1
|
Zhao X, Bartholdy B, Yamamoto Y, Evans EK, Alberich-Jordà M, Staber PB, Benoukraf T, Zhang P, Zhang J, Trinh BQ, Crispino JD, Hoang T, Bassal MA, Tenen DG. PU.1-c-Jun interaction is crucial for PU.1 function in myeloid development. Commun Biol 2022; 5:961. [PMID: 36104445 PMCID: PMC9474506 DOI: 10.1038/s42003-022-03888-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
The Ets transcription factor PU.1 is essential for inducing the differentiation of monocytes, macrophages, and B cells in fetal liver and adult bone marrow. PU.1 controls hematopoietic differentiation through physical interactions with other transcription factors, such as C/EBPα and the AP-1 family member c-Jun. We found that PU.1 recruits c-Jun to promoters without the AP-1 binding sites. To address the functional importance of this interaction, we generated PU.1 point mutants that do not bind c-Jun while maintaining normal DNA binding affinity. These mutants lost the ability to transactivate a target reporter that requires a physical PU.1-c-Jun interaction, and did not induce monocyte/macrophage differentiation of PU.1-deficient cells. Knock-in mice carrying these point mutations displayed an almost complete block in hematopoiesis and perinatal lethality. While the PU.1 mutants were expressed in hematopoietic stem and early progenitor cells, myeloid differentiation was severely blocked, leading to an almost complete loss of mature hematopoietic cells. Differentiation into mature macrophages could be restored by expressing PU.1 mutant fused to c-Jun, demonstrating that a physical PU.1-c-Jun interaction is crucial for the transactivation of PU.1 target genes required for myeloid commitment and normal PU.1 function in vivo during macrophage differentiation.
Collapse
Affiliation(s)
- Xinhui Zhao
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Boris Bartholdy
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Albert Einstein College of Medicine, New York, NY, USA
| | - Yukiya Yamamoto
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Erica K Evans
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- MOMA Therapeutics, Cambridge, MA, USA
| | - Meritxell Alberich-Jordà
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Hematology-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, University Hospital Motol, Videnska, Czech Republic
| | - Philipp B Staber
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, Singapore, Singapore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Pu Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Junyan Zhang
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Bon Q Trinh
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - John D Crispino
- Department of Medicine, Northwestern University, Chicago, IL, USA
| | - Trang Hoang
- Institute for Research in Immunology and Cancer (IRIC), Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, H3C 3J7, Canada
| | - Mahmoud A Bassal
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| | - Daniel G Tenen
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Cancer Science Institute of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Mamun AA, Liu F. Role of IRF4-Mediated Inflammation: Implication in Neurodegenerative Diseases. NEUROLOGY & NEUROTHERAPY OPEN ACCESS JOURNAL 2017; 2:107. [PMID: 39473489 PMCID: PMC11521387 DOI: 10.23880/nnoaj-16000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Neuro-inflammation is a common feature of various central nervous system (CNS) disorders, including stroke, Alzheimer's disease, Multiple sclerosis, etc., and has a significant impact on the outcomes. Regulation of the immune response has therapeutic value. Interferon regulatory factor 4 (IRF4) is a hemopoietic transcription factor critical for activation of microglia/macrophages and modulation of inflammatory responses. The effects of IRF4 signaling on inflammation are pleiotropic, and vary depending on immune cell types and the pathological microenvironment that is regulated by both pro- and anti-inflammatory cytokines. Mechanistically, IRF4 is a quintessential 'context-dependent' transcription factor that regulates distinct groups of inflammatory mediators in a differential manner depending on their activation in different cell types including phagocytes, T-cell subtypes, and neuronal cells. In this review, we summarized the recent findings of IRF4 in the context of immune responses in different cell types with diverse pathological conditions. The primary goal of this review is to understand the signaling pathways and beneficial functions of IRF4, in hope of developing effective therapeutic strategies targeting the immune responses to neurodegenerative diseases.
