in-depth molecular mechanisms of action of circRNAs in OA are expected to provide effective and safe OA treatment strategies.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Yanyan Cao
- MicroNano System Research Center, Taiyuan University of Technology, Taiyuan, China.,College of Information Science and Engineering, Hebei North University, Zhangjiakou 075000, China
| | - Zijian Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chuan Xiang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan 030000, China
| |
Collapse
|
11
|
Tu J, Yang H, Chen Y, Chen Y, Chen H, Li Z, Li L, Zhang Y, Chen X, Yu Z. Current and Future Roles of Circular RNAs in Normal and Pathological Endometrium. Front Endocrinol (Lausanne) 2021; 12:668073. [PMID: 34122342 PMCID: PMC8187767 DOI: 10.3389/fendo.2021.668073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/11/2021] [Indexed: 01/20/2023] Open
Abstract
The uterine endometrium, which lines the mammalian uterus, is essential for embryo implantation. This lining undergoes significant changes during sexual and menstrual cycles. The endometrium is also associated with hormone-related diseases such as endometriosis and endometrial cancer. Circular RNAs (circRNAs) play a role in various biological processes. Recent studies have determined that circRNAs function in both normal and pathological endometrial environments. Here, we review high-throughput studies pertaining to circRNAs as well as individual circRNAs active in the endometrium, in order to explore the myriad functions of circRNAs in the endometrium and mechanisms underlying these functions, from panoramic and individual perspectives. Owing to their abundant expression, stability, and small size, circRNAs have displayed potential usefulness as diagnostic markers and treatment targets for endometrial-related diseases. Therefore, the specific role of circRNAs in the endometrium warrants systematic investigation in the future.
Collapse
Affiliation(s)
- Jiajie Tu
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
- *Correspondence: Jiajie Tu, ; Zhiying Yu,
| | - Huan Yang
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yu Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - He Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhe Li
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Yuanyuan Zhang
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaochun Chen
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiying Yu
- Department of Gynecology, Shenzhen Second People’s Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Jiajie Tu, ; Zhiying Yu,
| |
Collapse
|
12
|
Ma Y, Xu Y, Zhang J, Zheng L. Biogenesis and functions of circular RNAs and their role in diseases of the female reproductive system. Reprod Biol Endocrinol 2020; 18:104. [PMID: 33148278 PMCID: PMC7640390 DOI: 10.1186/s12958-020-00653-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
A member of the newly discovered RNA family, circular RNA (circRNA) is considered as the intermediate product of by-product splicing or abnormal RNA splicing. With the development of RNA sequencing, circRNA has recently drawn research interest. CircRNA exhibits stability, species conservatism, and tissue cell specificity. It acts as a miRNA sponge in the circRNA-microRNA (miRNA-mRNA axis, which can regulate gene transcription and protein translation. Studies have confirmed that circRNA is ubiquitous in eukaryotic cells, which play an important role in the regulation of human gene expression and participate in the occurrence and development of various human diseases. CircRNA may be closely related to the occurrence and development of female reproductive system diseases. By analyzing the biological functions and mechanism of circRNA, we find that circRNA has certain development prospects as biomarkers of the female reproductive system diseases. The production and degradation of circRNA, biological functions, and their association with the occurrence of diseases of female reproductive system are reviewed in this article.
