1
|
Foxes at your front door? Habitat selection and home range estimation of suburban red foxes (Vulpes vulpes). Urban Ecosyst 2022. [DOI: 10.1007/s11252-022-01252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractThe red fox (Vulpes vulpes) is one of the most adaptable carnivorans, thriving in cities across the globe. We used GPS-tracking of five suburban foxes across high-density residential suburbs of Perth, Western Australia to quantify (1) their habitat selection and (2) home range area. All five foxes showed statistically significant avoidance of residential locations (p < 0.001) and preference for parkland (p < 0.001), with native vegetation reserves, golf courses, and water reserves showing disproportionately greater use. Landuse category also influenced their movements, with foxes moving quickest (i.e., commuting) in proximity to roads and slowest (i.e., foraging) when they were further from roads. Three females had core home ranges (50% autocorrelated-corrected kernel density estimate; AKDEc) averaging 37 ± 20 ha or 95% AKDEc averaging 208 ± 196 ha. One male had a 95 ha core home range and 349 ha 95% AKDEc but the other male covered an area ~ 20 times this: using a 371 ha core home range and 7,368 ha 95% AKDEc. The extensive movement patterns we describe are likely to be common for urban foxes, with half of published home range estimates for urban foxes (principally based on VHF data) excluding data for ‘lost’ individuals or animals that showed ‘excursions’. It is likely that the home range estimates for these urban exploiters have therefore been grossly underestimated to date. Further application of GPS trackers that allow remote download will vastly improve our understanding of habitat preference and exploitation of resources by urban foxes.
Collapse
|
2
|
Brieger F, Kämmerle JL, Hagen R, Suchant R. Behavioural reactions to oncoming vehicles as a crucial aspect of wildlife-vehicle collision risk in three common wildlife species. ACCIDENT; ANALYSIS AND PREVENTION 2022; 168:106564. [PMID: 35183917 DOI: 10.1016/j.aap.2021.106564] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Wildlife-vehicle collisions (WVC) strongly impact road safety. While technical aspects of collision risk and the effects of roads on animal populations are well studied, knowledge about wildlife behaviour prior to and during contact with oncoming vehicles as a crucial aspect of collision risk is still lacking. We analysed 28,400 hours of video data (thermal network cameras at 14 road sections in south-west Germany) with 2,841 animal-vehicle encounters (1,960 roe deer, Capreolus capreolus, 696 red fox, Vulpes vulpes and 185 wild boar, Sus scrofa) and classified animal behaviour before and during contact with a vehicle. We fitted two sets of models to the data. In the first step, we modelled the intensity of the behavioural reaction exhibited by the animals as a function of behavioural and environmental predictors using ordinal Bayesian mixed-effect regression models. In a second step, we modelled the probability of a positive vs. a negative behavioural response in terms of WVC risk using binomial mixed-effect regression models. Both the intensity of behavioural reactions as well as the degree of risk during the interaction with oncoming vehicles differed among the species and as a function of road section layout. Our results showed that animal attentiveness, the behaviour a priori, access to cover, vehicle type and biological seasonality were important predictors of an animal's response to oncoming vehicles. More specifically, roe deer reacted to oncoming vehicles mostly with short movements away from the road, foxes often reacted unpredictably and wild boar behaviour appeared to be least affected by oncoming vehicles. Thus, we suggest that collision risk for common European mammals is shaped by the interplay of vehicle type, the road layout as well as the species-specific behavioural repertoire including the attentiveness of the animal and the behavioural state prior to an approaching vehicle. In addition, wildlife warning reflectors, a frequently used technique in WVC mitigation, did not alter behavioural reactions and thus failed to reduce WVC risk.
Collapse
Affiliation(s)
- Falko Brieger
- Wildlife Institute, Forest Research Institute of Baden-Wuerttemberg, Wonnhaldestraße 4, 79100 Freiburg, Germany.