Collapse
Affiliation(s)
- AA Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| | - F Liu
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| |
Collapse
|
3
|
Zhao JL, Huang F, He F, Gao CC, Liang SQ, Ma PF, Dong GY, Han H, Qin HY. Forced Activation of Notch in Macrophages Represses Tumor Growth by Upregulating miR-125a and Disabling Tumor-Associated Macrophages. Cancer Res 2016; 76:1403-15. [PMID: 26759236 DOI: 10.1158/0008-5472.can-15-2019] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/04/2016] [Indexed: 11/16/2022]
Abstract
Tumor-associated macrophages (TAM) contribute greatly to hallmarks of cancer. Notch blockade was shown to arrest TAM differentiation, but the precise role and underlying mechanisms require elucidation. In this study, we employed a transgenic mouse model in which the Notch1 intracellular domain (NIC) is activated conditionally to define the effects of active Notch1 signaling in macrophages. NIC overexpression had no effect on TAM differentiation, but it abrogated TAM function, leading to repressed growth of transplanted tumors. Macrophage miRNA profiling identified a novel downstream mediator of Notch signaling, miR-125a, which was upregulated through an RBP-J-binding site at the first intronic enhancer of the host gene Spaca6A. miR-125a functioned downstream of Notch signaling to reciprocally influence polarization of M1 and M2 macrophages by regulating factor inhibiting hypoxia inducible factor-1α and IRF4, respectively. Notably, macrophages transfected with miR-125a mimetics increased phagocytic activity and repressed tumor growth by remodeling the immune microenvironment. We also identified a positive feedback loop for miR-125a expression mediated by RYBP and YY1. Taken together, our results showed that Notch signaling not only supported the differentiation of TAM but also antagonized their protumorigenic function through miR-125a. Targeting this miRNA may reprogram macrophages in the tumor microenvironment and restore their antitumor potential.
Collapse
Affiliation(s)
- Jun-Long Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Fei Huang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Fei He
- Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chun-Chen Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Shi-Qian Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Peng-Fei Ma
- Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Ying Dong
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China. Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Hong-Yan Qin
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Almeida R, Ricaño-Ponce I, Kumar V, Deelen P, Szperl A, Trynka G, Gutierrez-Achury J, Kanterakis A, Westra HJ, Franke L, Swertz MA, Platteel M, Bilbao JR, Barisani D, Greco L, Mearin L, Wolters VM, Mulder C, Mazzilli MC, Sood A, Cukrowska B, Núñez C, Pratesi R, Withoff S, Wijmenga C. Fine mapping of the celiac disease-associated LPP locus reveals a potential functional variant. Hum Mol Genet 2014; 23:2481-9. [PMID: 24334606 PMCID: PMC3976328 DOI: 10.1093/hmg/ddt619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/24/2013] [Accepted: 12/06/2013] [Indexed: 12/15/2022] Open
Abstract
Using the Immunochip for genotyping, we identified 39 non-human leukocyte antigen (non-HLA) loci associated to celiac disease (CeD), an immune-mediated disease with a worldwide frequency of ∼1%. The most significant non-HLA signal mapped to the intronic region of 70 kb in the LPP gene. Our aim was to fine map and identify possible functional variants in the LPP locus. We performed a meta-analysis in a cohort of 25 169 individuals from six different populations previously genotyped using Immunochip. Imputation using data from the Genome of the Netherlands and 1000 Genomes projects, followed by meta-analysis, confirmed the strong association signal on the LPP locus (rs2030519, P = 1.79 × 10(-49)), without any novel associations. The conditional analysis on this top SNP-indicated association to a single common haplotype. By performing haplotype analyses in each population separately, as well as in a combined group of the four populations that reach the significant threshold after correction (P < 0.008), we narrowed down the CeD-associated region from 70 to 2.8 kb (P = 1.35 × 10(-44)). By intersecting regulatory data from the ENCODE project, we found a functional SNP, rs4686484 (P = 3.12 × 10(-49)), that maps to several B-cell enhancer elements and a highly conserved region. This SNP was also predicted to change the binding motif of the transcription factors IRF4, IRF11, Nkx2.7 and Nkx2.9, suggesting its role in transcriptional regulation. We later found significantly low levels of LPP mRNA in CeD biopsies compared with controls, thus our results suggest that rs4686484 is the functional variant in this locus, while LPP expression is decreased in CeD.