Collapse
Affiliation(s)
- Yalan Ma
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Xu
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jingshun Zhang
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Lianwen Zheng
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
13
|
Huang Y, Wang Y, Zhang C, Sun X. Biological functions of circRNAs and their progress in livestock and poultry. Reprod Domest Anim 2020; 55:1667-1677. [DOI: 10.1111/rda.13816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Yanli Wang
- Development Planning Office Henan University of Science and Technology Luoyang China
| | - Cai Zhang
- College of Animal Science and Technology Henan University of Science and Technology Luoyang China
| | - Xihong Sun
- Development Planning Office Henan University of Science and Technology Luoyang China
| |
Collapse
|
14
|
Zhu C, Jiang Y, Zhu J, He Y, Yin H, Duan Q, Zhang L, Cao B, An X. CircRNA8220 Sponges MiR-8516 to Regulate Cell Viability and Milk Synthesis via Ras/MEK/ERK and PI3K/AKT/mTOR Pathways in Goat Mammary Epithelial Cells. Animals (Basel) 2020; 10:ani10081347. [PMID: 32759741 PMCID: PMC7459788 DOI: 10.3390/ani10081347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Yield and quality of goat milk are important indexes for screening dairy goat breeds. Therefore, it is necessary for us to improve the yield and quality of goat milk. In this study, we demonstrated that circRNA8220/miR-8516/STC2 could promote the synthesis of β-casein and triglyceride through PI3K/AKT/mTOR pathway. In addition, we found that circRNA8220/miR-8516/STC2 also promote proliferation via Ras/MEK/ERK pathway in goat mammary epithelial cells (GMECs). These findings contribute to a better understanding of circRNA-controlled breast development and lactation mechanisms and provide new potential insights into the regulation of breast development and milk composition in dairy goats. Abstract Circular RNAs (circRNAs), which are considered a large class of endogenous noncoding RNAs, function as regulators in various biological procedures. In this study, the function and molecular mechanisms of circRNA8220 in goat mammary epithelial cells (GMECs) were explored. CircRNA8220 could spong miR-8516 and block the function of miR-8516 by binding to the target site of miR-8516 a negative feedback relationship existed between circRNA8220 and miR-8516. Stanniocalcin 2 (STC2) was a target gene of miR-8516. circRNA8220 could up-regulate the expression of STC2 by sponging miR-8516 in GMECs. circRNA8220/miR-8516/STC2 could promote proliferation and enhance the synthesis of β-casein and triglycerides (TG) via Ras/MEK/ERK and PI3K/AKT/mTOR signaling pathways, respectively.
Collapse
|
15
|
Yang L, Xue H, Sun Y, Zhang L, Xue F, Ge R. CircularRNA-9119 protects hepatocellular carcinoma cells from apoptosis by intercepting miR-26a/JAK1/STAT3 signaling. Cell Death Dis 2020; 11:605. [PMID: 32732872 PMCID: PMC7393165 DOI: 10.1038/s41419-020-02807-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is a more common malignancy than the majority of cancers and ranks second in the world’s top causes of cancer-related mortality. The objective of the study was to investigate and explain how circularRNA-9119 (circ9119) regulated the properties of HCC cell lines. Cancer cells isolated from HCC patients and HCC cell lines showed clearly upregulated expression of circ9119 and Janus kinase 1 (JAK1) with decreased levels of miR-26a compared to healthy controls and normal hepatic cells. To determine the function of circ9119, circ9119 was silenced in HCC cells, resulting in significantly less proliferation of HCC cells and increasing apoptosis. Circ9119 silencing also resulted in the upregulation of miR-26a. Bioinformatics prediction and dual-luciferase reporter assays showed that circ9119 targeted miR-26a. Further studies revealed that miR-26a had the opposite effect on circ9119; the inhibition of miR-26a antagonized circ9119 silencing, leading to reduced cell proliferation and increased apoptosis, while the ectopic overexpression of miR-26a impaired cell growth. Additionally, we found that the JAK1 3′-UTR was targeted by miR-26a; a decrease in the levels of JAK1 protein and mRNA followed transfection of a miR-26a mimic. Administration of the JAK1 inhibitor, baricitinib, caused the activation of signal transducer and activator of transcription 3 (STAT3) and revealed an effect similar to that of circ9119 silencing on cell proliferation and apoptosis. These results showed that circ9119 could modulate apoptosis, and broadly, cell proliferation by competitively binding miR-26a, which targeted JAK1-STAT3, in HCC cell lines. This study is a novel description of circ9119 regulation of HCC.
Collapse
Affiliation(s)
- Lixue Yang
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Hui Xue
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Yanfu Sun
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Lei Zhang
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Feng Xue
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| | - Ruiliang Ge
- Department of Hepatic Surgery II, Eastern Hepatobiliary Surgery Hospital, Shanghai, China.