| | - Jim-Lino Kämmerle
- Wildlife Institute, Forest Research Institute of Baden-Wuerttemberg, Wonnhaldestraße 4, 79100 Freiburg, Germany; Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacherstraße 4, 79106 Freiburg, Germany
| | - Robert Hagen
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Rudi Suchant
- Wildlife Institute, Forest Research Institute of Baden-Wuerttemberg, Wonnhaldestraße 4, 79100 Freiburg, Germany
| |
Collapse
|
3
|
Fardell LL, Nano CEM, Pavey CR, Dickman CR. Small Prey Animal Foraging Behaviors in Landscapes of Fear: Effects of Predator Presence and Human Activity Along an Urban Disturbance Gradient. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.805891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Urban environments provide the only or best habitats that are left for wildlife in many areas, promoting increased interest in urban conservation and a need to understand how wildlife cope with urban stressors, such as altered predator activity and human disturbance. Here, we used filmed giving-up density experiments to investigate behavioral coping responses of foraging small prey animals at three sites (close, mid, and far) along an urban disturbance gradient. Our study design included “natural” and experimentally added stressor cues of predators and/or human disturbance. We observed small mammal foraging behaviors, particularly: the common brushtail possum (Trichosurus vulpecula), northern brown bandicoot (Isoodon macrourus), brown antechinus (Antechinus stuartii), black rat (Rattus rattus), and brown rat (Rattus norvegicus), and to a lesser degree several species of native birds. We found that at the close urban-edge environment, coping responses to human disturbances were most pronounced, and predator cues from the red fox (Vulpes vulpes) were perceived as least risky. However, at the mid environment, red fox cues were perceived as most risky, especially when combined with human disturbance. At the far environment, domestic cat (Felis catus) cues were perceived as most risky, again when combined with human disturbance. Impacts from the combined stressors of predator and human disturbance cues appeared to be additive, with higher risk being perceived with increasing distance from urban build-up. Behavioral adjustments were observed to be the primary response to stressors by small prey animals in the close environment. In the mid environment, slight temporal shifts in activity across the night were more evident. In the far environment, habitat components were likely being used differently as the primary coping response to stressors. As mostly the same species were observed along the disturbance gradient, our results suggest a level of response plasticity that is calibrated to the level of exposure to a stressor and the stressor type. To maximize conservation outcomes in urban habitats, we therefore propose that management should be sensitive to the level and history of human disturbance, as this affects the coping responses of wildlife that remain.
Collapse
|
4
|
Henderson T, Fancourt BA, Rajaratnam R, Vernes K, Ballard G. Spatial and temporal interactions between endangered spotted‐tailed quolls and introduced red foxes in a fragmented landscape. J Zool (1987) 2021. [DOI: 10.1111/jzo.12919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- T. Henderson
- Ecosystem Management School of Environmental and Rural Science University of New England Armidale NSW Australia
| | - B. A. Fancourt
- Ecosystem Management School of Environmental and Rural Science University of New England Armidale NSW Australia
| | - R. Rajaratnam
- Geography and Planning School of Humanities and Social Science University of New England Armidale NSW Australia
| | - K. Vernes
- Ecosystem Management School of Environmental and Rural Science University of New England Armidale NSW Australia
| | - G. Ballard
- Ecosystem Management School of Environmental and Rural Science University of New England Armidale NSW Australia
- Vertebrate Pest Research Unit Department of Primary Industries University of New England Armidale NSW Australia
| |
Collapse
|
5
|
Watson KMA, Mikac KM, Schwab SG. Population Genetics of the Invasive Red Fox, Vulpes vulpes, in South-Eastern Australia. Genes (Basel) 2021; 12:genes12050786. [PMID: 34065589 PMCID: PMC8161170 DOI: 10.3390/genes12050786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The use of genetic information in conservation biology has become more widespread with genetic information more readily available for non-model organisms. It has also been recognized that genetic information from invasive species can inform their management and control. The red fox poses a significant threat to Australian native fauna and the agricultural industry. Despite this, there are few recently published studies investigating the population genetics of foxes in Australia. This study investigated the population genetics of 94 foxes across the Illawarra and Shoalhaven regions of New South Wales, Australia. Diversity Array sequencing technology was used to genotype a large number of single nucleotide polymorphisms (N = 33,375). Moderate genetic diversity and relatedness were observed across the foxes sampled. Low to moderate levels of inbreeding, high-levels of identity-by-state values, as well as high identity-by-descent values were also found. There was limited evidence for population genetic structure among the foxes across the landscape sampled, supporting the presence of a single population across the study area. This indicates that there may be no barriers hindering fox dispersal across the landscape.