Collapse
Affiliation(s)
- Rodrigo Almeida
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
- Graduate Program in Health Sciences, University of Brasilia School of Health Sciences, Brasilia, Brazil
| | - Isis Ricaño-Ponce
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Patrick Deelen
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Agata Szperl
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Gosia Trynka
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Javier Gutierrez-Achury
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Alexandros Kanterakis
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Harm-Jan Westra
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Lude Franke
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Morris A. Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Mathieu Platteel
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Jose Ramon Bilbao
- Immunogenetics Research Laboratory, Hospital Universitario de Cruces, Barakaldo, Bizkaia 48903, Spain
| | - Donatella Barisani
- Department of Experimental Medicine, Faculty of Medicine, University of Milano-Bicocca, Monza, Italy
| | - Luigi Greco
- European Laboratory for Food Induced Disease, University of Naples Federico II, Naples, Italy
| | - Luisa Mearin
- Department of Pediatric Gastroenterology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Victorien M. Wolters
- Department of Pediatric Gastroenterology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Chris Mulder
- Department of Gastroenterology, VU Medical Center, Amsterdam, The Netherlands
| | | | - Ajit Sood
- Dayanand Medical College and Hospital, Ludhiana, Punjab, India
| | - Bozena Cukrowska
- Department of Pathology, Children's Memorial Health Institute, Warsaw, Poland
| | - Concepción Núñez
- Depatment of Immunology, H. Clínico S. Carlos, Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid, Spain
| | - Riccardo Pratesi
- Graduate Program in Health Sciences, University of Brasilia School of Health Sciences, Brasilia, Brazil
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, PO Box 30001, Groningen 9700 RB, The Netherlands
| |
Collapse
|
5
|
Munde M, Poon GMK, Wilson WD. Probing the electrostatics and pharmacological modulation of sequence-specific binding by the DNA-binding domain of the ETS family transcription factor PU.1: a binding affinity and kinetics investigation. J Mol Biol 2013; 425:1655-69. [PMID: 23416556 DOI: 10.1016/j.jmb.2013.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
Members of the ETS family of transcription factors regulate a functionally diverse array of genes. All ETS proteins share a structurally conserved but sequence-divergent DNA-binding domain, known as the ETS domain. Although the structure and thermodynamics of the ETS-DNA complexes are well known, little is known about the kinetics of sequence recognition, a facet that offers potential insight into its molecular mechanism. We have characterized DNA binding by the ETS domain of PU.1 by biosensor-surface plasmon resonance (SPR). SPR analysis revealed a striking kinetic profile for DNA binding by the PU.1 ETS domain. At low salt concentrations, it binds high-affinity cognate DNA with a very slow association rate constant (≤10(5)M(-)(1)s(-)(1)), compensated by a correspondingly small dissociation rate constant. The kinetics are strongly salt dependent but mutually balance to produce a relatively weak dependence in the equilibrium constant. This profile contrasts sharply with reported data for other ETS domains (e.g., Ets-1, TEL) for which high-affinity binding is driven by rapid association (>10(7)M(-)(1)s(-)(1)). We interpret this difference in terms of the hydration properties of ETS-DNA binding and propose that at least two mechanisms of sequence recognition are employed by this family of DNA-binding domain. Additionally, we use SPR to demonstrate the potential for pharmacological inhibition of sequence-specific ETS-DNA binding, using the minor groove-binding distamycin as a model compound. Our work establishes SPR as a valuable technique for extending our understanding of the molecular mechanisms of ETS-DNA interactions as well as developing potential small-molecule agents for biotechnological and therapeutic purposes.