| |
Collapse
|
16
|
Beltrán-García J, Osca-Verdegal R, Nacher-Sendra E, Pallardó FV, García-Giménez JL. Circular RNAs in Sepsis: Biogenesis, Function, and Clinical Significance. Cells 2020; 9:cells9061544. [PMID: 32630422 PMCID: PMC7349763 DOI: 10.3390/cells9061544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/08/2023] Open
Abstract
Sepsis is a life-threatening condition that occurs when the body responds to an infection that damages it is own tissues. The major problem in sepsis is rapid, vital status deterioration in patients, which can progress to septic shock with multiple organ failure if not properly treated. As there are no specific treatments, early diagnosis is mandatory to reduce high mortality. Despite more than 170 different biomarkers being postulated, early sepsis diagnosis and prognosis remain a challenge for clinicians. Recent findings propose that circular RNAs (circRNAs) may play a prominent role in regulating the patients’ immune system against different pathogens, including bacteria and viruses. Mounting evidence also suggests that the misregulation of circRNAs is an early event in a wide range of diseases, including sepsis. Despite circRNA levels being altered in sepsis, the specific mechanisms controlling the dysregulation of these noncoding RNAs are not completely elucidated, although many factors are known to affect circRNA biogenesis. Therefore, there is a need to explore the molecular pathways that lead to this disorder. This review describes the role of this new class of regulatory RNAs in sepsis and the feasibility of using circRNAs as diagnostic biomarkers for sepsis, opening up new avenues for circRNA-based medicine.
Collapse
Affiliation(s)
- Jesús Beltrán-García
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.-G.); (F.V.P.)
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain;
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, 46010 València, Spain;
| | - Rebeca Osca-Verdegal
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain;
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, 46010 València, Spain;
| | - Elena Nacher-Sendra
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, 46010 València, Spain;
| | - Federico V. Pallardó
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.-G.); (F.V.P.)
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain;
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, 46010 València, Spain;
| | - José Luis García-Giménez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain; (J.B.-G.); (F.V.P.)
- Instituto de Investigación Sanitaria INCLIVA, 46010 Valencia, Spain;
- Departamento de Fisiología, Facultad de Medicina y Odontología, Universitat de València, 46010 València, Spain;
- Correspondence:
| |
Collapse
|
17
|
Chen C, Yin P, Hu S, Sun X, Li B. Circular RNA-9119 protects IL-1β-treated chondrocytes from apoptosis in an osteoarthritis cell model by intercepting the microRNA-26a/PTEN axis. Life Sci 2020; 256:117924. [PMID: 32522568 DOI: 10.1016/j.lfs.2020.117924] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/23/2020] [Accepted: 06/05/2020] [Indexed: 12/11/2022]
Abstract
AIMS Osteoarthritis (OA) is a common degenerative joint disease characterized by cartilage degeneration and joint inflammation. As its pathogenesis remains unclear, there are no effective treatments established. Circular RNA (circRNA), microRNA (miRNA), and other noncoding RNAs participate in OA development; however, the effects and mechanisms of circRNA and miRNA in OA remain unknown. MAIN METHODS Cartilage miRNA was examined in patients with and without OA. KEY FINDINGS CircRNA-9119 and phosphatase and tensin homolog (PTEN) expression decreased in OA-affected cartilage and interleukin (IL)-1β-induced chondrocytes, and miR-26a expression significantly decreased in normal cells and tissues. CircRNA-9119 overexpression restored chondrocyte growth, whereas IL-1β treatment impaired chondrocyte growth. Annexin V-FITC & PI flow cytometry and Bcl-2/Bax ratio measurement indicated that the apoptosis of IL-1β-treated articular chondrocytes was decreased by circRNA-9119 upregulation. Bioinformatic prediction and the dual-luciferase reporter assay indicated that circRNA-9119 served as a miR-26a sponge and that miR-26a targeted the 3'-UTR of PTEN. Transfection of chondrocytes with a circRNA-9119-overexpressing vector revealed downregulation of miR-26a expression. Furthermore, circRNA-9119 overexpression induced PTEN expression. In addition, a miR-26a mimic induced IL-1β-induced chondrocyte apoptosis, and circRNA-9119 overexpression inhibited IL-1β-induced chondrocyte apoptosis. SIGNIFICANCE CircRNA-9119 is an important regulator of IL-1β-treated chondrocytes through the miR-26a/PTEN axis, possibly contributing to OA development.