Collapse
Affiliation(s)
- Kalynda M.-A. Watson
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
| | - Katarina M. Mikac
- School of Earth, Atmospheric and Life Sciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
- Correspondence: ; Tel.: +61-242-213-307
| | - Sibylle G. Schwab
- School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong 2522, Australia;
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia
| |
Collapse
|
6
|
Spatio-temporal movement patterns and habitat choice of red foxes (Vulpes vulpes) and racoon dogs (Nyctereutes procyonoides) along the Wadden Sea coast. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01474-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractWetlands such as the World Heritage Site in the Wadden Sea include important habitats for breeding waterbirds. Its saltmarshes and adjacent conservation polders are used by thousands of breeding birds. However, some alarming population declines have been recorded during recent decades and previous studies found indications that predation pressure from red foxes (Vulpes vulpes) and more recently from invasive racoon dogs (Nyctereutes procyonoides) played an important role. The current study aimed to assess habitat utilisation by foxes and racoon dogs along the coast of the Wadden Sea. We equipped 21 foxes and seven racoon dogs with GPS collars and recorded a total of 37,586 (mean: 2,088) GPS fixes during a total of 2,617 (mean: 145) equipment days for red foxes and 3,440 (mean: 573) GPS fixes during a total of 272 (mean: 45) equipment days for racoon dogs. Foxes showed high individual variability in Kernel 95% home range sizes, with a mean of 172.2 ha (range: 3 to 824 ha) and little overlap among territories. Males had significantly larger home ranges than females, and there were no differences in home range sizes between adults (n = 14) and young (n = 4). Racoon dogs had smaller home ranges than foxes (mean: 52.8 ha). The preferred habitat type of both predators during daytime was the conservation polders along the Wadden Sea, while foxes also selected saltmarshes during the night. In contrast, both species avoided farmland areas. Foxes showed 20% of their activity during daylight hours and spent this time largely in areas with dense vegetation cover. None of the tagged individuals entered areas with particularly high bird densities (i.e. Wadden Sea islands or Halligen). However, our data suggest that foxes and racoon dogs frequently make use of linear structures such as dykes and dams and patrol along the tide line for carcasses. This suggests that at least single individuals of both species are prone to enter islands that are connected by dams to the mainland.
Collapse
|
7
|
Hill JE, DeVault TL, Belant JL. A review of ecological factors promoting road use by mammals. Mamm Rev 2020. [DOI: 10.1111/mam.12222] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jacob E. Hill
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY13210USA
- Savannah River Ecology Laboratory University of Georgia PO Drawer E Aiken SC29802USA
| | - Travis L. DeVault
- Savannah River Ecology Laboratory University of Georgia PO Drawer E Aiken SC29802USA
| | - Jerrold L. Belant
- Global Wildlife Conservation Center State University of New York College of Environmental Science and Forestry 1 Forestry Drive Syracuse NY13210USA
| |
Collapse
|
8
|
The fox and the beach: Coastal landscape topography and urbanisation predict the distribution of carnivores at the edge of the sea. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
9
|
Main MT, Davis RA, Blake D, Mills H, Doherty TS. Human impact overrides bioclimatic drivers of red fox home range size globally. DIVERS DISTRIB 2020. [DOI: 10.1111/ddi.13115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Michael T. Main
- Centre for Ecosystem Management School of Science Edith Cowan University Joondalup WA Australia
| | - Robert A. Davis
- Centre for Ecosystem Management School of Science Edith Cowan University Joondalup WA Australia
| | - David Blake
- Centre for Ecosystem Management School of Science Edith Cowan University Joondalup WA Australia
| | - Harriet Mills
- Centre for Ecosystem Management School of Science Edith Cowan University Joondalup WA Australia
| | - Tim S. Doherty
- Centre for Integrative Ecology School of Life and Environmental Sciences (Burwood campus) Deakin University Geelong Vic. Australia
| |
Collapse
|
10
|
O'Connor JM, Srivastava SK, Brunton EA, Burnett SE. Urban fringe dweller: the European red fox (Vulpes vulpes) in an urban coastal ecosystem. AUST J ZOOL 2020. [DOI: 10.1071/zo20069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The spatial ecology of the European red fox in urban environments has not been widely studied in Australia. The spatial organisation and habitat selection of red foxes in coastal south-east Queensland was investigated using the GPS data from 17 collared foxes from seven putative fox families. Home range and core activity areas were calculated using 95% (KDE95) and 50% (KDE50) kernel density estimates respectively. Mean KDE95 home range size was 198 ha, and the mean core (KDE50) use area was 34 ha. Habitat selection, based on four broad habitat classes – Beach, Dunes, Urban and Green Space – was assessed using compositional analyses. At both 2nd order (study site) and 3rd order (home range) habitat selection, urban space was overwhelmingly the least preferred habitat in the study area despite being the most extensive habitat type. The unusual findings of this study contribute to a broader understanding of the ecology of this previously unstudied fox population.