Collapse
Affiliation(s)
- Manoj Munde
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | |
Collapse
|
6
|
Poon GMK. DNA Binding Regulates the Self-Association of the ETS Domain of PU.1 in a Sequence-Dependent Manner. Biochemistry 2012; 51:4096-107. [DOI: 10.1021/bi300331v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory M. K. Poon
- Department of Pharmaceutical
Sciences, Washington State University,
Pullman, Washington 99164-6534, United States
| |
Collapse
|
7
|
Ahyi ANN, Chang HC, Dent AL, Nutt SL, Kaplan MH. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. THE JOURNAL OF IMMUNOLOGY 2009; 183:1598-606. [PMID: 19592658 DOI: 10.4049/jimmunol.0803302] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Th2 cells can be subdivided into subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 populations. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)4. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. Infection of total Th2 cells, and IL-10 nonsecreting cells, with retrovirus-expressing IRF4, resulted in increased IL-4 and IL-10 expression, no change in IL-5 or IL-13 production and decreased Il9 transcription. Transfection of an IRF4-specific small interfering RNA into Th2 cells decreases IL-10 production. IRF4 directly binds the Il10 gene as evidenced by chromatin immunoprecipitation assay, and regulates Il10 control elements in a reporter assay. IRF4 interacts with PU.1, and in PU.1-deficient T cells there was an increase in IRF4 binding to the Il10 gene, and in the ability of IRF4 to induce IL-10 production compared with wild-type cells and Il10 promoter activity in a reporter assay. Further heterogeneity of IRF4 expression was observed in Th2 cells analyzed for expression of multiple Th2 cytokines. Thus, IRF4 promotes the expression of a subset of Th2 cytokines and contributes to Th2 heterogeneity.
Collapse
Affiliation(s)
- Ayele-Nati N Ahyi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Walther Cancer Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
8
|
White BR, Wagner CR, Truhlar DG, Amin EA. Molecular Modeling of Geometries, Charge Distributions, and Binding Energies of Small, Drug-Like Molecules Containing Nitrogen Heterocycles and Exocyclic Amino Groups in the Gas Phase and Aqueous Solution. J Chem Theory Comput 2008; 4:1718-1732. [PMID: 23700392 PMCID: PMC3658833 DOI: 10.1021/ct8000766] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have tested a variety of approximate methods for modeling 30 systems containing mixtures of nitrogen heterocycles and exocyclic amines, each of which is studied with up to 31 methods in one or two phases (gaseous and aqueous). Fifteen of the systems are protonated, and 15 are not. We consider a data set consisting of geometric parameters, partial atomic charges, and water binding energies for the methotrexate fragments 2-(aminomethyl)pyrazine and 2,4-diaminopyrimidine, as well as their cationic forms 1H-2-(aminomethyl)pyrazine and 1H-2,4-diaminopyrimidine. We first evaluated the suitability of several density functionals with the 6-31+G(d,p) basis set to serve as a benchmark by comparing calculated molecular geometries to results obtained from coupled-cluster [CCSD/6-31+G(d,p)] wave function theory (WFT). We found that the M05-2X density functional can be used to obtain reliable geometries for our data set. To accurately model partial charges in our molecules, we elected to utilize the well-validated Charge Model 4 (CM4). In the process of establishing benchmark values, we consider gas-phase coupled cluster and density functional theory (DFT) calculations followed by aqueous-phase DFT calculations, where the effect of solvent is treated by the SM6 quantum mechanical implicit solvation model. The resulting benchmarks were used to test several widely available and economical semiempirical molecular orbital (SE-MO) methods and molecular mechanical (MM) force fields for their ability to accurately predict the partial charges, binding energies to a water molecule, and molecular geometries of representative fragments of methotrexate in the gaseous and aqueous phases, where effects of water were simulated by the SM5.4 and SM5.42 quantum mechanical implicit solvation models for SE-MO and explicit solvation used for MM. In addition, we substituted CM4 charges into the MM force fields tested to observe the effect of improved charge assignment on geometric and energetic modeling. The most accurate MM force fields (with or without CM4 charges substituted) were validated against gas-phase and aqueous-phase geometries and charge distributions of a larger set of 16 drug-like ligands, both neutral and cationic. This process showed that the Merck Molecular Force Field (MMFF94) with or without CM4 charges substituted, is, on average, the most accurate force field for geometries of molecules containing nitrogen heterocycles and exocyclic amino groups, both protonated and unprotonated. This force field was then applied to the complete methotrexate molecule, in an effort to systematically explore its accuracy for trends in geometries and charge distributions. The most accurate force fields for the binding energies of nitrogen heterocycles to a water molecule are OPLS2005 and AMBER.