Collapse
Affiliation(s)
- Changjian Chen
- Joint Surgical Department, The Second Hospital of Dalian Medical University, China
| | - Peng Yin
- Orthopedic Trauma Department, The Second Hospital of Dalian Medical University, China
| | - Shengxiong Hu
- Orthopedic Surgery, People's Hospital of Huangyuan County, Qinghai Province, China
| | - Xuegang Sun
- Orthopedic Surgery, The Second Hospital of Dalian Medical University, China.
| | - Baowen Li
- Joint Surgical Department, The Second Hospital of Dalian Medical University, China.
| |
Collapse
|
18
|
Liu H, Huang X, Mor G, Liao A. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci 2020; 77:2091-2101. [PMID: 31813015 PMCID: PMC11105058 DOI: 10.1007/s00018-019-03395-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 09/24/2019] [Accepted: 11/25/2019] [Indexed: 01/08/2023]
Abstract
Decidualization is a critical event for the blastocyst implantation, placental development and fetal growth and the normal term. In mice, the embryo implantation to the uterine epithelial would trigger the endometrial stromal cells to differentiate into decidual stromal cells. However, decidualization in women takes place from the secretory phase of each menstrual cycle and continues to early pregnancy if there is conceptus. Deficient decidualization is often associated with pregnancy specific complications and reproductive disorders. Dramatic changes occur in the gene expression profiles during decidualization, which is coordinately regulated by steroid hormones, growth factors, and molecular and epigenetic mechanisms. Recently, emerging evidences showed that epigenetic modifications, mainly including DNA methylation, histone modification, and non-coding RNAs, play an important role in the decidualization process via affecting the target genes' expression. In this review, we will focus on the epigenetic modifications in decidualization and open novel avenues to predict and treat the pregnancy complications caused by abnormal decidualization.
Collapse
Affiliation(s)
- Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Xiaobo Huang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
| | - Gil Mor
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, USA
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Rd, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
19
|
Liu X, Zhang L, Yang L, Cui J, Che S, Liu Y, Han J, An X, Cao B, Song Y. miR-34a/c induce caprine endometrial epithelial cell apoptosis by regulating circ-8073/CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. J Cell Physiol 2020; 235:10051-10067. [PMID: 32474960 DOI: 10.1002/jcp.29821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 02/06/2023]
Abstract
microRNAs (miRNAs) and circular RNAs (circRNAs) are important for endometrial receptivity establishment and embryo implantation in mammals. miR-34a and miR-34c are highly expressed in caprine receptive endometrium (RE). Herein, the functions and mechanisms of miR-34a/c in caprine endometrial epithelial cell (CEEC) apoptosis and RE establishment were investigated. miR-34a/c downregulated the expression level of centrosomal protein 55 (CEP55) and were sponged by circRNA8073 (circ-8073), thereby exhibiting a negative interaction in CEEC. miR-34a/c induced CEEC apoptosis by targeting circ-8073/CEP55 through the regulation of the RAS/RAF/MEK/ERK and phosphoitide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathways. Positive and negative feedback loops and cross-talk were documented between the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. miR-34a/c regulated the levels of RE marker genes, including forkhead box M1, vascular endothelial growth factor, and osteopontin (OPN). These results suggest that miR-34a/c not only induce CEEC apoptosis by binding to circ-8073 and CEP55 via the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways, but may also regulate RE establishment in dairy goats.
Collapse
Affiliation(s)
- Xiaorui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Lichun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jiuzeng Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sicheng Che
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuexia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jincheng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Jin Z, Ren J, Qi S. RETRACTED: Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 2020; 78:105946. [PMID: 31784400 DOI: 10.1016/j.intimp.2019.105946] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figures 2E, 3D and F, 4B, E+G, 5D+I, and 6D+F, which appear to have a similar phenotype as contained in many other publications, detailed here: https://pubpeer.com/publications/73C0A79F5EDF9ECC9818CE2D9B2A09; and here: https://docs.google.com/spreadsheets/d/1r0MyIYpagBc58BRF9c3luWNlCX8VUvUuPyYYXzxWvgY/edit#gid=262337249. The provenance of the flow cytometry data in Figure 5A was also questioned, as it appeared to have histograms that were hand drawn. The journal requested the corresponding author comment on these concerns and provide the raw data. The authors did not respond to this request and therefore the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China.