Collapse
|
11
|
Stepkovitch B, Martin JM, Dickman CR, Welbergen JA. Urban lifestyle supports larger red foxes in Australia: an investigation into the morphology of an invasive predator. J Zool (1987) 2019. [DOI: 10.1111/jzo.12723] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- B. Stepkovitch
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| | - J. M. Martin
- Centre for Ecosystem Science School of Biological, Earth and Environmental Sciences UNSW Sydney NSW Australia
- School of Life and Environmental Sciences University of Sydney Camperdown NSW Australia
- Royal Botanic Garden & Domain Trust Sydney NSW Australia
| | - C. R. Dickman
- School of Life and Environmental Sciences University of Sydney Camperdown NSW Australia
| | - J. A. Welbergen
- Hawkesbury Institute for the Environment Western Sydney University Richmond NSW Australia
| |
Collapse
|
12
|
Human-modified habitats facilitate forest-dwelling populations of an invasive predator, Vulpes vulpes. Sci Rep 2017; 7:12291. [PMID: 28947832 PMCID: PMC5612948 DOI: 10.1038/s41598-017-12464-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 11/17/2022] Open
Abstract
Invasive and over-abundant predators pose a major threat to biodiversity and often benefit from human activities. Effective management requires understanding predator use of human-modified habitats (including resource subsidies and disturbed environments), and individual variation within populations. We investigated selection for human-modified habitats by invasive red foxes, Vulpes vulpes, within two predominantly forested Australian landscapes. We predicted that foxes would select for human-modified habitats in their range locations and fine-scale movements, but that selection would vary between individuals. We GPS-tracked 19 foxes for 17–166 days; ranges covered 33 to >2500 ha. Approximately half the foxes selected for human-modified habitats at the range scale, with some ‘commuting’ more than five kilometres to farmland or townships at night. Two foxes used burnt forest intensively after a prescribed fire. In their fine-scale nocturnal movements, most foxes selected for human-modified habitats such as reservoirs, forest edges and roads, but there was considerable individual variation. Native fauna in fragmented and disturbed habitats are likely to be exposed to high rates of fox predation, and anthropogenic food resources may subsidise fox populations within the forest interior. Coordinating fox control across land-tenures, targeting specific landscape features, and limiting fox access to anthropogenic resources will be important for biodiversity conservation.
Collapse
|
13
|
Deuel NR, Conner LM, Miller KV, Chamberlain MJ, Cherry MJ, Tannenbaum LV. Gray fox home range, spatial overlap, mated pair interactions and extra-territorial forays in southwestern Georgia, USA. WILDLIFE BIOLOGY 2017. [DOI: 10.2981/wlb.00326] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Nicholas R. Deuel
- N. R. Deuel, L. M. Conner and M. J. Cherry, Joseph W. Jones Ecological Research Center, 3988 Jones Center Dr., Newton, GA 39870, USA
- N. R. Deuel, K. V. Miller and M. J. Chamberlain, Warnell School of Forestry and Natural Resources, Univ. of Georgia, Athens, GA, USA
| | - L. Mike Conner
- N. R. Deuel, L. M. Conner and M. J. Cherry, Joseph W. Jones Ecological Research Center, 3988 Jones Center Dr., Newton, GA 39870, USA
| | - Karl V. Miller
- N. R. Deuel, K. V. Miller and M. J. Chamberlain, Warnell School of Forestry and Natural Resources, Univ. of Georgia, Athens, GA, USA
| | - Michael J. Chamberlain
- N. R. Deuel, K. V. Miller and M. J. Chamberlain, Warnell School of Forestry and Natural Resources, Univ. of Georgia, Athens, GA, USA
| | - Michael J. Cherry
- N. R. Deuel, L. M. Conner and M. J. Cherry, Joseph W. Jones Ecological Research Center, 3988 Jones Center Dr., Newton, GA 39870, USA
- M. J. Cherry, Dept of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Lawrence V. Tannenbaum
- L. V. Tannenbaum, Army Public Health Center, MCHB-PH-HRA, Aberdeen Proving Ground, MD, USA
| |
Collapse
|