Collapse
Affiliation(s)
- Brian R. White
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| | - Carston R. Wagner
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Donald G. Truhlar
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455
| | - Elizabeth A. Amin
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
9
|
Suraweera N, Meijne E, Moody J, Carvajal-Carmona LG, Yoshida K, Pollard P, Fitzgibbon J, Riches A, van Laar T, Huiskamp R, Rowan A, Tomlinson IPM, Silver A. Mutations of the PU.1 Ets domain are specifically associated with murine radiation-induced, but not human therapy-related, acute myeloid leukaemia. Oncogene 2005; 24:3678-83. [PMID: 15750630 DOI: 10.1038/sj.onc.1208422] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Murine radiation-induced acute myeloid leukaemia (AML) is characterized by loss of one copy of chromosome 2. Previously, we positioned the critical haematopoietic-specific transcription factor PU.1 within a minimally deleted region. We now report a high frequency (>65%) of missense mutation at codon 235 in the DNA-binding Ets domain of PU.1 in murine AML. Earlier studies, outside the context of malignancy, determined that conversion of arginine 235 (R235) to any other amino-acid residue leads to ablation of DNA-binding function and loss of expression of downstream targets. We show that mutation of R235 does not lead to protein loss, and occurs specifically in those AMLs showing loss of one copy of PU.1 (P=0.001, Fisher's exact test). PU.1 mutations were not found in the coding region, UTRs or promoter of human therapy-related AMLs. Potentially regulatory elements upstream of PU.1 were located but no mutations found. In conclusion, we have identified the cause of murine radiation-induced AML and have shown that loss of one copy of PU.1, as a consequence of flanking radiation-sensitive fragile domains on chromosome 2, and subsequent R235 conversion are highly specific to this mouse model. Such a mechanism does not operate, or is extremely rare, in human AML.
Collapse
|
10
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
11
|
O'Leary JM, Bromek K, Black GM, Uhrinova S, Schmitz C, Wang X, Krych M, Atkinson JP, Uhrin D, Barlow PN. Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces. Protein Sci 2004; 13:1238-50. [PMID: 15096630 PMCID: PMC2286753 DOI: 10.1110/ps.03582704] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The regulators of complement activation (RCA) are critical to health and disease because their role is to ensure that a complement-mediated immune response to infection is proportionate and targeted. Each protein contains an uninterrupted array of from four to 30 examples of the very widely occurring complement control protein (CCP, or sushi) module. The CCP modules mediate specific protein-protein and protein-carbohydrate interactions that are key to the biological function of the RCA and, paradoxically, provide binding sites for numerous pathogens. Although structural and mutagenesis studies of CCP modules have addressed some aspects of molecular recognition, there have been no studies of the role of molecular dynamics in the interaction of CCP modules with their binding partners. NMR has now been used in the first full characterization of the backbone dynamics of CCP modules. The dynamics of two individual modules-the 16th of the 30 modules of complement receptor type 1 (CD35), and the N-terminal module of membrane cofactor protein (CD46)-as well as their solution structures, are compared. Although both examples share broadly similar three-dimensional structures, many structurally equivalent residues exhibit different amplitudes and timescales of local backbone motion. In each case, however, regions of the module-surface implicated by mutagenesis as sites of interactions with other proteins include several mobile residues. This observation suggests further experiments to explore binding mechanisms and identify new binding sites.
Collapse
Affiliation(s)
- Joanne M O'Leary
- Schools of Chemistry and Biology, University of Edinburgh, Edinburgh EH9 3JJ, Scotland
| | | | | | | | | | | | | | | | | | | |
Collapse
|