| | - Jiaan Ren
- Department of Orthopaedics, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Shanlun Qi
- Department of Orthopaedics, Dashiqiao Central Hospital, Yingkou 115100, PR China
| |
Collapse
|
21
|
Kong S, Zhou C, Bao H, Ni Z, Liu M, He B, Huang L, Sun Y, Wang H, Lu J. Epigenetic control of embryo-uterine crosstalk at peri-implantation. Cell Mol Life Sci 2019; 76:4813-4828. [PMID: 31352535 PMCID: PMC11105790 DOI: 10.1007/s00018-019-03245-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 06/28/2019] [Accepted: 07/23/2019] [Indexed: 01/05/2023]
Abstract
Embryo implantation is one of the pivotal steps during mammalian pregnancy, since the quality of embryo implantation determines the outcome of ongoing pregnancy and fetal development. A large number of factors, including transcription factors, signalling transduction components, and lipids, have been shown to be indispensable for embryo implantation. Increasing evidence also suggests the important roles of epigenetic factors in this critical event. This review focuses on recent findings about the involvement of epigenetic regulators during embryo implantation.
Collapse
Affiliation(s)
- Shuangbo Kong
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Chan Zhou
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haili Bao
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Zhangli Ni
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Mengying Liu
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Bo He
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Lin Huang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Yang Sun
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Haibin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| | - Jinhua Lu
- Reproductive Medical Center, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China.
| |
Collapse
|
22
|
La Y, Tang J, Di R, Wang X, Liu Q, Zhang L, Zhang X, Zhang J, Hu W, Chu M. Differential Expression of Circular RNAs in Polytocous and Monotocous Uterus during the Reproductive Cycle of Sheep. Animals (Basel) 2019; 9:ani9100797. [PMID: 31615050 PMCID: PMC6827132 DOI: 10.3390/ani9100797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The uterus is an important reproductive organ that provides nutrition and place for embryonic development. In this study, we identified circular RNAs by deep sequencing and analyzed their expression in the uteri of polytocous and monotocous sheep (FecB++) during follicular and luteal phases. Gene Ontology (GO) and KEGG enrichment analyses revealed that the source genes of these differential circular RNAs (circRNAs) were mainly enriched in reproductive hormone- and energy metabolism-related pathways. These results provide information on the molecular mechanisms of sheep prolificacy. Abstract CircRNA plays important roles in cell proliferation, differentiation, autophagy and apoptosis during development. However, there are few reports on circRNAs related to livestock reproduction. In this study, we identified circRNAs by deep sequencing and analyzed their expression in the uteri of polytocous and monotocous sheep (FecB++) during follicular and luteal phases. There were 147 and 364 circRNAs with differential expression in the follicular and luteal phases, respectively. GO and KEGG enrichment analysis was performed for the host genes of the circRNAs to predict the functions of differentially expressed circRNAs. These source genes were mainly involved in the estrogen signaling pathway, TGFβ signaling pathway, GnRH signaling pathway, oxytocin signaling pathway, pentose phosphate pathway, and starch and sucrose metabolism related to reproduction and energy metabolism. CircRNA expression patterns were validated by RT-qPCR. Our findings provide a solid foundation for the identification and characterization of key important circRNAs involved in reproduction.
Collapse
Affiliation(s)
- Yongfu La
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Jishun Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qiuyue Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaosheng Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China.
| | - Wenping Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
23
|
Zhang Z, Zhang X, Zhang Y, Li J, Xing Z, Zhang Y. Spinal circRNA-9119 Suppresses Nociception by Mediating the miR-26a-TLR3 Axis in a Bone Cancer Pain Mouse Model. J Mol Neurosci 2019; 70:9-18. [PMID: 31368062 DOI: 10.1007/s12031-019-01378-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022]
Abstract
Altered expression of circular RNA (circRNA) is recognized as a contributor to malignant pain where microRNA (miRNA) exerts an essential effect. We generated a murine model for bone malignancy pain in which 2472 osteolytic sarcoma cells were injected into the femurs of mice. CircRNA microarray and quantitative PCR (qPCR) and revealed that circ9119 expression was repressed in the spinal cord of bone malignancy pain model mice, which is the first relay site involved in the transmission of nociceptive information to the cerebrum of mice that receive spinal analgesics for malignancy pain. Overexpression of circ9119 by plasmid injection in the model mice reduced progressive thermal hyperalgesia and mechanical hyperalgesia. Bioinformatics prediction and dual-luciferase reporter assay showed that circ9119 functions as a sponge of miR-26a, which targets the TLR3 3'-untranslated region. Furthermore, expression of miR-26a was elevated and TLR3 level was repressed in bone malignancy pain model mice, which were counteracted by circ9119 in the spinal cord of tumor-bearing mice. Moreover, excessive expression of miR-26a was involved in the recovery of mice from progressive thermal hyperalgesia and mechanical hyperalgesia triggered via circ9119. TLR3 knockdown in bone malignancy pain model mice thoroughly impaired pain in the initial stages and reduced the effects of circ9119 on hyperalgesia. Our research findings indicate that targeting the circ9119-miR-26a-TLR3 axis may be a promising analgesic strategy to manage malignancy pain.
Collapse
Affiliation(s)
- Zhongqi Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China
| | - Xiaoxia Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China
| | - Yanjing Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China
| | - Jiyuan Li
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China
| | - Zumin Xing
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China.
| | - Yiwen Zhang
- Department of Anesthesiology, Shunde Hospital of Southern Medical University, No. 1 Lunjiaojiazi Road, Shunde District, Foshan, 528308, Guangdong, China.
| |
Collapse
|
24
|
Shen J, Chen L, Cheng J, Jin X, Mu Y, Li Q, Xia L, Gao Y, Xia Y. Circular RNA sequencing reveals the molecular mechanism of the effects of acupuncture and moxibustion on endometrial receptivity in patients undergoing infertility treatment. Mol Med Rep 2019; 20:1959-1965. [PMID: 31257480 DOI: 10.3892/mmr.2019.10386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to determine the profile of differentially expressed circular RNAs (circRNAs) in infertile patients treated with acupuncture and moxibustion and verify the role of acupuncture and moxibustion in altering endometrial receptivity (ER). High‑throughput RNA sequencing and bioinformatics analysis of samples from six pairs of patients treated with or without acupuncture and moxibustion were conducted. The reliability of high‑throughput RNA sequencing was validated using reverse transcription‑quantitative PCR. The most significant circRNA functions and pathways were selected by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. A circRNA‑miR‑mRNA interaction network was constructed to determine the connection between circRNAs, microRNAs (miRs), and mRNAs. High‑throughput RNA sequencing identified 2,653 circRNAs. A total of 86 circRNAs was differentially expressed, of which 57 were upregulated and 29 were downregulated, between the acupuncture and moxibustion group and the control group. In the GO analysis, the identified BP terms were chromatin modification, positive regulation of transcription from RNA polymerase II promoter involved in unfolded protein response, oxidative DNA demethylation, regulation of transcription from RNA polymerase II promoter in response to hypoxia, and regulation of smooth muscle cell differentiation. The identified CC terms were nucleoplasm, nucleolus, nucleus, histone acetyltransferase complex, and annulate lamellae. The identified MF terms were methylcytosine dioxygenase activity, chromatin binding, zinc ion binding, histone binding, and protein binding. In the KEGG pathway analysis, the identified pathways were protein processing in endoplasmic reticulum, degradation of aromatic compounds, shigellosis, mTOR signaling pathway, bacterial invasion of epithelial cells, and prostate cancer. Circ‑SFMBT2, circ‑BACH1, and circ‑LPAR1 were significantly upregulated (P<0.05) and associated with numerous miRs and mRNAs. Acupuncture and moxibustion could impact ER by regulating the expression of circRNAs.
Collapse
Affiliation(s)
- Jie Shen
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Li Chen
- Reproductive Medical Center of Nanjing Jinling Hospital and The Collaborative Innovation Platform for Reproductive Biology and Technology, Nanjing University School of Medicine, Nanjing, Jiangsu 210002, P.R. China
| | - Jie Cheng
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xun Jin
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yanyun Mu
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Qian Li
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Liangjun Xia
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Youling Gao
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Youbing Xia
- The Second Clinical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
25
|
Qin L, Lin J, Xie X. CircRNA-9119 suppresses poly I:C induced inflammation in Leydig and Sertoli cells via TLR3 and RIG-I signal pathways. Mol Med 2019; 25:28. [PMID: 31195953 PMCID: PMC6567632 DOI: 10.1186/s10020-019-0094-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022] Open
Abstract
Background Circular RNAs (circRNAs) contribute to the epigenetic modulation of pathological and physiological conditions. The understanding of the impact of circRNAs on generation of testicular inflammatory reactions is insufficient. Methods Our research adopted a poly I:C-triggered testicular inflammation murine model and cell assays. Results Microarray data and quantitative evaluation revealed the elevation in the concentrations of Toll-like receptor 3 (TLR3), circRNA-9119, and retinoic acid inducible gene-I (RIG-I) and repression in the levels of miR-136 and miR-26a. Inhibition of circRNA-9119 expression impaired the inflammatory reactions in the separated Leydig and Sertoli cells subjected to poly I:C treatment. CircRNA-9119 suppressed the expression of miR-136 and miR-26a by acting as a microRNA sponge. miR-136 and miR-26a repressed the expression of RIG-I and TLR3 through the expected target region in Leydig and Sertoli cells in vitro. Inhibition of miR-136 and miR-26a expression, at least in part, restored the expression of inflammatory cytokines, which were inhibited upon circRNA-9119 expression silencing. Furthermore, the expression of circRNA-9119 was positively associated with RIG-I and TLR3 mRNA and protein levels. The expression of inflammatory genes triggered by poly I:C treatment was noticeably suppressed after RIG-I and TLR3 knockout. Conclusions Our results suggest that circRNA-9119 may serve as a competing endogenous RNA that insulated miR-136 and miR-26a and consequently defended RIG-I and TLR3 mRNAs against miR-26a/miR-136-mediated inhibition of testicular cells. Moreover, RIG-I and TLR3 contributed to the modulation of poly I:C-triggered inflammatory cytokine generation during orchitis in testicular cells. Electronic supplementary material The online version of this article (10.1186/s10020-019-0094-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Le Qin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Jie Lin
- Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, Wenzhou, China
| | - Xiaoxiao Xie
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No. 109, West College Road, Lucheng District, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
26
|
Circular RNAs in gynecological disease: promising biomarkers and diagnostic targets. Biosci Rep 2019; 39:BSR20181641. [PMID: 30996117 PMCID: PMC6522738 DOI: 10.1042/bsr20181641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 03/28/2019] [Accepted: 04/14/2019] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a category of RNA molecules with covalently closed circles lacking both a 5′ cap and a 3′ tail. In recent years, circRNAs have attracted much attention and become a research hotspot of the RNA field following miRNAs and lncRNAs. CircRNAs exhibit tissue specificity, structural stability, and evolutionary conservation. Although the biological effects of circRNAs are still underestimated, many studies have shown that circRNAs have functions including regulation of transcription, translation into proteins and miRNA sponges. In this review, we briefly described the biogenesis and function of circRNAs and present circular transcripts in gynecological disease.
Collapse
|
27
|
Zhang P, Ming Y, Ye Q, Niu Y. Comprehensive circRNA expression profile during ischemic postconditioning attenuating hepatic ischemia/reperfusion injury. Sci Rep 2019; 9:264. [PMID: 30670716 PMCID: PMC6342922 DOI: 10.1038/s41598-018-36443-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Ischemic postconditioning (IPO) attenuates hepatic ischemia/reperfusion (I/R) injury. The aim of this study was to explore the role of circular RNAs (circRNAs) in the protective mechanism of IPO. In this study, microarray hybridization analysis was performed to determine the circRNA expression profile. Briefly, a total of 1599 dysregulated circRNAs were detected. The competitive endogenous RNA (ceRNA) network, including 6 circRNAs, 47 miRNAs and 90 mRNAs, indicated that the potential “housekeeping” function of circRNAs is dysregulated in hepatic I/R injury. Based on the validation results of selected circRNAs, miRNAs and mRNAs following qRT-PCR amplification, the mmu_circRNA_005186-miR-124-3p-Epha2 pathway was constructed. Dual-luciferase reporter analysis showed that miR-124-3p interacted directly with mmu_circRNA_005186 and Epha2 through the predicted binding sites, which suggested that mmu_circRNA_005186, serving as a miRNA sponge for miR-124-3p, regulated the expression of Epha2. Functionally, we explored the mechanism of mmu_circRNA_005186 in LPS-treated RAW264.7 cells which simulated the inflammation in hepatic I/R injury. We found that mmu_circRNA_005186 silencing attenuated the LPS-induced inflammation and was associated with miR-124-3p upregulation and Epha2 downregulation. Our study is the first to show that circRNAs are closely related to hepatic I/R injury and IPO and suggests that targeting mmu_circRNA_005186-miR-124-3p-Epha2 pathway might attenuate hepatic I/R injury.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yingzi Ming
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qifa Ye
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China. .,Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, Hubei, 430071, China.
| | - Ying Niu
- Department of Transplant Surgery, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|